1
|
Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022; 58:5683-5716. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular polymer bottlebrushes are densely grafted, individual macromolecules with nanoscale proportions. The last decade has seen an increased focus on this material class, especially in nanomedicine and for biomedical applications. This Feature Article provides an overview of major developments in this area to highlight the many opportunities that these polymer architectures bring to nano-bio research. The article covers aspects of bottlebrush synthesis and summarises their use in drug and gene delivery, imaging, as theranostics and as prototype materials to correlate nanoparticle structure and composition to biological function and behaviour. Areas for future research in this area are discussed.
Collapse
Affiliation(s)
- Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia. .,The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Xia X, Zhou Z, DeSantis C, Rossi JJ, Bong D. Triplex Hybridization of siRNA with Bifacial Glycopolymer Nucleic Acid Enables Hepatocyte-Targeted Silencing. ACS Chem Biol 2019; 14:1310-1318. [PMID: 31141333 PMCID: PMC7001860 DOI: 10.1021/acschembio.9b00273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, we describe a versatile non-covalent strategy for packaging nucleic acid cargo with targeting modalities, based on triplex hybridization of oligo-uridylate RNA with bifacial polymer nucleic acid (bPoNA). Polyacrylate bPoNA was prepared and side chain-functionalized with N-acetylgalactosamine (GalNAc), which is known to enable delivery to hepatocytes and liver via binding to the asialoglycoprotein receptor (ASGPR). Polymer binding resulted in successful delivery of both native and synthetically modified siRNAs to HepG2 cells in culture, yielding in low nanomolar IC50 silencing of the endogenous ApoB target, in line with observations of expected Dicer processing of the polymer-siRNA targeting complex. Indeed, in vitro Dicer treatment of the polymer complex indicated that triplex hybridization does not impede RNA processing and release from the polymer. The complex itself elicited a quiescent immunostimulation profile relative to free RNA in a cytokine screen, setting the stage for a preliminary in vivo study in a high-calorie-diet mouse model. Gratifyingly, we observed significant ApoB silencing in a preliminary animal study, validating bPoNA as an in vivo carrier platform for systemic siRNA delivery. Thus, this new siRNA carrier platform exhibits generally useful function and is accessible through scalable synthesis. In addition to its utility as a carrier, the triplex-hybridizing synthetic platform could be useful for optimization screens of siRNA sequences using the identical polymer carriers, thus alleviating the need for covalent ligand modification of each RNA substrate.
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Zhun Zhou
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Chris DeSantis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Tang P, di Cio S, Wang W, E Gautrot J. Surface-Initiated Poly(oligo(2-alkyl-2-oxazoline)methacrylate) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10019-10027. [PMID: 30032621 DOI: 10.1021/acs.langmuir.8b01682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymer brushes are particularly performant antifouling coatings, owing to their high grafting density that prevents unwanted biomacromolecules to diffuse through the coating and adhere to the underlying substrate. In addition to this structural feature, polymer brushes require a relatively high level of hydrophilicity and a globally neutral structure to display ultrahigh protein resistance. Poly(2-alkyl-2-oxaolines) are attractive building blocks for such coatings as they can display relatively high hydrophilicity, owing to their amide repeat units, but can also be side-chain and end-chain functionalized relatively readily. However, poly(2-alkyl-2-oxazolines) have not yet been introduced through a radical-mediated grafting from polymer brush structure that would confer the high level of grafting density that is the hallmark of highly protein resistant brushes. Here, we present the formation of a series of poly(oligo(2-alkyl-2-oxazoline)methacrylate) brushes generated via a grafting from approach, via atom transfer radical polymerization. We characterize the chemical structure of the resulting coatings via ellipsometry, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. We show that allyl end groups can be introduced as a side chain of these brushes to allow functionalization via thiol-ene chemistry. We demonstrate the excellent protein resistance of these coatings in single protein solutions as well as serum solutions at concentration typically used for cell culture. Finally, we demonstrate the feasibility of using these brushes for the micropatterning of cells and the generation of cell-based assays.
Collapse
|
4
|
Zhao Z, Du T, Liang F, Liu S. Amphiphilic DNA Organic Hybrids: Functional Materials in Nanoscience and Potential Application in Biomedicine. Int J Mol Sci 2018; 19:E2283. [PMID: 30081520 PMCID: PMC6121482 DOI: 10.3390/ijms19082283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Due to the addressability and programmability, DNA has been applied not merely in constructing static elegant nanostructures such as two dimensional and three dimensional DNA nanostructures but also in designing dynamic nanodevices. Moreover, DNA could combine with hydrophobic organic molecules to be a new amphiphilic building block and then self-assemble into nanomaterials. Of particular note, a recent state-of-the-art research has turned our attention to the amphiphilic DNA organic hybrids including small molecule modified DNA (lipid-DNA, fluorescent molecule-DNA, etc.), DNA block copolymers, and DNA-dendron hybrids. This review focuses mainly on the development of their self-assembly behavior and their potential application in nanomaterial and biomedicine. The potential challenges regarding of the amphiphilic DNA organic hybrids are also briefly discussed, aiming to advance their practical applications in nanoscience and biomedicine.
Collapse
Affiliation(s)
- Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ting Du
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
5
|
Dargaville TR, Park J, Hoogenboom R. Poly(2‐oxazoline) Hydrogels: State‐of‐the‐Art and Emerging Applications. Macromol Biosci 2018; 18:e1800070. [DOI: 10.1002/mabi.201800070] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tim R. Dargaville
- Institute of Health and Biomedical Innovation Science and Engineering Faculty Queensland University of Technology Queensland 4001 Australia
| | - Jong‐Ryul Park
- Institute of Health and Biomedical Innovation Science and Engineering Faculty Queensland University of Technology Queensland 4001 Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 S4 B‐9000 Ghent Belgium
| |
Collapse
|
6
|
Jajcevic K, Chami M, Sugihara K. Gold Nanowire Fabrication with Surface-Attached Lipid Nanotube Templates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4830-4836. [PMID: 27417673 DOI: 10.1002/smll.201600431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Indexed: 06/06/2023]
Abstract
A high-throughput approach to fabricate gold nanowires on surfaces with a lipid nanotube template is demonstrated. Streptavidin-coated gold nanoparticles are attached to the biotin-tagged lipid nanotubes. After the chemical fixation, the samples are dried and treated with oxygen plasma to remove the organic template and connect the particles. The created nanowires are characterized by cryo-transmission electron microscopy, atomic force microscopy, and electrical measurements.
Collapse
Affiliation(s)
- Kristina Jajcevic
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Kaori Sugihara
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland.
| |
Collapse
|
7
|
Affiliation(s)
- Markus Müllner
- School of Chemistry; Key Centre for Polymers and Colloids; The University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
8
|
|
9
|
Safir I, Ngo KX, Nixon Abraham J, Ghahraman Afshar M, Pavlova E, Nardin C. Synthesis and structure formation in dilute aqueous solution of a chitosan-DNA hybrid. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.09.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
The vesicle formation of β-CD and AD self-assembly of dumbbell-shaped amphiphilic triblock copolymer. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3758-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes. Polymers (Basel) 2015. [DOI: 10.3390/polym7071346] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Zhou Z, Xia X, Bong D. Synthetic Polymer Hybridization with DNA and RNA Directs Nanoparticle Loading, Silencing Delivery, and Aptamer Function. J Am Chem Soc 2015; 137:8920-3. [PMID: 26138550 DOI: 10.1021/jacs.5b05481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein discrete triplex hybridization of DNA and RNA with polyacrylates. Length-monodisperse triazine-derivatized polymers were prepared on gram-scale by reversible addition-fragmentation chain-transfer polymerization. Despite stereoregio backbone heterogeneity, the triazine polymers bind T/U-rich DNA or RNA with nanomolar affinity upon mixing in a 1:1 ratio, as judged by thermal melts, circular dichroism, gel-shift assays, and fluorescence quenching. We call these polyacrylates "bifacial polymer nucleic acids" (bPoNAs). Nucleic acid hybridization with bPoNA enables DNA loading onto polymer nanoparticles, siRNA silencing delivery, and can further serve as an allosteric trigger of RNA aptamer function. Thus, bPoNAs can serve as tools for both non-covalent bioconjugation and structure-function nucleation. It is anticipated that bPoNAs will have utility in both bio- and nanotechnology.
Collapse
Affiliation(s)
- Zhun Zhou
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Xin Xia
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Dennis Bong
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Schmitz M, Kuhlmann M, Reimann O, Hackenberger CR, Groll J. Side-chain cysteine-functionalized poly(2-oxazoline)s for multiple peptide conjugation by native chemical ligation. Biomacromolecules 2015; 16:1088-94. [PMID: 25728550 PMCID: PMC4428813 DOI: 10.1021/bm501697t] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/27/2015] [Indexed: 12/19/2022]
Abstract
We prepared statistical copolymers composed of 2-methyl-2-oxazoline (MeOx) in combination with 2-butenyl-2-oxazoline (BuOx) or 2-decenyl-2-oxazoline (DecOx) as a basis for polymer analogous introduction of 1,2-aminothiol moieties at the side chain. MeOx provides hydrophilicity as well as cyto- and hemocompatibility, whereas the alkene groups of BuOx and DecOx serve for functionalization with a thiofunctional thiazolidine by UV-mediated thiol-ene reaction. After deprotection the cysteine content in functionalized poly(2-oxazoline) (POx) is quantified by NMR and a modified trinitrobenzenesulfonic acid assay. The luminescent cell viability assay shows no negative influence of cysteine-functionalized POx (cys-POx) concerning cell viability and cell number. cys-POx was used for multiple chemically orthogonal couplings with thioester-terminated peptides through native chemical ligation (NCL), which was performed and confirmed by NMR and MALDI-ToF measurements.
Collapse
Affiliation(s)
- Michael Schmitz
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Matthias Kuhlmann
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Oliver Reimann
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian
P. R. Hackenberger
- Department
Chemical Biology II, Leibniz-Institut für
Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Humboldt
Universität zu Berlin, Department
Chemie, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Jürgen Groll
- Department
of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
14
|
|
15
|
Wu F, Zhang Y, Yang Z. An Overview of Self-Assembly and Morphological Regulation of Amphiphilic DNA Organic Hybrids. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201400846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Kedracki D, Filippov SK, Gour N, Schlaad H, Nardin C. Formation of DNA-Copolymer Fibrils Through an Amyloid-Like Nucleation Polymerization Mechanism. Macromol Rapid Commun 2015; 36:768-73. [DOI: 10.1002/marc.201400728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/19/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Dawid Kedracki
- Department of Inorganic and Analytical Chemistry; University of Geneva; Quai Ernest Ansermet 30, 1211, Geneva 4 Switzerland
| | - Sergey K. Filippov
- Institute of Macromolecular Chemistry; AS CR, Heyrovsky Sq. 2 Prague Prague 6 162 06 Czech Republic
| | - Nidhi Gour
- Department of Inorganic and Analytical Chemistry; University of Geneva; Quai Ernest Ansermet 30, 1211, Geneva 4 Switzerland
| | - Helmut Schlaad
- Institute of Chemistry; University of Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam Germany
- Max Planck Institute of Colloids and Interfaces; Department of Colloid Chemistry; Research Campus Golm; 14424 Potsdam Germany
| | - Corinne Nardin
- Department of Inorganic and Analytical Chemistry; University of Geneva; Quai Ernest Ansermet 30, 1211, Geneva 4 Switzerland
| |
Collapse
|