1
|
Hernández-Cifre JG, Collado-González M, Díaz Baños FG, García de la Torre J. Size-Exclusion Chromatography of Macromolecules: A Brief Tutorial Overview on Fundamentals with Computational Tools for Data Analysis and Determination of Structural Information. Polymers (Basel) 2025; 17:582. [PMID: 40076077 PMCID: PMC11902525 DOI: 10.3390/polym17050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Size-exclusion chromatography (SEC) is presently a widely used and very informative technique for the characterization of macromolecules in solution. Beyond the first implementations of SEC-which required cumbersome column calibrations and were mainly intended for the determination of molecular weights-the modern SEC approach involving multiple detectors (md-SEC) is based on solution properties such as intrinsic viscosity and light scattering. Thus, md-SEC enables the direct and more efficient determination of molecular weights, as well as the determination of relationships between property and molecular weight, which can be quite useful in structural studies. Here, we first present a review of the fundamental aspects of the dilute-solution properties of macromolecules-particularly the differential refractive index, intrinsic viscosity, and scattering-related properties-on which the various detectors involved in md-SEC are based. Then, we developed SECtools, a suite of public-domain, open-source computer programs, which allow for the full analysis of md-SEC chromatograms. These analyses range from just the recorded raw signals (mV) of the detectors to a full determination of molecular weight averages and distributions. The use of these programs is illustrated through experimental studies using various samples.
Collapse
Affiliation(s)
| | - Mar Collado-González
- Department of Cellular Biology and Histology, University of Murcia, 30100 Murcia, Spain;
| | | | - José García de la Torre
- Department of Physical Chemistry, University of Murcia, 30100 Murcia, Spain; (F.G.D.B.); (J.G.d.l.T.)
| |
Collapse
|
2
|
Sadowska M, Nattich-Rak M, Morga M, Adamczyk Z, Basinska T, Mickiewicz D, Gadzinowski M. Anisotropic Particle Deposition Kinetics from Quartz Crystal Microbalance Measurements: Beyond the Sphere Paradigm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7907-7919. [PMID: 38578865 PMCID: PMC11025136 DOI: 10.1021/acs.langmuir.3c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/07/2024]
Abstract
Deposition kinetics of polymer particles characterized by a prolate spheroid shape on gold sensors modified by the adsorption of poly(allylamine) was investigated using a quartz crystal microbalance and atomic force microscopy. Reference measurements were also performed for polymer particles of a spherical shape and the same diameter as the spheroid shorter axis. Primarily, the frequency and dissipation shifts for various overtones were measured as a function of time. These kinetic data were transformed into the dependence of the complex impedance, scaled up by the inertia impedance, upon the particle size to the hydrodynamic boundary layer ratio. The results obtained for low particle coverage were interpolated, which enabled the derivation of Sauerbrey-like equations, yielding the real particle coverage using the experimental frequency or dissipation (bandwidth) shifts. Experiments carried out for a long deposition time confirmed that, for spheroids, the imaginary and real impedance components were equal to each other for all overtones and for a large range of particle coverage. This result was explained in terms of a hydrodynamic, lubrication-like contact of particles with the sensor, enabling their sliding motion. In contrast, the experimental data obtained for spheres, where the impedance ratio was a complicated function of overtones and particle coverage, showed that the contact was rather stiff, preventing their motion over the sensor. It was concluded that results obtained in this work can be exploited as useful reference systems for a quantitative interpretation of bioparticle, especially bacteria, deposition kinetics on macroion-modified surfaces.
Collapse
Affiliation(s)
- Marta Sadowska
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Małgorzata Nattich-Rak
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Morga
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Zbigniew Adamczyk
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Teresa Basinska
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland
| | - Damian Mickiewicz
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mariusz Gadzinowski
- Centre
of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
3
|
Self-association of the glycopeptide antibiotic teicoplanin A2 in aqueous solution studied by molecular hydrodynamics. Sci Rep 2023; 13:1969. [PMID: 36737502 PMCID: PMC9895975 DOI: 10.1038/s41598-023-28740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The natural glycopeptide antibiotic teicoplanin is used for the treatment of serious Gram-positive related bacterial infections and can be administered intravenously, intramuscularly, topically (ocular infections), or orally. It has also been considered for targeting viral infection by SARS-CoV-2. The hydrodynamic properties of teicoplanin A2 (M1 = 1880 g/mol) were examined in phosphate chloride buffer (pH 6.8, I = 0.10 M) using sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge together with capillary (rolling ball) viscometry. In the concentration range, 0-10 mg/mL teicoplanin A2 was found to self-associate plateauing > 1 mg/mL to give a molar mass of (35,400 ± 1000) g/mol corresponding to ~ (19 ± 1) mers, with a sedimentation coefficient s20, w = ~ 4.65 S. The intrinsic viscosity [[Formula: see text]] was found to be (3.2 ± 0.1) mL/g: both this, the value for s20,w and the hydrodynamic radius from dynamic light scattering are consistent with a globular macromolecular assembly, with a swelling ratio through dynamic hydration processes of ~ 2.
Collapse
|
4
|
Hernández-Cifre JG, Rodríguez-Schmidt R, Almagro-Gómez CM, García de la Torre J. Calculation of the friction, diffusion and sedimentation coefficients of nanoplatelets of arbitrary shape. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Parker E, Haberichter SL, Lollar P. Subunit Flexibility of Multimeric von Willebrand Factor/Factor VIII Complexes. ACS OMEGA 2022; 7:31183-31196. [PMID: 36092565 PMCID: PMC9453814 DOI: 10.1021/acsomega.2c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Von Willebrand factor (VWF) is a plasma glycoprotein that participates in platelet adhesion and aggregation and serves as a carrier for blood coagulation factor VIII (fVIII). Plasma VWF consists of a population of multimers that range in molecular weight from ∼ 0.55 MDa to greater than 10 MDa. The VWF multimer consists of a variable number of concatenated disulfide-linked ∼275 kDa subunits. We fractionated plasma-derived human VWF/fVIII complexes by size-exclusion chromatography at a pH of 7.4 and subjected them to analysis by sodium dodecyl sulfate agarose gel electrophoresis, sedimentation velocity analytical ultracentrifugation (SV AUC), dynamic light scattering (DLS), and multi-angle light scattering (MALS). Weight-average molecular weights, M w, were independently measured by MALS and by application of the Svedberg equation to SV AUC and DLS measurements. Estimates of the Mark-Houwink-Kuhn-Sakurada exponents , αs, and αD describing the functional relationship between the z-average radius of gyration, , weight-average sedimentation coefficient, s w, z-average diffusion coefficient, D z , and M w were consistent with a random coil conformation of the VWF multimer. Ratios of to the z-average hydrodynamic radius, , estimated by DLS, were calculated across an M w range from 2 to 5 MDa. When compared to values calculated for a semi-flexible, wormlike chain, these ratios were consistent with a contour length over 1000-fold greater than the persistence length. These results indicate a high degree of flexibility between domains of the VWF subunit.
Collapse
Affiliation(s)
- Ernest
T. Parker
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| | - Sandra L. Haberichter
- Diagnostic
Laboratories and Blood Research Institute, Versiti, Milwaukee, Wisconsin 53201-2178, United States
- Pediatric
Hematology/Oncology, Medical College of
Wisconsin, Milwaukee, Wisconsin 53226, United States
- Children’s
Research Institute, Children’s Hospital
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Pete Lollar
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| |
Collapse
|
6
|
Sobieszek A. Self-assembly of smooth muscle myosin filaments: adaptation of filament length by telokin and Mg·ATP. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:449-463. [PMID: 35821526 DOI: 10.1007/s00249-022-01608-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/11/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The contractile apparatus of smooth muscle is malleable to accommodate stress and strain exerted on the muscle cell and to maintain optimal contractility. Structural lability of smooth muscle myosin filaments is believed to play an important role in the cell's malleability. However, the mechanism and regulation of myosin filament formation is still poorly understood. In the present in vitro study, using a static light scattering method, length distributions were obtained from suspensions of short myosin filaments (SFs) formed by rapid dilution or long ones (LFs) formed by slow dialysis. The distributions indicated the presence of dynamic equilibriums between soluble myosin and the SFs; i.e.: trimers, hexamers and mini filaments, covering the range up to 0.75 µm. The LFs were more stable, exhibiting favorable sizes at about 1.25, 2.4 and 4.5 µm. More distinct distributions were obtained from filaments adsorbed to a glass surface, by evanescent wave scattering and local electric field enhancement. Addition of telokin (TL) to the suspensions of unphosphorylated SFs resulted in widening of the soluble range, while in the case of the LFs this shift was larger, and accompanied by reduced contribution of the soluble myosin species. Such changes were largely absent in the case of phosphorylated myosin. In contrast, the presence of Mg·ATP resulted in elongation of the filaments and clear separation of filaments from soluble myosin species. Thus, TL and Mg·ATP appeared to modify the distribution of myosin filament lengths, i.e., increasing the lengths in preparing for phosphorylation, or reducing it to aid dephosphorylation.
Collapse
Affiliation(s)
- Apolinary Sobieszek
- Austrian Academy of Sciences, Dr. Iganz-Seipel-Platz 2, 1010, Vienna, Austria.
| |
Collapse
|
7
|
Sist P, Bandiera A, Urbani R, Passamonti S. Macromolecular and Solution Properties of the Recombinant Fusion Protein HUG. Biomacromolecules 2022; 23:3336-3348. [PMID: 35876275 PMCID: PMC9364316 DOI: 10.1021/acs.biomac.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The recombinant fusion protein HELP-UnaG (HUG) is a bifunctional
product that exhibits human elastin-like polypeptide (HELP)-specific
thermal behavior, defined as a reverse phase transition, and UnaG-specific
bilirubin-dependent fluorescence emission. HUG provides an interesting
model to understand how its two domains influence each other’s
properties. Turbidimetric, calorimetric, and light scattering measurements
were used to determine different parameters for the reverse temperature
transition and coacervation behavior. This shows that the UnaG domain
has a measurable but limited effect on the thermal properties of HELP.
Although the HELP domain decreased the affinity of UnaG for bilirubin,
HUG retained the property of displacing bilirubin from bovine serum
albumin and thus remains one of the strongest bilirubin-binding proteins
known to date. These data demonstrate that HELP can be used to create
new bifunctional fusion products that pave the way for expanded technological
applications.
Collapse
Affiliation(s)
- Paola Sist
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Ranieri Urbani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| |
Collapse
|
8
|
Adamczyk Z, Pomorska A, Sadowska M, Nattich-Rak M, Morga M, Basinska T, Mickiewicz D, Gadzinowski M. QCM-D Investigations of Anisotropic Particle Deposition Kinetics: Evidences of the Hydrodynamic Slip Mechanisms. Anal Chem 2022; 94:10234-10244. [PMID: 35776925 PMCID: PMC9310025 DOI: 10.1021/acs.analchem.2c01776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Deposition kinetics
of positively charged polymer microparticles,
characterized by prolate spheroid shape, at silica and gold sensors
was investigated using the quartz microbalance (QCM) technique. Reference
measurements were also performed for positively charged polymer particles
of spherical shape and the same mass as the spheroids. Primarily,
the frequency and bandwidth shifts for various overtones were measured
as a function of time. It is shown that the ratio of these signals
is close to unity for all overtones. These results were converted
to the dependence of the frequency shift on the particle coverage,
directly determined by atomic force microscopy and theoretically interpreted
in terms of the hydrodynamic model. A quantitative agreement with
experiments was attained considering particle slip relative to the
ambient oscillating flow. In contrast, the theoretical results pertinent
to the rigid contact model proved inadequate. The particle deposition
kinetics derived from the QCM method was compared with theoretical
modeling performed according to the random sequential adsorption approach.
This allowed to assess the feasibility of the QCM technique to furnish
proper deposition kinetics for anisotropic particles. It is argued
that the hydrodynamic slip effect should be considered in the interpretation
of QCM kinetic results acquired for bioparticles, especially viruses.
Collapse
Affiliation(s)
- Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30 - 239, Poland
| | - Agata Pomorska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30 - 239, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30 - 239, Poland
| | - Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30 - 239, Poland
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30 - 239, Poland
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, Lodz 90-363, Poland
| | - Damian Mickiewicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, Lodz 90-363, Poland
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, Lodz 90-363, Poland
| |
Collapse
|
9
|
Metallo-Supramolecular Complexation Behavior of Terpyridine- and Ferrocene-Based Polymers in Solution-A Molecular Hydrodynamics Perspective. Polymers (Basel) 2022; 14:polym14050944. [PMID: 35267767 PMCID: PMC8912760 DOI: 10.3390/polym14050944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The contribution deals with the synthesis of the poly(methacrylate)-based copolymers, which contain ferrocene and/or terpyridine moieties in the side chains, and the subsequent analysis of their self-assembly behavior upon supramolecular/coordination interactions with Eu3+ and Pd2+ ions in dilute solutions. Both metal ions provoke intra and inter molecular complexation that results in the formation of large supra-macromolecular assembles of different conformation/shapes. By applying complementary analytical approaches (i.e., sedimentation-diffusion analysis in the analytical ultracentrifuge, dynamic light scattering, viscosity and density measurements, morphology studies by electron microscopy), a map of possible conformational states/shapes was drawn and the corresponding fundamental hydrodynamic and macromolecular characteristics of metallo-supramolecular assemblies at various ligand-to-ion molar concentration ratios (M/L) in extremely dilute polymer solutions (c[η]≈0.006) were determined. It was shown that intramolecular complexation is already detected at (L≈0.1), while at M/L>0.5 solution/suspension precipitates. Extreme aggregation/agglomeration behavior of such dilute polymer solutions at relatively “high” metal ion content is explained from the perspective of polymer-solvent and charge interactions that will accompany the intramolecular complexation due to the coordination interactions.
Collapse
|
10
|
Bercea M, Wolf BA. Detection of polymer compatibility by means of self-organization: poly(ethylene oxide) and poly(sodium 4-styrenesulfonate). SOFT MATTER 2021; 17:5214-5220. [PMID: 33949591 DOI: 10.1039/d1sm00170a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Information on the miscibility of different polymers A and B on a molecular level is important in many ways. However, along the traditional lines this knowledge is difficult and time consuming to achieve. The current study presents a simple alternative, based on the determination of the intrinsic viscosities (specific hydrodynamic volume of isolated coils) for blend solutions in a common solvent. In the case of incompatible polymers, isolated coils contain one macromolecule only, either A or B. In contrast, compatible polymers form mixed isolated coils, because of favorable interactions. The present investigation was carried out for the system water/poly(ethylene oxide)/poly(sodium 4-polystyrenesulfonate), for which the reason of compatibility lies in the formation Na+ bridges between the sulfonate groups of the polyelectrolyte and the OH groups of the poly(ethylene oxide). Zero shear viscosities were measured as a function of polymer concentration for blends of different compositions and modeled quantitatively by means of relations yielding the excess intrinsic viscosities ε (zero in the case of incompatibility) and viscometric interaction parameters. Particular attention is being paid to the role the molar masses of the polymers play for the resulting ε values.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Bernhard A Wolf
- Johannes Gutenberg-Universität Mainz, Department Chemie, Jakob-Welder Weg 11, D-55099 Mainz, Germany.
| |
Collapse
|
11
|
Monsen RC, Chakravarthy S, Dean WL, Chaires JB, Trent JO. The solution structures of higher-order human telomere G-quadruplex multimers. Nucleic Acids Res 2021; 49:1749-1768. [PMID: 33469644 PMCID: PMC7897503 DOI: 10.1093/nar/gkaa1285] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Human telomeres contain the repeat DNA sequence 5′-d(TTAGGG), with duplex regions that are several kilobases long terminating in a 3′ single-stranded overhang. The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature. We report here the results of an integrated structural biology approach that combines small-angle X-ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column chromatography and molecular dynamics simulations that provide the most detailed characterization to date of the structure of the telomeric overhang. We find that the single-stranded sequences 5′-d(TTAGGG)n, with n = 8, 12 and 16, fold into multimeric structures containing the maximal number (2, 3 and 4, respectively) of contiguous G4 units with no long gaps between units. The G4 units are a mixture of hybrid-1 and hybrid-2 conformers. In the multimeric structures, G4 units interact, at least transiently, at the interfaces between units to produce distinctive CD signatures. Global fitting of our hydrodynamic and scattering data to a worm-like chain (WLC) model indicates that these multimeric G4 structures are semi-flexible, with a persistence length of ∼34 Å. Investigations of its flexibility using MD simulations reveal stacking, unstacking, and coiling movements, which yield unique sites for drug targeting.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Biochemistry & Molecular Genetics, University of Louisville Medical School, Louisville, KY 40202, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville Medical School, Louisville, KY 40202, USA
| | - Jonathan B Chaires
- Department of Biochemistry & Molecular Genetics, University of Louisville Medical School, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville Medical School, Louisville, KY 40202, USA.,Department of Medicine, University of Louisville Medical School, Louisville, KY 40202, USA
| | - John O Trent
- Department of Biochemistry & Molecular Genetics, University of Louisville Medical School, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville Medical School, Louisville, KY 40202, USA.,Department of Medicine, University of Louisville Medical School, Louisville, KY 40202, USA
| |
Collapse
|
12
|
The Effect of Different Extraction Conditions on the Physical Properties, Conformation and Branching of Pectins Extracted from Cucumis melo Inodorus. POLYSACCHARIDES 2020. [DOI: 10.3390/polysaccharides1010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The extraction of pectin involves the physico-chemical hydrolysis and solubilisation of pectic polymers from plant tissues under the influence of several processing parameters. In this study, an experimental design approach was used to examine the effects of extraction pH, time and temperature on the pectins extracted from Cucumis melo Inodorus. Knowledge of physical properties (intrinsic viscosity and molar mass), dilute solution conformation (persistence length and mass per unit length), together with chemical composition, was then used to propose a new method, which can estimate the length and number of branches on the pectin RG-I region. The results show that physical properties, conformation and the length and number of branches are sensitive to extraction conditions. The fitting of regression equations relating length and number of branches on the pectin RG-I region to extraction conditions can, therefore, lead to tailor-made pectins with specific properties for specific applications.
Collapse
|
13
|
Jiwani SI, Gillis RB, Besong D, Almutairi F, Erten T, Kök MS, Harding SE, Paulsen BS, Adams GG. Isolation and Biophysical Characterisation of Bioactive Polysaccharides from Cucurbita Moschata (Butternut Squash). Polymers (Basel) 2020; 12:polym12081650. [PMID: 32722155 PMCID: PMC7466094 DOI: 10.3390/polym12081650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Cucurbits are plants that have been used frequently as functional foods. This study includes the extraction, isolation, and characterisation of the mesocarp polysaccharide of Cucurbita moschata. The polysaccharide component was purified by gel filtration into three fractions (NJBTF1, NJBTF2, and NJBTF3) of different molecular weights. Characterisation includes the hydrodynamic properties, identification of monosaccharide composition, and bioactivity. Sedimentation velocity also indicated the presence of small amounts of additional discrete higher molecular weight components even after fractionation. Sedimentation equilibrium revealed respective weight average molecular weights of 90, 31, and 19 kDa, with the higher fractions (NJBTF1 and NJBTF2) indicating a tendency to self-associate. Based on the limited amount of data (combinations of 3 sets of viscosity and sedimentation data corresponding to the 3 fractions), HYDFIT indicates an extended, semi-flexible coil conformation. Of all the fractions obtained, NJBTF1 showed the highest bioactivity. All fractions contained galacturonic acid and variable amounts of neutral sugars. To probe further, the extent of glycosidic linkages in NJBTF1 was estimated using gas chromatography–mass spectrometry (GCMS), yielding a high galacturonic acid content (for pectin polysaccharide) and the presence of fructans—the first evidence of fructans (levan) in the mesocarp. Our understanding of the size and structural flexibility together with the high bioactivity suggests that the polysaccharide obtained from C. moschata has the potential to be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Shahwar Imran Jiwani
- Queen’s Medical Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Clifton Boulevard, Nottingham NG7 2UH, UK;
- Correspondence: (S.I.J.); (G.G.A.); Tel.: +44-(0)-115-748-4098 (S.I.J.); +44-(0)-115-823-0901 (G.G.A.)
| | - Richard B. Gillis
- Queen’s Medical Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Clifton Boulevard, Nottingham NG7 2UH, UK;
| | - David Besong
- Solar and Photovoltaics Engineering Center, King Abdullah University of Science and Technology, Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Fahad Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Tayyibe Erten
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bayburt University, 69000 Bayburt, Turkey;
| | - M. Samil Kök
- Department of Food Engineering, Faculty of Engineering & Architecture, Abant Izzet Baysal University, Gölköy, 14300 Bolu, Turkey;
| | - Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK;
| | - Berit S. Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, Section Pharmacognosy, University of Oslo, PB 1068, Blindern, N-0316 Oslo, Norway;
| | - Gary G. Adams
- Queen’s Medical Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Clifton Boulevard, Nottingham NG7 2UH, UK;
- Correspondence: (S.I.J.); (G.G.A.); Tel.: +44-(0)-115-748-4098 (S.I.J.); +44-(0)-115-823-0901 (G.G.A.)
| |
Collapse
|
14
|
García de la Torre J, Hernández Cifre J. Hydrodynamic Properties of Biomacromolecules and Macromolecular Complexes: Concepts and Methods. A Tutorial Mini-review. J Mol Biol 2020; 432:2930-2948. [DOI: 10.1016/j.jmb.2019.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
15
|
Dinu V, Gillis RB, MacCalman T, Lim M, Adams GG, Harding SE, Fisk ID. Submaxillary Mucin: its Effect on Aroma Release from Acidic Drinks and New Insight into the Effect of Aroma Compounds on its Macromolecular Integrity. FOOD BIOPHYS 2019; 14:278-286. [PMID: 31402849 PMCID: PMC6658575 DOI: 10.1007/s11483-019-09574-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/12/2019] [Indexed: 11/28/2022]
Abstract
Submaxillary mucin is a major component that defines the makeup and functionality of saliva. Understanding its structure and function during food intake is key to designing appropriate strategies for enhancing the delivery of flavour. In the present study, the hydrodynamic integrity of bovine submaxillary mucin was characterised under physiological and acidic conditions and it was shown to have a broad molecular weight distribution with species ranging from 100 kDa to over 2000 kDa, and a random coil type of conformation. A decrease in the pH of mucin appeared to result in aggregation and a broader molecular weight distribution, which was shown to correlate with a release of flavour compounds. Our study also provides indications that p-cresol may have an effect on the macromolecular integrity of mucin.
Collapse
Affiliation(s)
- Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Richard B. Gillis
- School of Health Sciences, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, Clifton Boulevard, Nottingham, UK
| | - Thomas MacCalman
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Mui Lim
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Gary G. Adams
- School of Health Sciences, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, Clifton Boulevard, Nottingham, UK
| | - Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
- Kulturhistorisk Museum, Universitetet i Oslo, Postboks 6762, St. Olavs plass, 0130 Oslo, Norway
| | - Ian D. Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
16
|
Hydrodynamic and Electrophoretic Properties of Trastuzumab/HER2 Extracellular Domain Complexes as Revealed by Experimental Techniques and Computational Simulations. Int J Mol Sci 2019; 20:ijms20051076. [PMID: 30832287 PMCID: PMC6429128 DOI: 10.3390/ijms20051076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
The combination of hydrodynamic and electrophoretic experiments and computer simulations is a powerful approach to study the interaction between proteins. In this work, we present hydrodynamic and electrophoretic experiments in an aqueous solution along with molecular dynamics and hydrodynamic modeling to monitor and compute biophysical properties of the interactions between the extracellular domain of the HER2 protein (eHER2) and the monoclonal antibody trastuzumab (TZM). The importance of this system relies on the fact that the overexpression of HER2 protein is related with the poor prognosis breast cancers (HER2++ positives), while the TZM is a monoclonal antibody for the treatment of this cancer. We have found and characterized two different complexes between the TZM and eHER2 proteins (1:1 and 1:2 TZM:eHER2 complexes). The conformational features of these complexes regulate their hydrodynamic and electrostatic properties. Thus, the results indicate a high degree of molecular flexibility in the systems that ultimately leads to higher values of the intrinsic viscosity, as well as lower values of diffusion coefficient than those expected for simple globular proteins. A highly asymmetric charge distribution is detected for the monovalent complex (1:1 complex), which has strong implications in correlations between the experimental electrophoretic mobility and the modeled net charge. In order to understand the dynamics of these systems and the role of the specific domains involved, it is essential to find biophysical correlations between dynamics, macroscopic transport and electrostatic properties. The results should be of general interest for researchers working in this area.
Collapse
|
17
|
Physicochemical Parameters for Brea Gum Exudate from Cercidium praecox Tree. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2040072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brea gum (BG) is a hydrocolloid obtained as an exudate from the Cercidium praecox tree. The physicochemical properties of brea gum are similar to those of the arabic gum and, in many cases, the former can replace the latter. The brea gum was incorporated in 2013 into the Argentine Food Code because of its ancestral background and its current food uses. Brea gum could be also used as additive or excipient for pharmacological formulations. This work reports intrinsic viscosity, coil overlap, and Mark–Houwink–Kuhn–Sakurada (MHKS) parameters of BG solutions. Partially hydrolyzed BG solution was analyzed using intrinsic viscosity measurements, dynamic light scattering and size-exclusion chromatography (SEC). The MHKS parameters, a and k, were determined for BG at 25 °C, with values of 0.4133 and 0.1347 cm3 g−1, respectively. The viscometric molecular weight of BG was 1890 kg mol−1. The hydrodynamic parameters of BG were indicative of a hyperbranched structure and spherical conformation. The knowledge obtained on the physicochemical properties of brea gum favors its use in food and pharmaceutical applications.
Collapse
|
18
|
Davydova VN, Yermak IM. The Conformation of Chitosan Molecules in Aqueous Solutions. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s000635091804005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
The Svedberg Lecture 2017. From nano to micro: the huge dynamic range of the analytical ultracentrifuge for characterising the sizes, shapes and interactions of molecules and assemblies in Biochemistry and Polymer Science. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:697-707. [PMID: 30056489 PMCID: PMC6182603 DOI: 10.1007/s00249-018-1321-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/25/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
Abstract
The analytical ultracentrifuge (AUC) invented by T. Svedberg has now become an extremely versatile and diverse tool in Biochemistry and Polymer Science for the characterisation of the sizes, shapes and interactions of particles ranging in size from a few nanometres to tens of microns, or in molecular weight, M (molar mass) terms from a few hundred daltons to hundreds of megadaltons. We illustrate this diversity by reviewing recent work on (1) small lignin-like isoeugenols of M ~ 0.4–0.9 kDa for archaeological wood conservation, (2) protein-like association of a functional amino-cellulose M = 3.25 kDa, (3) a small glycopeptide antibiotic (M ~ 1.5 kDa) and its association with a protein involved in antibiotic resistance (M ~ 47 kDa), (4) tetanus toxoid protein TTP (M ~ 150 kDa) and (5) the incorporation of TTP into two huge glycoconjugates considered in glycovaccine development with molecular weight species in a broad distribution appearing to reach 100 MDa. In illustrating the diversity, we will highlight developments in hydrodynamic analysis which have made the AUC such an exciting and important instrument, and point to a potential future development for extending its capability to highly concentrated systems.
Collapse
|
20
|
Structure and chain conformation characteristics of high acyl gellan gum polysaccharide in DMSO with sodium nitrate. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Adams GG, Alzahrani Q, Jiwani SI, Meal A, Morgan PS, Coffey F, Kok S, Rowe AJ, Harding SE, Chayen N, Gillis RB. Glargine and degludec: Solution behaviour of higher dose synthetic insulins. Sci Rep 2017; 7:7287. [PMID: 28779138 PMCID: PMC5544765 DOI: 10.1038/s41598-017-06642-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/15/2017] [Indexed: 01/28/2023] Open
Abstract
Single, double and triple doses of the synthetic insulins glargine and degludec currently used in patient therapy are characterised using macromolecular hydrodynamic techniques (dynamic light scattering and analytical ultracentrifugation) in an attempt to provide the basis for improved personalised insulin profiling in patients with diabetes. Using dynamic light scattering and sedimentation velocity in the analytical ultracentrifuge glargine was shown to be primarily dimeric under solvent conditions used in current formulations whereas degludec behaved as a dihexamer with evidence of further association of the hexamers ("multi-hexamerisation"). Further analysis by sedimentation equilibrium showed that degludec exhibited reversible interaction between mono- and-di-hexamer forms. Unlike glargine, degludec showed strong thermodynamic non-ideality, but this was suppressed by the addition of salt. With such large injectable doses of synthetic insulins remaining in the physiological system for extended periods of time, in some case 24-40 hours, double and triple dose insulins may impact adversely on personalised insulin profiling in patients with diabetes.
Collapse
Affiliation(s)
- Gary G Adams
- The University of Nottingham, Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
- The University of Nottingham, School of Biosciences, National Centre for Macromolecular Hydrodynamics (NCMH), Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - Qushmua Alzahrani
- The University of Nottingham, Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- The University of Nottingham, School of Biosciences, National Centre for Macromolecular Hydrodynamics (NCMH), Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Shahwar I Jiwani
- The University of Nottingham, Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- The University of Nottingham, School of Biosciences, National Centre for Macromolecular Hydrodynamics (NCMH), Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Andrew Meal
- The University of Nottingham, Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Paul S Morgan
- The University of Nottingham, Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Frank Coffey
- The University of Nottingham, Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Samil Kok
- Abant Izzet Baysal University, Faculty of Engineering & Architecture, Department of Food Engineering, Gölköy Bolu, Turkey
| | - Arthur J Rowe
- The University of Nottingham, School of Biosciences, National Centre for Macromolecular Hydrodynamics (NCMH), Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Stephen E Harding
- The University of Nottingham, School of Biosciences, National Centre for Macromolecular Hydrodynamics (NCMH), Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Naomi Chayen
- Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, Sir Alexander Fleming Building, South Kensington Campus, London, UK
| | - Richard B Gillis
- The University of Nottingham, Faculty of Medicine and Health Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
- The University of Nottingham, School of Biosciences, National Centre for Macromolecular Hydrodynamics (NCMH), Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
22
|
Vega JF, Ramos J, Cruz VL, Vicente-Alique E, Sánchez-Sánchez E, Sánchez-Fernández A, Wang Y, Hu P, Cortés J, Martínez-Salazar J. Molecular and hydrodynamic properties of human epidermal growth factor receptor HER2 extracellular domain and its homodimer: Experiments and multi-scale simulations. Biochim Biophys Acta Gen Subj 2017. [PMID: 28642126 DOI: 10.1016/j.bbagen.2017.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND In a broad range of human carcinomas gene amplification leads to HER2 overexpression, which has been proposed to cause spontaneous dimerization and activation in the absence of ligand. This makes HER2 attractive as a therapeutic target. However, the HER2 homodimerization mechanism remains unexplored. It has been suggested that the "back-to-back" homodimer does not form in solution. Notwithstanding, very recently the crystal structure of the HER2 extracellular domain homodimer formed with a "back-to-head" interaction has been resolved. We intend to explore the existence of such interactions. METHODS A combination of experiments, molecular dynamics and hydrodynamic modeling were used to monitor the transport properties of HER2 in solution. RESULTS & CONCLUSIONS We have detected the HER2 extracellular domain homodimer in solution. The results show a high degree of molecular flexibility, which ultimately leads to quite higher values of the intrinsic viscosity and lower values of diffusion coefficient than those corresponding to globular proteins. This flexibility obeys to the open conformation of the receptor and to the large fluctuations of the different domains. We also report that for obtaining the correct hydrodynamic constants from the modeling one must consider the glycosylation of the systems. GENERAL SIGNIFICANCE Conformational features of epidermal growth factor receptors regulate their hydrodynamic properties and control their activity. It is essential to understand the dynamics of these systems and the role of the specific domains involved. To find biophysical correlations between dynamics and macroscopic transport properties is of general interest for researches working in this area. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- J F Vega
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain.
| | - J Ramos
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - V L Cruz
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - E Vicente-Alique
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - E Sánchez-Sánchez
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - A Sánchez-Fernández
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| | - Y Wang
- Sino Biological, Inc., Beijing, People's Republic of China
| | - P Hu
- Sino Biological, Inc., Beijing, People's Republic of China
| | - J Cortés
- Ramon y Cajal University Hospital, Ctra. de Colmenar Viejo, km 9,100, 28034 Madrid, Spain; Vall D'Hebron Institute of Oncology (VHIO), Paseo Vall Hebron 119-129, 08035 Barcelona, Spain
| | - J Martínez-Salazar
- BIOPHYM, Department of Macromolecular Physics, Instituto de Estructura de la Materia, IEM-CSIC, C/ Serrano 113 bis, 28006 Madrid, Spain
| |
Collapse
|
23
|
Structural studies of RNA-protein complexes: A hybrid approach involving hydrodynamics, scattering, and computational methods. Methods 2016; 118-119:146-162. [PMID: 27939506 DOI: 10.1016/j.ymeth.2016.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
The diverse functional cellular roles played by ribonucleic acids (RNA) have emphasized the need to develop rapid and accurate methodologies to elucidate the relationship between the structure and function of RNA. Structural biology tools such as X-ray crystallography and Nuclear Magnetic Resonance are highly useful methods to obtain atomic-level resolution models of macromolecules. However, both methods have sample, time, and technical limitations that prevent their application to a number of macromolecules of interest. An emerging alternative to high-resolution structural techniques is to employ a hybrid approach that combines low-resolution shape information about macromolecules and their complexes from experimental hydrodynamic (e.g. analytical ultracentrifugation) and solution scattering measurements (e.g., solution X-ray or neutron scattering), with computational modeling to obtain atomic-level models. While promising, scattering methods rely on aggregation-free, monodispersed preparations and therefore the careful development of a quality control pipeline is fundamental to an unbiased and reliable structural determination. This review article describes hydrodynamic techniques that are highly valuable for homogeneity studies, scattering techniques useful to study the low-resolution shape, and strategies for computational modeling to obtain high-resolution 3D structural models of RNAs, proteins, and RNA-protein complexes.
Collapse
|
24
|
Tsvetkov NV, Lebedeva EV, Lezov AA, Perevyazko I, Petrov MP, Mikhailova ME, Lezova AA, Torlopov MA, Krivoshapkin PV. Hydrodynamic and optical characteristics of hydrosols of cellulose nanocrystals. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3975-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Abdelhameed AS, Morris GA, Almutairi F, Adams GG, Duvivier P, Conrath K, Harding SE. Solution conformation and flexibility of capsular polysaccharides from Neisseria meningitidis and glycoconjugates with the tetanus toxoid protein. Sci Rep 2016; 6:35588. [PMID: 27782149 PMCID: PMC5080625 DOI: 10.1038/srep35588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/21/2016] [Indexed: 12/13/2022] Open
Abstract
The structural integrity of meningococcal native, micro-fluidized and activated capsular polysaccharides and their glycoconjugates - in the form most relevant to their potential use as vaccines (dilute solution) - have been investigated with respect to their homogeneity, conformation and flexibility. Sedimentation velocity analysis showed that the polysaccharide size distributions were generally bimodal with some evidence for higher molar mass forms at higher concentration. Weight average molar masses Mw where lower for activated polysaccharides. Conjugation with tetanus toxoid protein however greatly increased the molar mass and polydispersity of the final conjugates. Glycoconjugates had an approximately unimodal log-normal but broad and large molar mass profiles, confirmed by sedimentation equilibrium "SEDFIT MSTAR" analysis. Conformation analysis using HYDFIT (which globally combines sedimentation and viscosity data), "Conformation Zoning" and Wales-van Holde approaches showed a high degree of flexibility - at least as great as the unconjugated polysaccharides, and very different from the tetanus toxoid (TT) protein used for the conjugation. As with the recently published finding for Hib-TT complexes, it is the carbohydrate component that dictates the solution behaviour of these glycoconjugates, although the lower intrinsic viscosities suggest some degree of compaction of the carbohydrate chains around the protein.
Collapse
Affiliation(s)
- Ali Saber Abdelhameed
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Gordon A. Morris
- Department of Chemical Sciences, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Fahad Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, P.O. Box 741-Tabuk 71491 Saudi Arabia
| | - Gary G. Adams
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Insulin and Diabetes Experimental Research (IDER) Group, University of Nottingham, Faculty of Medicine and Health Science, Clifton Boulevard, Nottingham NG7 2RD, UK
| | - Pierre Duvivier
- GSK Vaccines, Rue de l’Institut 89, B1-330 Rixensart, Belgium
| | - Karel Conrath
- GSK Vaccines, Rue de l’Institut 89, B1-330 Rixensart, Belgium
| | - Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
26
|
Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 2016; 8:409-427. [PMID: 28510011 DOI: 10.1007/s12551-016-0218-6] [Citation(s) in RCA: 929] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/08/2016] [Indexed: 10/20/2022] Open
Abstract
Dynamic light scattering (DLS), also known as photon correlation spectroscopy (PCS), is a very powerful tool for studying the diffusion behaviour of macromolecules in solution. The diffusion coefficient, and hence the hydrodynamic radii calculated from it, depends on the size and shape of macromolecules. In this review, we provide evidence of the usefulness of DLS to study the homogeneity of proteins, nucleic acids, and complexes of protein-protein or protein-nucleic acid preparations, as well as to study protein-small molecule interactions. Further, we provide examples of DLS's application both as a complementary method to analytical ultracentrifugation studies and as a screening tool to validate solution scattering models using determined hydrodynamic radii.
Collapse
|
27
|
Neira JL, Medina-Carmona E, Hernández-Cifre JG, Montoliu-Gaya L, Cámara-Artigás A, Seffouh I, Gonnet F, Daniel R, Villegas S, de la Torre JG, Pey AL, Li F. The chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from marine bacterium Vibrio sp FC509 is a dimeric species: Biophysical characterization of an endosulfatase. Biochimie 2016; 131:85-95. [PMID: 27687161 DOI: 10.1016/j.biochi.2016.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/24/2016] [Indexed: 02/07/2023]
Abstract
Sulfatases catalyze hydrolysis of sulfate groups. They have a key role in regulating the sulfation states that determine the function of several scaffold molecules. Currently, there are no studies of the conformational stability of endosulfatases. In this work, we describe the structural features and conformational stability of a 4-O-endosulfatase (EndoV) from a marine bacterium, which removes specifically the 4-O-sulfate from chondroitin sulfate/dermatan sulfate. For that purpose, we have used several biophysical techniques, namely, fluorescence, circular dichroism (CD), FTIR spectroscopy, analytical ultracentrifugation (AUC), differential scanning calorimetry (DSC), mass spectrometry (MS), dynamic light scattering (DLS) and size exclusion chromatography (SEC). The protein was a dimer with an elongated shape. EndoV acquired a native-like structure in a narrow pH range (7.0-9.0); it is within this range where the protein shows the maximum of enzymatic activity. The dimerization did not involve the presence of disulphide-bridges as suggested by AUC, SEC and DLS experiments in the presence of β-mercaptoethanol (β-ME). EndoV secondary structure is formed by a mixture of α and β-sheet topology, as judged by deconvolution of CD and FTIR spectra. Thermal and chemical denaturations showed irreversibility and the former indicates that protein did not unfold completely during heating.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain; Biocomputation and Complex Systems Physics Institute, Zaragoza, Spain.
| | | | | | - Laia Montoliu-Gaya
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallés, Barcelona, Spain
| | - Ana Cámara-Artigás
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, University of Almería, Agrifood Campus of International Excellence (ceiA3), Almería, Spain
| | - Ilham Seffouh
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France; Université Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France
| | - Florence Gonnet
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France; Université Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France
| | - Régis Daniel
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France; Université Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallés, Barcelona, Spain
| | | | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Fuchuan Li
- National Glyco-engineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
28
|
Gillis RB, Adams GG, Alzahrani Q, Harding SE. A novel analytical ultracentrifugation based approach to the low resolution structure of gum arabic. Biopolymers 2016; 105:618-25. [DOI: 10.1002/bip.22823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Richard B. Gillis
- University of Nottingham, Faculty of Medicine and Health Science, School of Health Sciences, Queens Medical Centre; NG7 2RD UK
- University of Nottingham, National Centre for Macromolecular Hydrodynamics, School of Biosciences, Sutton Bonington Campus; Loughborough LE12 5RD UK
| | - Gary G. Adams
- University of Nottingham, Faculty of Medicine and Health Science, School of Health Sciences, Queens Medical Centre; NG7 2RD UK
- University of Nottingham, National Centre for Macromolecular Hydrodynamics, School of Biosciences, Sutton Bonington Campus; Loughborough LE12 5RD UK
| | - Qushmua Alzahrani
- University of Nottingham, Faculty of Medicine and Health Science, School of Health Sciences, Queens Medical Centre; NG7 2RD UK
- University of Nottingham, National Centre for Macromolecular Hydrodynamics, School of Biosciences, Sutton Bonington Campus; Loughborough LE12 5RD UK
| | - Stephen E. Harding
- University of Nottingham, National Centre for Macromolecular Hydrodynamics, School of Biosciences, Sutton Bonington Campus; Loughborough LE12 5RD UK
| |
Collapse
|
29
|
Zhu L, Wang X, Li J, Wang Y. Radius of Gyration, Mean Span, and Geometric Shrinking Factors of Bridged Polycyclic Ring Polymers. MACROMOL THEOR SIMUL 2016. [DOI: 10.1002/mats.201600033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lijuan Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren-ai Road Suzhou 215123 P. R. China
| | - Xiaoyan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren-ai Road Suzhou 215123 P. R. China
| | - Jianfeng Li
- The State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 P. R. China
| | - Yanwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Department of Polymer Science and Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren-ai Road Suzhou 215123 P. R. China
| |
Collapse
|
30
|
Abdelhameed AS, Adams GG, Morris GA, Almutairi FM, Duvivier P, Conrath K, Harding SE. A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate. Sci Rep 2016; 6:22208. [PMID: 26915577 PMCID: PMC4768162 DOI: 10.1038/srep22208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/03/2016] [Indexed: 11/08/2022] Open
Abstract
Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 10(6) g.mol(-1)) compared to the native (Mw ~ 1.2 × 10(6) g.mol(-1)). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 10(6) g.mol(-1)), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution.
Collapse
Affiliation(s)
- Ali Saber Abdelhameed
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gary G. Adams
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Insulin and Diabetes Experimental Research (IDER) Group, University of Nottingham, Faculty of Medicine and Health Science, Clifton Boulevard, Nottingham, NG7 2RD UK
| | - Gordon A. Morris
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Department of Chemical Sciences, School of Applied Science, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Fahad M. Almutairi
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Pierre Duvivier
- GSK Vaccines, Rue de l’Institut 89, B-1330 Rixensart, Belgium
| | - Karel Conrath
- GSK Vaccines, Rue de l’Institut 89, B-1330 Rixensart, Belgium
| | - Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
31
|
Wolf BA. Coil overlap in moderately concentrated polyelectrolyte solutions: effects of self-shielding as compared with salt-shielding as a function of chain length. RSC Adv 2016. [DOI: 10.1039/c6ra04488c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Generalized intrinsic viscosity {η} of sodium polystyrene sulfonate as a function of polymer concentration in pure water and in saline solvents.
Collapse
Affiliation(s)
- Bernhard A. Wolf
- Institut für Physikalische Chemie der Johannes Gutenberg Universität Mainz Jakob Welder-Weg 11
- D-55099 Mainz
- Germany
| |
Collapse
|
32
|
Almutairi FM, Cifre JGH, Adams GG, Kök MS, Mackie AR, de la Torre JG, Harding SE. Application of recent advances in hydrodynamic methods for characterising mucins in solution. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:45-54. [DOI: 10.1007/s00249-015-1075-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/31/2015] [Accepted: 08/13/2015] [Indexed: 10/22/2022]
|
33
|
Harding SE, Adams GG, Almutairi F, Alzahrani Q, Erten T, Samil Kök M, Gillis RB. Ultracentrifuge Methods for the Analysis of Polysaccharides, Glycoconjugates, and Lignins. Methods Enzymol 2015; 562:391-439. [DOI: 10.1016/bs.mie.2015.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Harding SE, Abdelhameed AS, Gillis RB, Morris GA, Adams GG. Characterization of Capsular Polysaccharides and Their Glycoconjugates by Hydrodynamic Methods. Methods Mol Biol 2015; 1331:211-227. [PMID: 26169743 DOI: 10.1007/978-1-4939-2874-3_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrodynamic methods are relevant for the characterization of carbohydrates such as capsular bacterial polysaccharides or glycoconjugates in solution. This chapter focuses on the following hydrodynamic methods: sedimentation velocity analytical ultracentrifugation (SV AUC), dynamic light scattering (DLS), sedimentation equilibrium analytical ultracentrifugation (SE AUC), size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), and capillary viscometry-intrinsic viscosity measurement. The chapter highlights the general principle of these five methods, describes experimental details, and specifies advances in the last years.
Collapse
Affiliation(s)
- Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, UK,
| | | | | | | | | |
Collapse
|
35
|
Suresha PR, Badiger MV, Wolf BA. Polyelectrolytes in dilute solution: viscometric access to coil dimensions and salt effects. RSC Adv 2015. [DOI: 10.1039/c5ra01376c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viscometric and light scattering radii in water containing 0.25 mol NaCl per liter as a function of the reduced polymer concentration.
Collapse
Affiliation(s)
- P. R. Suresha
- Polymer Science and Engineering Division
- National Chemical Laboratory (NCL)
- Pune-411 008
- India
| | - Manohar V. Badiger
- Polymer Science and Engineering Division
- National Chemical Laboratory (NCL)
- Pune-411 008
- India
- Institut für Physikalische Chemie
| | - Bernhard A. Wolf
- Institut für Physikalische Chemie
- Jakob Welder-Weg 11
- D-55099 Universität Mainz
- Germany
| |
Collapse
|
36
|
Morris GA, Adams GG, Harding SE. On hydrodynamic methods for the analysis of the sizes and shapes of polysaccharides in dilute solution: A short review. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Pan S, Ahirwal D, Nguyen DA, Sridhar T, Sunthar P, Prakash JR. Viscosity Radius of Polymers in Dilute Solutions: Universal Behavior from DNA Rheology and Brownian Dynamics Simulations. Macromolecules 2014. [DOI: 10.1021/ma500960f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sharadwata Pan
- Department
of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia
| | | | - Duc At Nguyen
- Department
of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - T. Sridhar
- Department
of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia
| | | | - J. Ravi Prakash
- Department
of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
38
|
Wang CK, Northfield SE, Swedberg JE, Harvey PJ, Mathiowetz AM, Price DA, Liras S, Craik DJ. Translational diffusion of cyclic peptides measured using pulsed-field gradient NMR. J Phys Chem B 2014; 118:11129-36. [PMID: 25184622 DOI: 10.1021/jp506678f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cyclic peptides are increasingly being recognized as valuable templates for drug discovery or design. To facilitate efforts in the structural characterization of cyclic peptides, we explore the use of pulse-field gradient experiments as a convenient and noninvasive approach for characterizing their diffusion properties in solution. We present diffusion coefficient measurements of five cyclic peptides, including dichC, SFTI-1, cVc1.1, kB1, and kB2. These peptides range in size from six to 29 amino acids and have various therapeutically interesting activities. We explore the use of internal standards, such as dioxane and acetonitrile, to evaluate the hydrodynamic radius from the diffusion coefficient, and show that 2,2-dimethyl-2-silapentane-5-sulfonic acid, a commonly used chemical shift reference, can be used as an internal standard to avoid spectral overlap issues and simplify data analysis. The experimentally measured hydrodynamic radii correlate with increasing molecular weight and in silico predictions. We further applied diffusion measurements to characterize the self-association of kB2 and showed that it forms oligomers in a concentration-dependent manner, which may be relevant to its mechanism of action. Diffusion coefficient measurements appear to have broad utility in cyclic peptide structural biology, allowing for the rapid characterization of their molecular shape in solution.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ionic strength effect in polyelectrolyte dilute solutions within the Debye–Hückel approximation: Monte Carlo and Brownian dynamics simulations. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1186-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Influence of ionic strength on the flexibility of alginate studied by size exclusion chromatography. Carbohydr Polym 2014; 102:223-30. [DOI: 10.1016/j.carbpol.2013.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022]
|
41
|
García de la Torre J, Harding SE. Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO. Biophys Rev 2013; 5:195-206. [PMID: 23646070 PMCID: PMC3641304 DOI: 10.1007/s12551-013-0102-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/22/2013] [Indexed: 11/21/2022] Open
Abstract
The last three decades has seen some important advances in our ability to represent the conformation of proteins in solution on the basis of hydrodynamic measurements. Advances in theoretical modeling capabilities have been matched by commensurate advances in the precision of hydrodynamic measurements. We consider the advances in whole-body (simple ellipsoid-based) modeling-still useful for providing an overall idea of molecular shape, particularly for those systems where only a limited amount of data is available-and outline the ELLIPS suite of algorithms which facilitates the use of this approach. We then focus on bead modeling strategies, particularly the surface or shell-bead approaches and the HYDRO suite of algorithms. We demonstrate how these are providing great insights into complex issues such as the conformation of immunoglobulins and other multi-domain complexes.
Collapse
Affiliation(s)
- José García de la Torre
- Departamento de Quimica Fisica, Universidad de Murcia, Regional Campus Mare Nostrum, 30071 Murcia, Spain
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD England, UK
| |
Collapse
|
42
|
Harding SE, Abdelhameed AS, Morris GA, Adams G, Laloux O, Cerny L, Bonnier B, Duvivier P, Conrath K, Lenfant C. Solution properties of capsular polysaccharides from Streptococcus pneumoniae. Carbohydr Polym 2012; 90:237-42. [PMID: 24751036 DOI: 10.1016/j.carbpol.2012.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022]
Abstract
Capsular polysaccharides from ten different serotypes of Streptococcus pneumoniae have been studied with regards their hydrodynamic properties in solution, namely their sedimentation coefficient and molar mass distributions, solution conformations and flexibilities (persistence lengths Lp), important properties for the construction of polysaccharide and glycoconjugate vaccines. Sedimentation and molar mass distributions (obtained by sedimentation velocity and equilibrium analysis in the analytical ultracentrifuge supported by size exclusion chromatography coupled to multi-angle light scattering measurements) were generally unimodal, with weight (mass) average molar masses ranging from 100×10(3) to 1300×10(3) g/mol. Estimates of chain flexibilities from three different procedures applied to intrinsic viscosity, sedimentation coefficient and molar mass data, showed that the polysaccharides from all the serotypes studied had semi-flexible structures in solution with persistence lengths in the range from ∼4 to 9 nm.
Collapse
Affiliation(s)
- Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Ali Saber Abdelhameed
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Gordon A Morris
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Gary Adams
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, UK; Faculty of Medicine and Health Sciences, University of Nottingham, Clifton Boulevard, Nottingham NG9 2RD, UK
| | - Olivier Laloux
- GlaxoSmithKline Biologicals, Rue de l'Institut 89, B1-330 Rixensart, Belgium
| | - Louis Cerny
- GlaxoSmithKline Biologicals, Rue de l'Institut 89, B1-330 Rixensart, Belgium
| | - Benjamin Bonnier
- GlaxoSmithKline Biologicals, Rue de l'Institut 89, B1-330 Rixensart, Belgium
| | - Pierre Duvivier
- GlaxoSmithKline Biologicals, Rue de l'Institut 89, B1-330 Rixensart, Belgium
| | - Karel Conrath
- GlaxoSmithKline Biologicals, Rue de l'Institut 89, B1-330 Rixensart, Belgium
| | - Christophe Lenfant
- GlaxoSmithKline Biologicals, Rue de l'Institut 89, B1-330 Rixensart, Belgium
| |
Collapse
|
43
|
The effect of neutral sugar distribution on the dilute solution conformation of sugar beet pectin. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Ortega A, Amorós D, García de la Torre J. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 2011; 101:892-8. [PMID: 21843480 DOI: 10.1016/j.bpj.2011.06.046] [Citation(s) in RCA: 515] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 11/19/2022] Open
Abstract
Here we extend the ability to predict hydrodynamic coefficients and other solution properties of rigid macromolecular structures from atomic-level structures, implemented in the computer program HYDROPRO, to models with lower, residue-level resolution. Whereas in the former case there is one bead per nonhydrogen atom, the latter contains one bead per amino acid (or nucleotide) residue, thus allowing calculations when atomic resolution is not available or coarse-grained models are preferred. We parameterized the effective hydrodynamic radius of the elements in the atomic- and residue-level models using a very large set of experimental data for translational and rotational coefficients (intrinsic viscosity and radius of gyration) for >50 proteins. We also extended the calculations to very large proteins and macromolecular complexes, such as the whole 70S ribosome. We show that with proper parameterization, the two levels of resolution yield similar and rather good agreement with experimental data. The new version of HYDROPRO, in addition to considering various computational and modeling schemes, is far more efficient computationally and can be handled with the use of a graphical interface.
Collapse
Affiliation(s)
- A Ortega
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|
45
|
Amorós D, Ortega A, García de la Torre J. Hydrodynamic Properties of Wormlike Macromolecules: Monte Carlo Simulation and Global Analysis of Experimental Data. Macromolecules 2011. [DOI: 10.1021/ma102697q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D. Amorós
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30071 Murcia, Spain
| | - A. Ortega
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30071 Murcia, Spain
| | - J. García de la Torre
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30071 Murcia, Spain
| |
Collapse
|
46
|
Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods. Methods 2011; 54:124-35. [DOI: 10.1016/j.ymeth.2011.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/18/2011] [Accepted: 02/07/2011] [Indexed: 11/21/2022] Open
|
47
|
Kijewska I, Piaseczna J, Hawlicka E. Interaction of heparin and dextran sulphate with alkali ions. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2010.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Ortega A, Amorós D, García de la Torre J. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties. Methods 2010; 54:115-23. [PMID: 21163355 DOI: 10.1016/j.ymeth.2010.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 11/30/2022] Open
Abstract
The calculation of hydrodynamic and other solution properties from structural information (size and shape or flexibility) of macromolecules and nanoparticles is feasible thanks to existing theories and computational tools. Here we review our recent advances in the inverse problem of extracting structural information from those properties. The concepts of equivalent radii and ratios of radii are particularly useful in global-fitting structural analysis, when one has to treat simultaneously with various properties, eventually for a series of samples. Based on the equivalent radii or their ratios, we define target functions that measure the adequacy of a given structure to fit a set of experimental properties. Structural determination is carried out by minimization of those target functions. We review a variety of examples. Some of them refer to the simple, yet important models like ellipsoids, cylinders and wormlike chains, whose structure is determined by optimization of the model parameters. In other, more complex cases, properties are calculated with computational tools like programs in the HYDRO suite. We have devised other tools to make the structure optimization from the results of those calculations in a quite direct, simple and systematic manner.
Collapse
Affiliation(s)
- A Ortega
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30071 Murcia, Spain.
| | | | | |
Collapse
|
49
|
Masuelli MA. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. Int J Biol Macromol 2010; 48:286-91. [PMID: 21134395 DOI: 10.1016/j.ijbiomac.2010.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/18/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022]
Abstract
Hydrodynamic properties are important parameters affecting the performance of pectin. This polysaccharide is used as a thickening and gelling agent in food and pharmaceutical industries. The most common and economical of the hydrodynamic properties is the determination of viscosity, in which are determined the intrinsic viscosity and the diffusion coefficient. They indirectly measure the molecular weight (M(w)); hydrodynamic radius (R(H)); number of Simha, (ν(a/b)); Perrin parameter (P); Scheraga-Mandelkern parameter (β); and Flory parameters (ϕ(0) and P(0)). All the hydrodynamic parameters are dependent on temperature. Normally these parameters are reported at a temperature of 25°C, which limits their application to different temperatures. This work studies pectin dependence on temperature, finding that this biopolymer in aqueous solution presents a conformation of rod-like with ν(a/b)=10.5, and a value from 0.8232 to 0.8129. Pectin behavior in this system indicates that it behaves like a colloidal particle that tends to compact with increasing temperature (R(H) decrease). The molecular weight calculated for pectin is 180,000 g/mol. Mark-Houwink-Sakurada (M-H-S) equation constants, a and k, for pectin in water solvent-temperature systems have been already reported.
Collapse
Affiliation(s)
- Martin Alberto Masuelli
- Instituto de Física Aplicada, CONICET, FONCyT, Área de Química Física, Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, 917 (5700) San Luis, Argentina.
| |
Collapse
|
50
|
Morris GA, Ralet MC, Bonnin E, Thibault JF, Harding SE. Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.06.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|