1
|
Thermoresponsive in-situ gel containing hyaluronic acid and indomethacin for the treatment of corneal chemical burn. Int J Pharm 2023; 631:122468. [PMID: 36503038 DOI: 10.1016/j.ijpharm.2022.122468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Ocular chemical burns are prevalent injuries that must have immediate and effective treatment to avoid complications. Aiming to improve bioavailability and efficacy, a poloxamer-based thermoresponsive in-situ gelling system containing hyaluronic acid and indomethacin was developed. Formulations with different polymeric proportions were screened through rheological measurements resulting in an optimized system (F2) with gelling temperature of 34.2 ± 0.11 °C. Its maximum viscosity varied from 77.33 mPa (25 °C) to 82.95 mPa (34 °C) following a non-Newtonian profile and a pH of 6.86 ± 0.01. No incompatibilities were found after infrared analysis. Polarized light microscopy and cryo-transmission electron microscopy have demonstrated micelles of nano-sized dimensions (21.86 nm) with indomethacin entrapped in the core, forming a polymeric network under heating. In vitro tests revealed a cumulative release of 59.75 ± 3.17 % up to 24 h under a sustained release profile. Results from HET-CAM assay indicated that F2 was well tolerated. Corneal wound healing was significantly faster in animals treated with F2 compared to a commercial formulation and an untreated group. These findings suggests that F2 could be an efficient system to delivery drugs into the ocular surface improving wound healing.
Collapse
|
2
|
Lin C, Pan P, Shan G, Du M. Thermoresponsive Water-in-Oil-in-Water Pickering Double Emulsions Stabilized with Biodegradable and Semicrystalline Poly(ethylene glycol)- b-poly(ε-caprolactone- co-δ-valerolactone) Diblock Copolymer Micelles for Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14918-14927. [PMID: 36420614 DOI: 10.1021/acs.langmuir.2c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water-in-oil-in-water (W/O/W) Pickering double emulsions are promising materials for the construction of carriers for water-soluble and oil-soluble molecules or drug delivery systems if the contradictive trade-off between their extreme stability and controlled release properties can be resolved. In this study, biodegradable and biocompatible poly(ethylene glycol)-b-poly(ε-caprolactone-co-δ-valerolactone) (PEG-b-PCVL) diblock copolymers with predesigned hydrophilic to hydrophobic block length ratios and nearly identical ε-caprolactone/δ-valerolactone molar ratio (8/2), were synthesized by ring-opening copolymerization. Then, they self-assembled to create semicrystalline micelles. The melting points of PEG-b-PCVL copolymers and their lyophilized micelles were within a physiological range of temperatures, as determined by differential scanning calorimetry. Water contact angle measurements provided evidence that the surface wettability of PEG-b-PCVL micelles could be tuned by the PCVL block mass fractions or temperature stimulus. Such PEG-b-PCVL micelles were employed as a single particulate stabilizer to develop Pickering double emulsions through a one-step emulsification technique. W/O/W Pickering double emulsions could be generated using relatively hydrophobic PEG-b-PCVL micelles with high mass fractions (exceeding about 89%) of PCVL blocks, and they displayed excellent long-term physical stabilities at room temperature. However, the Pickering double emulsions underwent a rapid microstructural transition into simple oil-in-water Pickering emulsions instead of complete demulsification at elevated temperature (37 °C), which was attributed to the hydrophilicity of micelles enhanced when the core-forming PCVL melted realized by temperature stimulus. Consequently, such W/O/W Pickering double emulsions stabilized solely with semicrystalline PEG-b-PCVL micelles exhibit thermal responsiveness, enabling them to release vitamin B12 encapsulated within the internal aqueous phase rapidly.
Collapse
Affiliation(s)
- Chao Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Miao Du
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Binkhathlan Z, Alomrani AH, Hoxha O, Ali R, Kalam MA, Alshamsan A. Development and Characterization of PEGylated Fatty Acid- Block-Poly(ε-caprolactone) Novel Block Copolymers and Their Self-Assembled Nanostructures for Ocular Delivery of Cyclosporine A. Polymers (Basel) 2022; 14:polym14091635. [PMID: 35566805 PMCID: PMC9101097 DOI: 10.3390/polym14091635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Low aqueous solubility and membrane permeability of some drugs are considered major limitations for their use in clinical practice. Polymeric micelles are one of the potential nano-drug delivery systems that were found to ameliorate the low aqueous solubility of hydrophobic drugs. The main objective of this study was to develop and characterize a novel copolymer based on poly (ethylene glycol) stearate (Myrj™)-block-poly(ε-caprolactone) (Myrj-b-PCL) and evaluate its potential as a nanosystem for ocular delivery of cyclosporine A (CyA). Myrj-b-PCL copolymer with various PCL/Myrj ratios were synthesized via ring-opening bulk polymerization of ε-caprolactone using Myrj (Myrj S40 or Myrj S100), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. The co-solvent evaporation method was used to prepare CyA-loaded Myrj-b-PCL micelles. The prepared micelles were characterized for their size, polydispersity, and CMC using the dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Transmission electron microscopy (TEM) images of the prepared micelles showed spherical shapes with diameters in the nano range (<200 nm). Ex vivo corneal permeation study showed sustained release of CyA from the developed Myrj S100-b-PCL micelles. In vivo ocular irritation study (Draize test) showed that CyA-loaded Myrj S100-b-PCL88 was well tolerated in the rabbit eye. Our results point to a great potential of Myrj S100-b-PCL as an ocular drug delivery system.
Collapse
Affiliation(s)
- Ziyad Binkhathlan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Olsi Hoxha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.A.); (O.H.); (R.A.); (M.A.K.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Lin C, Pan P, Shan G, Du M. Microstructurally tunable pickering emulsions stabilized by poly(ethylene glycol)-b-poly(ε-caprolactone) diblock biodegradable copolymer micelles with predesigned polymer architecture. Food Chem 2022; 374:131827. [PMID: 35021583 DOI: 10.1016/j.foodchem.2021.131827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
Poly(ethylene glycol)-b-poly(ε-caprolactone) diblock copolymers (PEG-b-PCL) with predesigned hydrophilic/hydrophobic block length ratios have been synthesized and self-assembled to form micelles, then used to emulsify medium-chain triglycerides with an aqueous phase. The morphologies and sizes of PEG-b-PCL copolymer micelles have been characterized by transmission electron microscopy and dynamic light scattering. Interfacial tension testing between micellar dispersions and oil, combined with water contact angle measurements, have been performed to assess the ability of these micelles to adjust interfacial tension and micellar hydrophobicity, respectively. Relationship between the wettability of PEG-b-PCL copolymer micelles and their emulsification properties has been proved through phase diagram, optical microscopic observation, droplet sizes evolution and phase separation behavior of Pickering emulsion samples. Results show that both oil-in-water and water-in-oil Pickering emulsions, as well as water-in-oil-in-water (W/O/W) double-Pickering emulsions, may be controllably prepared through one-step homogenization. Double microstructure of W/O/W Pickering emulsion has proved to be extremely stable during long-term storage.
Collapse
Affiliation(s)
- Chao Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China.
| | - Miao Du
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Faisal KS, Clulow AJ, Krasowska M, Gillam T, Miklavcic SJ, Williamson NH, Blencowe A. Interrogating the relationship between the microstructure of amphiphilic poly(ethylene glycol-b-caprolactone) copolymers and their colloidal assemblies using non-interfering techniques. J Colloid Interface Sci 2022; 606:1140-1152. [PMID: 34492457 DOI: 10.1016/j.jcis.2021.08.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Understanding the microstructural parameters of amphiphilic copolymers that control the formation and structure of aggregated colloids (e.g., micelles) is essential for the rational design of hierarchically structured systems for applications in nanomedicine, personal care and food formulations. Although many analytical techniques have been employed to study such systems, in this investigation we adopted an integrated approach using non-interfering techniques - diffusion nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS) and synchrotron small-angle X-ray scattering (SAXS) - to probe the relationship between the microstructure of poly(ethylene glycol-b-caprolactone) (PEG-b-PCL) copolymers [e.g., block molecular weight (MW) and the mass fraction of PCL (fPCL)] and the structure of their aggregates. Systematic trends in the self-assembly behaviour were determined using a large family of well-defined block copolymers with variable PEG and PCL block lengths (number-average molecular weights (Mn) between 2 and 10 and 0.5-15 kDa, respectively) and narrow dispersity (Ð < 1.12). For all of the copolymers, a clear transition in the aggregate structure was observed when the hydrophobic fPCL was increased at a constant PEG block Mn, although the nature of this transition is also dependent on the PEG block Mn. Copolymers with low Mn PEG blocks (2 kDa) were observed to transition from unimers and loosely associated unimers to metastable aggregates and finally, to cylindrical micelles as the fPCL was increased. In comparison, copolymers with PEG block Mn of between 5 and 10 kDa transitioned from heterogenous metastable aggregates to cylindrical micelles and finally, well-defined ellipsoidal micelles (of decreasing aspect ratios) as the fPCL was increased. In all cases, the diffusion NMR spectroscopy, DLS and synchrotron SAXS results provided complementary information and the grounds for a phase diagram relating copolymer microstructure to aggregation behaviour and structure. Importantly, the absence of commonly depicted spherical micelles has implications for applications where properties may be governed by shape, such as, cellular uptake of nanomedicine formulations.
Collapse
Affiliation(s)
- Khandokar Sadique Faisal
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Marta Krasowska
- Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Todd Gillam
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia; Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Stanley J Miklavcic
- Phenomics and Bioinformatics Research Centre, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Nathan H Williamson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
6
|
Song C, Yang F, Ji R, Lv Y, Wei Z. Construction of a Drug Delivery System via pH-Responsive Polymeric Nanomicelles Containing Ferrocene for DOX Release and Enhancement of Therapeutic Effects. ACS OMEGA 2021; 6:28242-28253. [PMID: 34723021 PMCID: PMC8552479 DOI: 10.1021/acsomega.1c04330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/30/2021] [Indexed: 06/04/2023]
Abstract
We report an amphiphilic block copolymer via poly(ethylene glycol) methyl ether-Dlabile-poly(caprolactone)-ferrocene (mPEG-Dlabile-PCL-Fc) to deliver anticancer drug doxorubicin (DOX). Lipase Novozyme-435 was used as a catalyst for ring-opening polymerization with ε-caprolactone, and an acid-sensitive Schiff base was used to connect the hydrophilic and hydrophobic parts; the ferrocene provided ferrous ions and was introduced at the end of the amphiphilic copolymer. The resulting copolymers were characterized by 1H NMR/13C NMR and could be self-assembled in an aqueous solution to form nanomicelles with PCL-Fc as a hydrophobic core and mPEG as a hydrophilic shell. Transmission electron microscopy showed that the micelles were spherical and nanosized before and after DOX loading. The blank micelles also showed good biocompatibility. The drug-loaded polymeric nanomicelles exhibited a positive anticancer effect relative to the copolymers without ferrocene; the therapeutic effect of drug-loaded micelles containing ferrocene was more obvious. In vitro drug release results also showed that the polymer had a good pH response. Confocal microscopy also showed that polymeric micelles can effectively deliver and release the drug; the polymer containing ferrocene also leads to significantly improved ROS levels in tumor cells. Ferrocene can effectively and synergistically inhibit tumor cells with DOX.
Collapse
|
7
|
Vrbata D, Kereiche S, Kalíková K, Uchman M. Stimuli-responsive multifunctional micelles of ABC vs. ACB triblock terpolymers using reversible covalent bonding of phenylboronic acid: controlled synthesis, self-assembly and model drug release. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Design and Development of D‒α‒Tocopheryl Polyethylene Glycol Succinate‒ block‒Poly(ε-Caprolactone) (TPGS- b-PCL) Nanocarriers for Solubilization and Controlled Release of Paclitaxel. Molecules 2021; 26:molecules26092690. [PMID: 34064416 PMCID: PMC8125698 DOI: 10.3390/molecules26092690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to synthesize and characterize a set of biodegradable block copolymers based on TPGS-block-poly(ε-caprolactone) (TPGS-b-PCL) and to assess their self-assembled structures as a nanodelivery system for paclitaxel (PAX). The conjugation of PCL to TPGS was hypothesized to increase the stability and the drug solubilization characteristics of TPGS micelles. TPGS-b-PCL copolymer with various PCL/TPGS ratios were synthesized via ring opening bulk polymerization of ε-caprolactone using TPGS, with different molecular weights of PEG (1–5 kDa), as initiators and stannous octoate as a catalyst. The synthesized copolymers were characterized using 1H NMR, GPC, FTIR, XRD, and DSC. Assembly of block copolymers was achieved via the cosolvent evaporation method. The self-assembled structures were characterized for their size, polydispersity, and CMC using dynamic light scattering (DLS) technique. The results from the spectroscopic and thermal analyses confirmed the successful synthesis of the copolymers. Only copolymers that consisted of TPGS with PEG molecular weights ≥ 2000 Da were able to self-assemble and form nanocarriers of ≤200 nm in diameter. Moreover, TPGS2000-b-PCL4000, TPGS3500-b-PCL7000, and TPGS5000-b-PCL15000 micelles enhanced the aqueous solubility of PAX from 0.3 µg/mL up to 88.4 ug/mL in TPGS5000-b-PCL15000. Of the abovementioned micellar formulations, TPGS5000-b-PCL15000 showed the slowest in vitro release of PAX. Specifically, the PAX-loaded TPGS5000-b-PCL15000 micellar formulation showed less than 10% drug release within the first 12 h, and around 36% cumulative drug release within 72 h compared to 61% and 100% PAX release, respectively, from the commercially available formulation (Ebetaxel®) at the same time points. Our results point to a great potential for TPGS-b-PCL micelles to efficiently solubilize and control the release of PAX.
Collapse
|
9
|
Sadeghi MS, Moghbeli MR, Goddard WA. Self‐assembly mechanism of PEG‐
b
‐PCL and PEG‐
b
‐PBO‐
b
‐PCL amphiphilic copolymer micelles in aqueous solution from coarse grain modeling. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maryam S. Sadeghi
- Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering Iran University of Science and Technology Tehran Iran
| | - Mohammad Reza Moghbeli
- Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering Iran University of Science and Technology Tehran Iran
| | - William A. Goddard
- Materials and Process Simulation Center (MSC) California Institute of Technology Pasadena California USA
| |
Collapse
|
10
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
11
|
Jia F, Li Y, Lu J, Deng X, Wu Y. Amphiphilic Block Copolymers-Guided Strategies for Assembling Nanoparticles: From Basic Construction Methods to Bioactive Agent Delivery Applications. ACS APPLIED BIO MATERIALS 2020; 3:6546-6555. [PMID: 35019385 DOI: 10.1021/acsabm.0c01039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over recent decades, amphiphilic block copolymers (ABCs) comprising both hydrophobic and hydrophilic segments within their covalently bound structure have been extensively investigated from basic science to various biomedical applications. Nanoparticles (NPs) self-assembled from ABCs have been a center of interest for controlled delivery of various therapeutic drugs, genes, proteins, and imaging agents for decades and continue to attract attention owing to their unique physical and biological properties. In this Spotlight on Applications, we review and summarize recent optimized preparation techniques in the fabrication of "drugs"-loaded NPs from ABCs based on our group progress. These techniques can be categorized into four types including (i) emulsification and solvent evaporation, (ii) double emulsification and solvent evaporation, (iii) nanoprecipitation, and (iv) film dispersion. By selecting proper techniques, bioactive agents with different properties could be incorporated into the NPs either alone or in a combination pattern. We analyze the parameters of various techniques and specifically we highlight the improvements on the improved techniques to simultaneously coload both hydrophilic/hydrophobic drugs and therapeutic nucleic acids in the single NPs. These techniques will allow researchers to select proper methods in designing "drugs"-loaded NPs from ABCs.
Collapse
Affiliation(s)
- Fan Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Jianqing Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiongwei Deng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Ma C, Wang Z, Huang X, Lu G, Manners I, Winnik MA, Feng C. Water-Dispersible, Colloidally Stable, Surface-Functionalizable Uniform Fiberlike Micelles Containing a π-Conjugated Oligo(p-phenylenevinylene) Core of Controlled Length. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chen Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhiqin Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
13
|
Huang Y, Jazani AM, Howell EP, Reynolds LA, Oh JK, Moffitt MG. Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery. ACS Biomater Sci Eng 2020; 6:5069-5083. [DOI: 10.1021/acsbiomaterials.0c00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuhang Huang
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Elliot P. Howell
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Matthew G. Moffitt
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
14
|
Characterizing the Core-Shell Architecture of Block Copolymer Nanoparticles with Electron Microscopy: A Multi-Technique Approach. Polymers (Basel) 2020; 12:polym12081656. [PMID: 32722462 PMCID: PMC7464915 DOI: 10.3390/polym12081656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
Electron microscopy has proved to be a major tool to study the structure of self-assembled amphiphilic block copolymer particles. These specimens, like supramolecular biological structures, are problematic for electron microscopy because of their poor capacity to scatter electrons and their susceptibility to radiation damage and dehydration. Sub-50 nm core-shell spherical particles made up of poly(hydroxyethyl acrylate)–b–poly(styrene) are prepared via polymerization-induced self-assembly (PISA). For their morphological characterization, we discuss the advantages, limitations, and artefacts of TEM with or without staining, cryo-TEM, and SEM. A number of technical points are addressed such as precisely shaping of particle boundaries, resolving the particle shell, differentiating particle core and shell, and the effect of sample drying and staining. TEM without staining and cryo-TEM largely evaluate the core diameter. Negative staining TEM is more efficient than positive staining TEM to preserve native structure and to visualize the entire particle volume. However, no technique allows for a satisfactory imaging of both core and shell regions. The presence of long protruding chains is manifested by patched structure in cryo-TEM and a significant edge effect in SEM. This manuscript provides a basis for polymer chemists to develop their own specimen preparations and to tackle the interpretation of challenging systems.
Collapse
|
15
|
Li J, Du Y, Su H, Cheng S, Zhou Y, Jin Y, Qi XR. Interfacial properties and micellization of triblock poly(ethylene glycol)-poly( ε-caprolactone)-polyethyleneimine copolymers. Acta Pharm Sin B 2020; 10:1122-1133. [PMID: 32642417 PMCID: PMC7332608 DOI: 10.1016/j.apsb.2020.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 01/30/2023] Open
Abstract
This study aimed to explore the link between block copolymers' interfacial properties and nanoscale carrier formation and found out the influence of length ratio on these characters to optimize drug delivery system. A library of diblock copolymers of PEG-PCL and triblock copolymers with additional PEI (PEG-PCL-PEI) were synthesized. Subsequently, a systematic isothermal investigation was performed to explore molecular arrangements of copolymers at air/water interface. Then, structural properties and drug encapsulation in self-assembly were investigated with DLS, SLS and TEM. We found the additional hydrogen bond in the PEG-PCL-PEI contributes to film stability upon the hydrophobic interaction compared with PEG-PCL. PEG-PCL-PEI assemble into smaller micelle-like (such as PEG-PCL4006-PEI) or particle-like structure (such as PEG-PCL8636-PEI) determined by their hydrophilic and hydrophobic block ratio. The distinct structural architectures of copolymer are consistent between interface and self-assembly. Despite the disparity of constituent ratio, we discovered the arrangement of both chains guarantees balanced hydrophilic-hydrophobic ratio in self-assembly to form stable construction. Meanwhile, the structural differences were found to have significant influence on model drugs incorporation including docetaxel and siRNA. Taken together, these findings indicate the correlation between molecular arrangement and self-assembly and inspire us to tune block compositions to achieve desired nanostructure and drug loading.
Collapse
Key Words
- AFM, atomic force microscope
- Amin, critical molecular area
- Block copolymers
- CMC, critical micelle concentration
- DLS, dynamic light scattering
- DTX, docetaxel
- GPC, gel permeation chromatography
- LB, Langmuir–Blodgett
- Langmuir films
- Molecular arrangement
- Nagg, polymer aggregation number
- Nanostructure
- Np, nano-assembly numbers
- PCL, poly(ε-caprolactone)
- PDI, polydispersity
- PEG, poly(ethylene glycol)
- PEI, polyethyleneimine
- Rg, gyration radius
- Rh, hydrodynamic radius
- SLS, static light scattering
- Self-assembly
- TEM, transmission electron microscope
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yitian Du
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haitao Su
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shixuan Cheng
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanxia Zhou
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xian-Rong Qi
- Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
16
|
Figueiredo P, Almeida BC, Carvalho ATP. Enzymatic Polymerization of PCL-PEG Co-polymers for Biomedical Applications. Front Mol Biosci 2019; 6:109. [PMID: 31681797 PMCID: PMC6811512 DOI: 10.3389/fmolb.2019.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 11/25/2022] Open
Abstract
Biodegradable polymers, obtained via chemical synthesis, are currently employed in a wide range of biomedical applications. However, enzymatic polymerization is an attractive alternative because it is more sustainable and safer. Many lipases can be employed in ring-opening polymerization (ROP) of biodegradable polymers. Nevertheless, the harsh conditions required in industrial context are not always compatible with their enzymatic activity. In this work, we have studied a thermophilic carboxylesterase and the commonly used Lipase B from Candida antarctica (CaLB) for tailored synthesis of amphiphilic polyesters for biomedical applications. We have conducted Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) MD simulations of the synthesis of Polycaprolactone-Polyethylene Glycol (PCL-PEG) model co-polymers. Our insights about the reaction mechanisms are important for the design of customized enzymes capable to synthesize different polyesters for biomedical applications.
Collapse
Affiliation(s)
| | | | - Alexandra T. P. Carvalho
- Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
One‐dimensional growth kinetics for formation of cylindrical crystalline micelles of block copolymers. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Yu Q, Pichugin D, Cruz M, Guerin G, Manners I, Winnik MA. NMR Study of the Dissolution of Core-Crystalline Micelles. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Qing Yu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Dmitry Pichugin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Menandro Cruz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Gerald Guerin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 1H6, Canada
| |
Collapse
|
19
|
Bains A, Moffitt MG. Effects of chemical and processing variables on paclitaxel-loaded polymer nanoparticles prepared using microfluidics. J Colloid Interface Sci 2017; 508:203-213. [DOI: 10.1016/j.jcis.2017.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
20
|
Xu Z, Lu C, Lindenberger C, Cao Y, Wulff JE, Moffitt MG. Synthesis, Self-Assembly, and Drug Delivery Characteristics of Poly(methyl caprolactone- co-caprolactone)- b-poly(ethylene oxide) Copolymers with Variable Compositions of Hydrophobic Blocks: Combining Chemistry and Microfluidic Processing for Polymeric Nanomedicines. ACS OMEGA 2017; 2:5289-5303. [PMID: 30023746 PMCID: PMC6044932 DOI: 10.1021/acsomega.7b00829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 06/08/2023]
Abstract
The synthesis, characterization, and self-assembly of a series of biocompatible poly(methyl caprolactone-co-caprolactone)-b-poly(ethylene oxide) amphiphilic block copolymers with variable MCL contents in the hydrophobic block are described. Self-assembly gives rise to polymeric nanoparticles (PNPs) with hydrophobic cores that decrease in crystallinity as the MCL content increases, and their morphologies and sizes show nonmonotonic trends with MCL content. PNPs loaded with the anticancer drug paclitaxel (PAX) give rise to in vitro PAX release rates and MCF-7 GI50 (50% growth inhibition concentration) values that decrease as the MCL content increases. We also show for selected copolymers that microfluidic manufacturing at a variable flow rate enables further control of PAX release rates and enhances MCF-7 antiproliferation potency. These results indicate that more effective and specific drug delivery PNPs are possible through tangential efforts combining polymer synthesis and microfluidic manufacturing.
Collapse
|
21
|
Lin YK, Wang SW, Yu YC, Lee RS. Thermoresponsive and acid-cleavable amphiphilic copolymer micelles for controlled drug delivery. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1291514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Shiu-Wei Wang
- Division of Natural Science, Center of General Education, Chang Gung University, Guishan District, Taoyuan, Taiwan
| | - Yung-Ching Yu
- Division of Natural Science, Center of General Education, Chang Gung University, Guishan District, Taoyuan, Taiwan
| | - Ren-Shen Lee
- Division of Natural Science, Center of General Education, Chang Gung University, Guishan District, Taoyuan, Taiwan
| |
Collapse
|
22
|
Bains A, Cao Y, Kly S, Wulff JE, Moffitt MG. Controlling Structure and Function of Polymeric Drug Delivery Nanoparticles Using Microfluidics. Mol Pharm 2017; 14:2595-2606. [PMID: 28520436 DOI: 10.1021/acs.molpharmaceut.7b00177] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We demonstrate control of multiscale structure and drug delivery function for paclitaxel (PAX)-loaded polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) polymeric nanoparticles (PNPs) via synthesis and flow-directed shear processing in a two-phase gas-liquid microfluidic reactor. This strategy takes a page from the engineering of commodity plastics, where processing rather than polymer chemistry provides an experimental handle on properties and function. PNPs formed from copolymers with three different PCL block lengths show sizes, morphologies, and loading efficiencies that depend on both the PCL block length and the microfluidic flow rate. By varying flow rate and comparing with a conventional bulk method of PNP preparation, we show that flow-variable shear processing provides control of PNP sizes and morphologies and enables slower PAX release times (up to 2 weeks) compared to bulk-prepared PNPs. Antiproliferative effects against cultured MCF-7 breast cancer cells were greatest for PNPs formed at an intermediate flow rate, corresponding to small and low-polydispersity spheres formed uniquely at this flow condition. Formation and flow-directed nanoscale shear processing in gas-liquid microfluidic reactors provides a manufacturing platform for drug delivery PNPs that could enable more effective and selective nanomedicines through multiscale structural control.
Collapse
Affiliation(s)
- Aman Bains
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| | - Yimeng Cao
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| | - Sundiata Kly
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria , P.O. Box 3065, Victoria, British Columbia V8W 3 V6, Canada
| |
Collapse
|
23
|
Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J Control Release 2017; 260:46-60. [PMID: 28536049 DOI: 10.1016/j.jconrel.2017.05.028] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 02/01/2023]
Abstract
The lack of efficient therapeutic options for many severe disorders including cancer spurs demand for improved drug delivery technologies. Nanoscale drug delivery systems based on poly(ethylene glycol)-poly(ε-caprolactone) copolymers (PEG-PCL) represent a strategy to implement therapies with enhanced drug accumulation at the site of action and decreased off-target effects. In this review, we discuss state-of-the-art nanomedicines based on PEG-PCL that have been investigated in a preclinical setting. We summarize the various synthesis routes and different preparation methods used for the production of PEG-PCL nanoparticles. Additionally, we review physico-chemical properties including biodegradability, biocompatibility, and drug loading. Finally, we highlight recent therapeutic applications investigated in vitro and in vivo using advanced systems such as triggered release, multi-component therapies, theranostics, or gene delivery systems.
Collapse
Affiliation(s)
- Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Binkhathlan Z, Qamar W, Ali R, Kfoury H, Alghonaim M. Toxicity evaluation of methoxy poly(ethylene oxide)- block-poly(ε-caprolactone) polymeric micelles following multiple oral and intraperitoneal administration to rats. Saudi Pharm J 2017; 25:944-953. [PMID: 28951683 PMCID: PMC5605849 DOI: 10.1016/j.jsps.2017.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023] Open
Abstract
Methoxy poly(ethylene oxide)-block-poly(ɛ-caprolactone) (PEO-b-PCL) copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO-b-PCL block copolymers and assess the toxic effects of drug-free PEO-b-PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip) administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO-b-PCL micelles, sixty animals were divided into two major groups: The first group received PEO-b-PCL micelles (100 mg/kg) by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen) were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.
Collapse
Affiliation(s)
- Ziyad Binkhathlan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.,King Salman Bin Abdulaziz Chair for Kidney Disease, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.,Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.,Central Laboratory, Research Center, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hala Kfoury
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alghonaim
- King Salman Bin Abdulaziz Chair for Kidney Disease, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Nazemi A, He X, MacFarlane LR, Harniman RL, Hsiao MS, Winnik MA, Faul CFJ, Manners I. Uniform “Patchy” Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensions. J Am Chem Soc 2017; 139:4409-4417. [DOI: 10.1021/jacs.6b12503] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali Nazemi
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Xiaoming He
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Liam R. MacFarlane
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert L. Harniman
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ming-Siao Hsiao
- UES, Inc. and Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Charl F. J. Faul
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
26
|
Fang JY, Lin YK, Wang SW, Yu YC, Lee RS. Acid and light dual- stimuli-cleavable polymeric micelles. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Wang Z, Cao Y, Song J, Xie Z, Wang Y. Cooperation of Amphiphilicity and Crystallization for Regulating the Self-Assembly of Poly(ethylene glycol)-block-poly(lactic acid) Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9633-9639. [PMID: 27496056 DOI: 10.1021/acs.langmuir.6b02211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tuning the amphiphilicity of block copolymers has been extensively exploited to manipulate the morphological transition of aggregates. The introduction of crystallizable moieties into the amphiphilic copolymers also offers increasing possibilities for regulating self-assembled structures. In this work, we demonstrate a detailed investigation of the self-assembly behavior of amphiphilic poly(ethylene glycol)-block-poly(l-lactic acid) (PEG-b-PLLA) diblock copolymers with the assistance of a common solvent in aqueous solution. With a given length of the PEG block, the molecular weight of the PLA block has great effect on the morphologies of self-assembled nanoaggregates as a result of varying molecular amphiphilicity and polymer crystallization. Common solvents including N,N-dimethylformamide, dioxane, and tetrahydrofuran involved in the early stage of self-assembly led to the change in chain configuration, which further influences the self-assembly of block copolymers. This study expanded the scope of PLA-based copolymers and proposed a possible mechanism of the sphere-to-lozenge and platelet-to-cylinder morphological transitions.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Yuanyuan Cao
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Jiaqi Song
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun 130022, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, China
| |
Collapse
|
28
|
Nazemi A, Boott CE, Lunn DJ, Gwyther J, Hayward DW, Richardson RM, Winnik MA, Manners I. Monodisperse Cylindrical Micelles and Block Comicelles of Controlled Length in Aqueous Media. J Am Chem Soc 2016; 138:4484-93. [DOI: 10.1021/jacs.5b13416] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali Nazemi
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Charlotte E. Boott
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - David J. Lunn
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jessica Gwyther
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Dominic W. Hayward
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Robert M. Richardson
- H.
H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
29
|
Huang Y, Li L, Li G. An enzyme-catalysed access to amphiphilic triblock copolymer of PCL-b-PEG-b-PCL: synthesis, characterization and self-assembly properties. Des Monomers Polym 2015. [DOI: 10.1080/15685551.2015.1078113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Yugang Huang
- Department of Chemistry, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Lanyan Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Guangji Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| |
Collapse
|
30
|
Jelonek K, Li S, Wu X, Kasperczyk J, Marcinkowski A. Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery. Int J Pharm 2015; 485:357-64. [PMID: 25796125 DOI: 10.1016/j.ijpharm.2015.03.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 01/09/2023]
Abstract
Bioresorbable filomicelles present many advantageous as drug delivery systems e.g., long circulation time and high loading efficiency. The aim of this study was to develop polylactide/poly(ethylene glycol) (PLA/PEG) filomicelles for drug delivery applications. A series of PLA/PEG diblock copolymers were synthesized using non-toxic initiator, and characterized by means of NMR and GPC. Analysis of morphology of micelles determined by TEM revealed that apart from the weight fraction also the molar mass of PEG and the stereochemistry of PLA block must be considered for tailoring micellar structures. The CMC was found to be dependent on the length and structure of the hydrophobic block. It was observed that the drug loading properties could be improved by selection of appropriate copolymer and encapsulation method. Slower release of paclitaxel was observed for mPEG5000 initiated copolymers than mPEG2000 initiated copolymers. Moreover, the influence of the length of hydrophobic block and its stereoisomeric form on drug release rate was evidenced. Therefore, PLA/PEG filomicelles with good stability, high drug loading capacity and sustained drug release appear most attractive for drug delivery applications.
Collapse
Affiliation(s)
- Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowska 34 Street, 41-819 Zabrze, Poland.
| | - Suming Li
- European Institute of Membranes, UMR CNRS 5635, University Montpellier 2, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France.
| | - Xiaohan Wu
- Max Mousseron Institute on Biomolecules, UMR CNRS 5247, University Montpellier 1, 34090 Montpellier Cedex 5, France
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowska 34 Street, 41-819 Zabrze, Poland; School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Department of Biopharmacy, Jedności 8, Sosnowiec, Poland
| | - Andrzej Marcinkowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowska 34 Street, 41-819 Zabrze, Poland
| |
Collapse
|
31
|
Ke XX, Wang L, Xu JT, Du BY, Tu YF, Fan ZQ. Effect of local chain deformability on the temperature-induced morphological transitions of polystyrene-b-poly(N-isopropylacrylamide) micelles in aqueous solution. SOFT MATTER 2014; 10:5201-5211. [PMID: 24916798 DOI: 10.1039/c4sm00698d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effect of temperature on the micellar morphology of two polystyrene-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM) diblock copolymers in an aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). At 25 °C, a mixture of vesicles and spheres are observed for the micelles of PS65-b-PNIPAM108, while PS65-b-PNIPAM360 exhibits mixed cylindrical and spherical micellar morphology. Upon increasing the temperature, the micellar morphology becomes spherical for PS65-b-PNIPAM108 at 60 °C and for PS65-b-PNIPAM360 at 40 °C. Such vesicle-to-sphere and cylinder-to-sphere transitions of micellar morphology are reversible when the micellar solutions are cooled back to 25 °C. However, these temperature-induced morphological transitions of the PS-b-PNIPAM micelles are contrary to the theoretical prediction. Qualitative analysis of the free energy shows that vesicular or cylindrical micelles tend to form at higher temperatures if only the overall volume change of the PNIPAM block is considered. The contradiction between the experimental results and theoretical prediction is interpreted in terms of the local deformability of the PNIPAM chains. At elevated temperatures, the collapsed PNIPAM globules are less deformable and must occupy larger areas at the micellar interface, although the overall volume is smaller at higher temperatures. This will lead to a larger repulsion between the PNIPAM globules and a remarkable increase in the free energy of the corona; thus, the formation of vesicles or cylinders at higher temperatures is prohibited.
Collapse
Affiliation(s)
- Xi-Xian Ke
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | |
Collapse
|
32
|
Influence of different inorganic salts on crystallization-driven morphological transformation of PCL-b-PEO micelles in aqueous solutions. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1512-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Hsiao MS, Yusoff SFM, Winnik MA, Manners I. Crystallization-Driven Self-Assembly of Block Copolymers with a Short Crystallizable Core-Forming Segment: Controlling Micelle Morphology through the Influence of Molar Mass and Solvent Selectivity. Macromolecules 2014. [DOI: 10.1021/ma402429d] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ming-Siao Hsiao
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
34
|
Effects of placing negatively charged groups at the corona terminus on the aqueous dispersion stabilities for PCL-b-PEO block copolymer micelles. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Gyawali D, Zhou S, Tran RT, Zhang Y, Liu C, Bai X, Yang J. Fluorescence imaging enabled biodegradable photostable polymeric micelles. Adv Healthc Mater 2014; 3:182-6. [PMID: 23983129 PMCID: PMC3844036 DOI: 10.1002/adhm.201300145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/14/2013] [Indexed: 11/06/2022]
Abstract
Amphiphilic biodegradable photoluminescent polymers (ABPLPs) composed of a biodegradable fluorescent polymer and methoxy poly (ethyleneglycol) demonstrate intrinsic bright, tunable, and stable fluorescence emission. ABPLP micelles elicit minor cellular toxicity and can be used for cell and tissue imaging both in vitro and in vivo.
Collapse
Affiliation(s)
- Dipendra Gyawali
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010
| | - Shengyuan Zhou
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010
| | - Richard T. Tran
- Department of Bioengineering, Materials Research Institute, Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Yi Zhang
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010
| | - Chao Liu
- Department of Bioengineering, Materials Research Institute, Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Xiaochun Bai
- Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jian Yang
- Department of Bioengineering, Materials Research Institute, Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
36
|
Zhi L, Li Q, Li Y, Song Y, Li P. Effect of Borax on the Solubility of Dicephalic Gluconamide-Type Surfactants. J DISPER SCI TECHNOL 2013. [DOI: 10.1080/01932691.2012.752329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Lu C, Yoganathan RB, Kociolek M, Allen C. Hydrogel Containing Silica Shell Cross-Linked Micelles for Ocular Drug Delivery. J Pharm Sci 2013. [DOI: 10.1002/jps.23390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Exploiting Aggregation To Achieve Phase Separation in Macrocyclization. Chemistry 2012; 19:2108-13. [DOI: 10.1002/chem.201203433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/31/2012] [Indexed: 11/07/2022]
|
39
|
Sui K, Liang H, Zhao X, Ma Y, Zhang Y, Xia Y. Synthesis of Amphiphilic Poly(ethylene oxide-co
-glycidol)-graft
-polyacrylonitrile Brush Copolymers and their Self-assembly in Aqueous Media. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Hierarchical mesostructures of biodegradable triblock copolymers via evaporation-induced self-assembly directed by alkali metal ions. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Mohd Yusoff SF, Hsiao MS, Schacher FH, Winnik MA, Manners I. Formation of Lenticular Platelet Micelles via the Interplay of Crystallization and Chain Stretching: Solution Self-Assembly of Poly(ferrocenyldimethylsilane)-block-poly(2-vinylpyridine) with a Crystallizable Core-Forming Metalloblock. Macromolecules 2012. [DOI: 10.1021/ma2027726] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siti Fairus Mohd Yusoff
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
- Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ming-Siao Hsiao
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto,
Ontario, Canada M5S 3H6
| | - Ian Manners
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
42
|
Lu C, Mikhail AS, Wang X, Brook MA, Allen C. Hydrogels Containing Core Cross-Linked Block Co-Polymer Micelles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1069-90. [DOI: 10.1163/092050611x575414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Changhai Lu
- a Leslie Dan Faculty of Pharmacy, and Department of Chemistry, Faculty of Arts and Science, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2
| | - Andrew S. Mikhail
- b Leslie Dan Faculty of Pharmacy, and Department of Chemistry, Faculty of Arts and Science, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2
| | - Xinyue Wang
- c Leslie Dan Faculty of Pharmacy, and Department of Chemistry, Faculty of Arts and Science, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2
| | - Michael A. Brook
- d Department of Chemistry 1280 Main Street West, McMaster University, Hamilton, ON, Canada L8S 4M1
| | - Christine Allen
- e Leslie Dan Faculty of Pharmacy, and Department of Chemistry, Faculty of Arts and Science, University of Toronto, 144 College Street, Toronto, ON, Canada M5S 3M2.
| |
Collapse
|
43
|
Zhu X, Fryd M, Tran BD, Ilies MA, Wayland BB. Modifying the Hydrophilic–Hydrophobic Interface of PEG-b-PCL To Increase Micelle Stability: Preparation of PEG-b-PBO-b-PCL Triblock Copolymers, Micelle Formation, and Hydrolysis Kinetics. Macromolecules 2012. [DOI: 10.1021/ma202530v] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaobo Zhu
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122,
United States
| | - Michael Fryd
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122,
United States
| | - Benjamin D. Tran
- Department
of Pharmaceutical
Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Marc A. Ilies
- Department
of Pharmaceutical
Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Bradford B. Wayland
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122,
United States
| |
Collapse
|
44
|
Ernsting MJ, Tang WL, MacCallum N, Li SD. Synthetic modification of carboxymethylcellulose and use thereof to prepare a nanoparticle forming conjugate of docetaxel for enhanced cytotoxicity against cancer cells. Bioconjug Chem 2011; 22:2474-86. [PMID: 22014112 DOI: 10.1021/bc200284b] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A nanoparticle formulation of docetaxel (DTX) was designed to address the strengths and limitations of current taxane delivery systems: PEGylation, high drug conjugation efficiency (>30 wt %), a slow-release mechanism, and a well-defined and stable nanoparticle identity were identified as critical design parameters. The polymer conjugate was synthesized with carboxymethylcellulose (CMC), an established pharmaceutical excipient characterized by a high density of carboxylate groups permitting increased conjugation of a drug. CMC was chemically modified through acetylation to eliminate its gelling properties and to improve solvent solubility, enabling high yield and reproducible conjugation of DTX and poly(ethylene glycol) (PEG). The optimal conjugate formulation (Cellax) contained 37.1 ± 1.5 wt % DTX and 4.7 ± 0.8 wt % PEG, exhibited a low critical aggregation concentration of 0.6 μg/mL, and formed 118-134 nm spherical nanoparticles stable against dilution. Conjugate compositions with a DTX degree of substitution (DS) outside the 12.3-20.8 mol % range failed to form discrete nanoparticles, emphasizing the importance of hydrophobic and hydrophilic balance in molecular design. Cellax nanoparticles released DTX in serum with near zero order kinetics (100% in 3 weeks), was internalized in murine and human cancer cells, and induced significantly higher toxic effects against a panel of tumor cell lines (2- to 40-fold lower IC50 values) compared to free DTX.
Collapse
Affiliation(s)
- Mark J Ernsting
- Medicinal Chemistry Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 2011; 63:1228-46. [PMID: 21777633 DOI: 10.1016/j.addr.2011.06.016] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/13/2011] [Accepted: 06/21/2011] [Indexed: 12/20/2022]
Abstract
Amphiphilic polymeric nanostructures have long been well-recognized as an excellent candidate for drug delivery applications. With the recent advances in the "top-down" and "bottom-up" approaches, development of well-defined polymeric nanostructures of different shapes has been possible. Such a possibility of tailoring the shape of the nanostructures has allowed for the fabrication of model systems with chemically equivalent but topologically different carriers. With these model nanostructures, evaluation of the importance of particle shape in the context of biodistribution, cellular uptake and toxicity has become a major thrust area. Since most of the current polymeric delivery systems are based upon spherical nanostructures, understanding the implications of other shapes will allow for the development of next generation drug delivery vehicles. Herein we will review different approaches to fabricate polymeric nanostructures of various shapes, provide a comprehensive summary on the current understandings of the influence of nanostructures with different shapes on important biological processes in drug delivery, and discuss future perspectives for the development of nanostructures with well-defined shapes for drug delivery.
Collapse
|
46
|
Mao J, Bo S, Ji X. pH/Temperature-responsive behavior of amphiphilic block copolymer micelles prepared using two different methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7385-7391. [PMID: 21591718 DOI: 10.1021/la201287t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The pH- and temperature-responsive behavior of amphiphilic block copolymer poly(L-lactide)-b-poly(2-(dimethylamino)ethyl methacrylate) (PLLA-b-PDMAEMA) in aqueous solutions is investigated using static and dynamic light scattering. Electrostatic force, hydrophobic interaction, and hydrogen bonding coexist in the system. Micelles with different structures are prepared using water addition (WA) and direct dissolution (DD) methods. The aggregation from loose micelles into large micellar clusters is observed above the transition temperature under basic conditions. Only micellar clusters from the DD method could disaggregate when temperature was decreased to 24.3 °C after heating. The behavior of the micelles prepared with the DD method indicates that only the outer parts of the PLLA-b-PDMAEMA chains in the corona are solvated.
Collapse
Affiliation(s)
- Jun Mao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | | | | |
Collapse
|
47
|
Rheology and SANS on PET-b-PLAc-b-P(DMAEMAq) Triblock Copolymers: Impact of the PET and Polyelectrolyte Chain Length. Macromolecules 2011. [DOI: 10.1021/ma200331b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Zhou Q, Zhang Z, Chen T, Guo X, Zhou S. Preparation and characterization of thermosensitive pluronic F127-b-poly(ɛ-caprolactone) mixed micelles. Colloids Surf B Biointerfaces 2011; 86:45-57. [PMID: 21489759 DOI: 10.1016/j.colsurfb.2011.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/28/2011] [Accepted: 03/15/2011] [Indexed: 02/04/2023]
Abstract
The mixed micelles composed of pluronic F127-b-poly(ɛ-caprolactone) (F127-CL) and bovine serum albumin (BSA) or polylactic acid (PLA) were fabricated for application as promising drug carriers. F127-CL copolymers were characterized by (1)H NMR, FT-IR, GPC, DSC, XRD and POM. They can self-assemble into micelles in water by solvent evaporation method. The thermo-responsivities of the pure and mixed micelles were investigated. The drug release behaviors were investigated in phosphate-buffered solution (PBS) and acetate buffer solution (ABS), respectively, at 37°C. The hemolysis and coagulation assay and the tumor cell growth inhibition assays were further evaluated. The morphologies of pure micelles underwent from the coexistence of the rods and spheres to the spheres with increasing the lengths of CL. The micelle behaviors were influenced with the addition of BSA and PLA. Both pure and mixed micelles of F127-CL with CL length of 200 show thermo-responsivities from 25 to 45°C, while form larger aggregations at high temperature. The hemolysis and coagulation assays showed that the micelles possess good blood compatibility. The cytotoxicity results showed that the copolymer was a safe carrier and the encapsulated doxorubicind.HCl remained its potent anti-tumor effect. The in vitro release profiles displayed a sustained release of DOX.HCl from the micelles. The block copolymers can be great potential as a nanocontainer in drug delivery systems.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | | | | | | | | |
Collapse
|
49
|
Matter Y, Enea R, Casse O, Lee CC, Baryza J, Meier W. Amphiphilic PEG-b-
PMCL-b-
PDMAEMA Triblock Copolymers: From Synthesis to Physico-Chemistry of Self-Assembled Structures. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201000661] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
Rajagopal K, Mahmud A, Christian DA, Pajerowski JD, Brown AEX, Loverde SM, Discher DE. Curvature-coupled hydration of Semicrystalline Polymer Amphiphiles yields flexible Worm Micelles but favors rigid Vesicles: polycaprolactone-based block copolymers. Macromolecules 2010; 43:9736-9746. [PMID: 21499509 DOI: 10.1021/ma101316w] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystallization processes are in general sensitive to detailed conditions, but our present understanding of underlying mechanisms is insufficient. A crystallizable chain within a diblock copolymer assembly is expected to couple curvature to crystallization and thereby impact rigidity as well as preferred morphology, but the effects on dispersed phases have remained unclear. The hydrophobic polymer polycaprolactone (PCL) is semi-crystalline in bulk (T(m) = 60°C) and is shown here to generate flexible worm micelles or rigid vesicles in water from several dozen polyethyleneoxide-based diblocks (PEO-PCL). Despite the fact that `worms' have a mean curvature between that of vesicles and spherical micelles, `worms' are seen only within a narrow, process-dependent wedge of morphological phase space that is deep within the vesicle phase. Fluorescence imaging shows worms are predominantly in one of two states - either entirely flexible with dynamic thermal undulations or fully rigid; only a few worms appear rigid at room temperature (T << T(m)), indicating suppression of crystallization by both curvature and PCL hydration. Worm rigidification, which depends on molecular weight, is also prevented by copolymerization of caprolactone with just 10% racemic lactide that otherwise has little impact on bulk crystallinity. In contrast to worms, vesicles of PEO-PCL are always rigid and typically leaky. Defects between crystallite domains induce dislocation-roughening with focal leakiness although select PEO-PCL - which classical surfactant arguments would predict make worms - yield vesicles that retain encapsulant and appear smooth, suggesting a gel or glassy state. Hydration in dispersion thus tends to selectively soften high curvature microphases.
Collapse
Affiliation(s)
- Karthikan Rajagopal
- Chemical and Biomolecular Engineering, and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia PA 19104; Complex Assemblies of Soft Matter, Centre National de la Recherche Scientifique - Rhodia - University of Pennsylvania, Unité mixte internationale 3254, Bristol, Pennsylvania 19007, USA
| | | | | | | | | | | | | |
Collapse
|