1
|
Gitter SR, Li R, Boydston AJ. Access to Functionalized Materials by Metal-Free Ring-Opening Metathesis Polymerization of Active Esters and Divergent Postpolymerization Modification. ACS Macro Lett 2024:144-150. [PMID: 38226917 DOI: 10.1021/acsmacrolett.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-free ring-opening metathesis polymerization (MF-ROMP) is an emerging polymerization strategy that provides access to ROMP materials by using organic initiators and photoredox catalysts. Unlike metal-mediated ROMP, MF-ROMP is not highly tolerant toward functionalized monomers. Herein, we report that pentafluorophenyl esters are polymerizable under MF-ROMP conditions to produce homopolymers, statistical copolymers, and block copolymers. Amine coupling agents were then used to install a range of functional groups via acyl substitution including alkynes, amino acid derivatives, fluorophores, and redox active moieties. Overall, these findings provide a framework to prepare functionalized ROMP polymers without the risk of metal contamination.
Collapse
Affiliation(s)
- Sean R Gitter
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ruojia Li
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Andrew J Boydston
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Yasmeen N, Karpinska A, Kalecki J, Kutner W, Kwapiszewska K, Sharma PS. Electrochemically Synthesized Polyacrylamide Gel and Core-Shell Nanoparticles for 3D Cell Culture Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32836-32844. [PMID: 35848208 PMCID: PMC9335524 DOI: 10.1021/acsami.2c04904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible polyacrylamide gel and core-shell nanoparticles (NPs) were synthesized using a one-step electrochemically initiated gelation. Constant-potential electrochemical decomposing of ammonium persulfate initiated the copolymerization of N-isopropyl acrylamide, methacrylic acid, and N,N'-methylenebisacrylamide monomers. This decomposing potential and monomers' concentrations were optimized to prepare gel NPs and thin gel film-grafted core-shell NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging confirmed the gel NP formation. The lyophilized gel NPs and core-shell NPs were applied to support the three-dimensional (3D) cell culture. In all, core-shell NPs provided superior support for complex 3D tissue structures.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta Karpinska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Kalecki
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Biglione C, Neumann‐Tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | | | - Sidra Kanwal
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| |
Collapse
|
4
|
Işık D, Joshi AA, Guo X, Rancan F, Klossek A, Vogt A, Rühl E, Hedtrich S, Klinger D. Sulfoxide-functionalized nanogels inspired by the skin penetration properties of DMSO. Biomater Sci 2021; 9:712-725. [PMID: 33285562 DOI: 10.1039/d0bm01717e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among polymeric nanocarriers, nanogels are especially promising non-irritating delivery vehicles to increase dermal bioavailability of therapeutics. However, accurately tailoring defined interactions with the amphiphilic skin barrier is still challenging. To address this limited specificity, we herein present a new strategy to combine biocompatible nanogels with the outstanding skin interaction properties of sulfoxide moieties. These chemical motifs are known from dimethyl sulfoxide (DMSO), a potent chemical penetration enhancer, which can often cause undesired skin damage upon long-term usage. By covalently functionalizing the nanogels' polymer network with such methyl sulfoxide side groups, tailor-made dermal delivery vehicles are developed to circumvent the skin disrupting properties of the small molecules. Key to an effective nanogel-skin interaction is assumed to be the specific nanogel amphiphilicity. This is examined by comparing the delivery efficiency of sulfoxide-based nanogels (NG-SOMe) with their corresponding thioether (NG-SMe) and sulfone-functionalized (NG-SO2Me) analogues. We demonstrate that the amphiphilic sulfoxide-based NG-SOMe nanogels are superior in their interaction with the likewise amphipathic stratum corneum (SC) showing an increased topical delivery efficacy of Nile red (NR) to the viable epidermis (VE) of excised human skin. In addition, toxicological studies on keratinocytes and fibroblasts show good biocompatibility while no perturbation of the complex protein and lipid distribution is observed via stimulated Raman microscopy. Thus, our NG-SOMe nanogels show high potential to effectively emulate the skin penetration enhancing properties of DMSO without its negative side effects.
Collapse
Affiliation(s)
- Doğuş Işık
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Aaroh Anand Joshi
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Xiao Guo
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - André Klossek
- Physical Chemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Eckart Rühl
- Physical Chemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Sarah Hedtrich
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany. and The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, V6T1Z3, BC, Canada
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Sincari V, Petrova SL, Konefał R, Hruby M, Jäger E. Microwave-assisted RAFT polymerization of N-(2-hydroxypropyl) methacrylamide and its relevant copolymers. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Chytil P, Kostka L, Etrych T. HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery. J Pers Med 2021; 11:115. [PMID: 33578756 PMCID: PMC7916469 DOI: 10.3390/jpm11020115] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.
Collapse
Affiliation(s)
| | | | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic; (P.C.); (L.K.)
| |
Collapse
|
7
|
Pinyakit Y, Palaga T, Kiatkamjornwong S, Hoven VP. Sequential post-polymerization modification of a pentafluorophenyl ester-containing homopolymer: a convenient route to effective pH-responsive nanocarriers for anticancer drugs. J Mater Chem B 2021; 8:454-464. [PMID: 31833524 DOI: 10.1039/c9tb01533g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, pH-responsive polymeric micelles have gained significant attention as effective carriers for anti-cancer drug delivery. Herein, pH-responsive polymeric micelles were constructed by a simple post-polymerization modification of a single homopolymer, poly(pentafluorophenyl acrylate) (PPFPA). The PPFPA was first subjected to modification with 1-amino-2-propanol yielding the amphiphilic copolymer of poly(pentafluorophenyl acrylate)-ran-poly(N-(2-hydroxypropyl acrylamide)). A series of amphiphilic random copolymers of different compositions could self-assemble into spherical micelles with a unimodal size distribution in aqueous solution. Then, 1-(3-aminopropyl)imidazole (API), a reagent to introduce charge conversional entities, was reacted with the remaining PPFPA segment in the micellar core resulting in API-modified micelles which can encapsulate doxorubicin (DOX), a hydrophobic anti-cancer drug. As monitored by dynamic light scattering, the API-modified micelles underwent disintegration upon pH switching from 7.4 to 5.0, presumably due to imidazolyl group protonation. This pH-responsiveness of the API-modified micelles was responsible for the faster and greater in vitro DOX release in an acidic environment than neutral pH. Cellular uptake studies revealed that the developed carriers were internalized into MDA-MB-231 cells within 30 min via endocytosis and exhibited cytotoxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- Yuwaporn Pinyakit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | | | |
Collapse
|
8
|
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: The chemical evolution approach. Adv Drug Deliv Rev 2021; 168:30-54. [PMID: 32246984 DOI: 10.1016/j.addr.2020.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Optimizing synthetic nanocarriers is like searching for a needle in a haystack. How to find the most suitable carrier for intracellular delivery of a specified macromolecular nanoagent for a given disease target location? Here, we review different synthetic 'chemical evolution' strategies that have been pursued. Libraries of nanocarriers have been generated either by unbiased combinatorial chemistry or by variation and novel combination of known functional delivery elements. As in natural evolution, definition of nanocarriers as sequences, as barcode or design principle, may fuel chemical evolution. Screening in appropriate test system may not only provide delivery candidates, but also a refined understanding of cellular delivery including novel, unpredictable mechanisms. Combined with rational design and computational algorithms, candidates can be further optimized in subsequent evolution cycles into nanocarriers with improved safety and efficacy. Optimization of nanocarriers differs for various cargos, as illustrated for plasmid DNA, siRNA, mRNA, proteins, or genome-editing nucleases.
Collapse
|
9
|
Uddin MA, Yu H, Wang L, Naveed K, Haq F, Amin BU, Mehmood S, Nazir A, Xing Y, Shen D. Recent progress in
EPR
study of spin labeled polymers and spin probed polymer systems. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Kaleem‐ur‐Rahman Naveed
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Sahid Mehmood
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Ahsan Nazir
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Yusheng Xing
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
10
|
Zentel R. From LC‐polymers to Nanomedicines: Different Aspects of Polymer Science from a Materials Viewpoint. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rudolf Zentel
- Chemistry University of Mainz Duesbergweg 10‐14 D‐55128 Mainz Germany
| |
Collapse
|
11
|
Battistella C, Yang Y, Chen J, Klok HA. Synthesis and Postpolymerization Modification of Fluorine-End-Labeled Poly(Pentafluorophenyl Methacrylate) Obtained via RAFT Polymerization. ACS OMEGA 2018; 3:9710-9721. [PMID: 31459100 PMCID: PMC6644891 DOI: 10.1021/acsomega.8b01654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
Chain-end-labeled polymers are interesting for a range of applications. In polymer nanomedicine, chain-end-labeled polymers are useful to study and help understand cellular internalization and intracellular trafficking processes. The recent advent of fluorescent label-free techniques, such as nanoscale secondary ion mass spectrometry (NanoSIMS), provides access to high-resolution intracellular mapping that can complement information obtained using fluorescent-labeled materials and confocal microscopy and flow cytometry. Using poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) as a prototypical polymer nanomedicine, this paper presents a synthetic strategy to polymers that contain trace element labels, such as fluorine, which can be used for NanoSIMS analysis. The strategy presented in this paper is based on reversible addition fragmentation chain transfer (RAFT) polymerization of pentafluorophenyl methacrylate (PFMA) mediated by two novel chain-transfer agents (CTAs), which contain either one (α) or two (α,ω) fluorine labels. In the first part of this study, via a number of polymerization experiments, the polymerization properties of the fluorinated RAFT CTAs were established. 19F NMR spectroscopy revealed that these fluorinated RAFT agents possess unique spectral signatures, which allow to directly monitor RAFT agent conversion and measure end-group fidelity. Comparison with 4-cyanopentanoic acid dithiobenzoate, which is a standard CTA for the RAFT polymerization of PFMA, revealed that the introduction of one or two fluorine labels does not significantly affect the polymerization properties of the CTA. In the last part of this paper, a proof-of-concept study is presented that demonstrates the feasibility of the fluorine-labeled poly(pentafluorophenyl methacrylate) polymers as platforms for the postpolymerization modification to generate PHPMA-based polymer nanomedicines.
Collapse
Affiliation(s)
- Claudia Battistella
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Yuejiao Yang
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Jie Chen
- School
of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai, China
| | - Harm-Anton Klok
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Gruber A, Işık D, Fontanezi BB, Böttcher C, Schäfer-Korting M, Klinger D. A versatile synthetic platform for amphiphilic nanogels with tunable hydrophobicity. Polym Chem 2018. [DOI: 10.1039/c8py01123k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalization of reactive precursor particles allows the preparation of amphiphilic nanogel libraries with tunable network hydrophobicity and comparable colloidal features.
Collapse
Affiliation(s)
- Alexandra Gruber
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Doğuş Işık
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Bianca Bueno Fontanezi
- Institute of Pharmacy (Pharmacology and Toxicology)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Christoph Böttcher
- Research Center of Electron Microscopy and Core Facility
- BioSupraMol
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin D-14195
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology and Toxicology)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| |
Collapse
|
13
|
Bartneck M, Schlößer CT, Barz M, Zentel R, Trautwein C, Lammers T, Tacke F. Immunomodulatory Therapy of Inflammatory Liver Disease Using Selectin-Binding Glycopolymers. ACS NANO 2017; 11:9689-9700. [PMID: 28829572 DOI: 10.1021/acsnano.7b04630] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Immunotherapies have the potential to significantly advance treatment of inflammatory disease and cancer, which are in large part driven by immune cells. Selectins control the first step in immune cell adhesion and extravasation, thereby guiding leukocyte trafficking to tissue lesions. We analyzed four different highly specific selectin-binding glycopolymers, based on linear poly(2-hydroxypropyl)-methacrylamide (PHPMA) polymers. These glycopolymers contain either the tetrasaccharide sialyl-LewisX (SLeX) or the individual carbohydrates fucose, galactose, and sialic acids mimicking the complex SLeX binding motive. The glycopolymers strongly bind to primary human macrophages, without activating them, and also to primary human blood leukocytes, but poorly to fibroblasts and endothelial cells in vitro. After intravenous injection in mice, all glycopolymers accumulated in the liver without causing hepatotoxicity. The glycosylated binder most potently targeted resident hepatic macrophages (Kupffer cells) and protected mice from acute toxic liver injury in the two different experimental models, carbon tetrachloride (CCl4) or Concanavalin A (ConA)-based hepatitis. Its sulfated counterpart, on the other hand, induced a decrease in infiltrating and resident macrophages, increased T helper cells, and aggravated immune-mediated liver injury. We demonstrate that, in the context of selectin-binding glycopolymers, minor modifications strongly impact leukocyte influx and macrophage activation, thereby ameliorating or aggravating liver inflammation depending on the underlying immunopathology. The nonsulfated random glycopolymer is a promising candidate for the treatment of inflammatory disease. The modulation of hepatic immune cells by selectin-binding glycopolymers might breach the immunosuppressive hepatic microenvironment and could improve efficacy of immunotherapies for inflammatory disease and cancer.
Collapse
Affiliation(s)
| | | | - Matthias Barz
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz , 55122 Mainz, Germany
| | - Rudolf Zentel
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz , 55122 Mainz, Germany
| | | | | | | |
Collapse
|
14
|
Kramer S, Kim KO, Zentel R. Size Tunable Core Crosslinked Micelles from HPMA-Based Amphiphilic Block Copolymers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stefan Kramer
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 Mainz 55128 Germany
| | - Kyung Oh Kim
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 Mainz 55128 Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 Mainz 55128 Germany
| |
Collapse
|
15
|
Battistella C, Klok HA. Reversion of P-gp-Mediated Drug Resistance in Ovarian Carcinoma Cells with PHPMA-Zosuquidar Conjugates. Biomacromolecules 2017; 18:1855-1865. [DOI: 10.1021/acs.biomac.7b00291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Kostka L, Etrych T. High-molecular-weight HPMA-based polymer drug carriers for delivery to tumor. Physiol Res 2017; 65:S179-S190. [PMID: 27762584 DOI: 10.33549/physiolres.933420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this work, design and synthesis of high-molecular-weight N-(2-hydroxypropyl)methacrylamide-based polymer drug delivery systems tailored for cancer therapy is summarized. Moreover, the influence of their architecture on tumor accumulation and in vivo anti-cancer efficacy is discussed. Mainly, the high-molecular-weight delivery systems, such as branched, grafted, multi-block, star-like or micellar systems, with molecular weights greater than the renal threshold are discussed and reviewed in detail.
Collapse
Affiliation(s)
- L Kostka
- Department of Biomedicinal Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
17
|
Enke M, Jehle F, Bode S, Vitz J, Harrington MJ, Hager MD, Schubert US. Histidine-Zinc Interactions Investigated by Isothermal Titration Calorimetry (ITC) and their Application in Self-Healing Polymers. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcel Enke
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Franziska Jehle
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; 14424 Potsdam Germany
| | - Stefan Bode
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Jürgen Vitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Matthew J. Harrington
- Department of Biomaterials; Max Planck Institute of Colloids and Interfaces; 14424 Potsdam Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
18
|
Moog KE, Barz M, Bartneck M, Beceren‐Braun F, Mohr N, Wu Z, Braun L, Dernedde J, Liehn EA, Tacke F, Lammers T, Kunz H, Zentel R. Polymere Selectinliganden als komplexe Glykomimetika: von Selectinbindung bis zur Modifizierung der Makrophagenmigration. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai E. Moog
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Matthias Barz
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | | | - Figen Beceren‐Braun
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité – Universitätsmedizin Berlin Deutschland
| | - Nicole Mohr
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Zhuojun Wu
- Institut für Molekulare Herz-Kreislaufforschung (IMCAR) Uniklinikum Aachen Deutschland
| | - Lydia Braun
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité – Universitätsmedizin Berlin Deutschland
| | - Elisa A. Liehn
- Institut für Molekulare Herz-Kreislaufforschung (IMCAR) Uniklinikum Aachen Deutschland
| | - Frank Tacke
- Medizinische Klinik III Uniklinikum Aachen Deutschland
| | - Twan Lammers
- Institut für Experimentelle Molekulare Bildgebung (ExMI) Uniklinikum Aachen Deutschland
| | - Horst Kunz
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Rudolf Zentel
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| |
Collapse
|
19
|
Moog KE, Barz M, Bartneck M, Beceren‐Braun F, Mohr N, Wu Z, Braun L, Dernedde J, Liehn EA, Tacke F, Lammers T, Kunz H, Zentel R. Polymeric Selectin Ligands Mimicking Complex Carbohydrates: From Selectin Binders to Modifiers of Macrophage Migration. Angew Chem Int Ed Engl 2016; 56:1416-1421. [DOI: 10.1002/anie.201610395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Kai E. Moog
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Matthias Barz
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | | | - Figen Beceren‐Braun
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité—Universitätsmedizin Berlin Germany
| | - Nicole Mohr
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Zhuojun Wu
- Institut für Molekulare Herz-Kreislaufforschung (IMCAR) Uniklinikum Aachen Germany
| | - Lydia Braun
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité—Universitätsmedizin Berlin Germany
| | - Elisa A. Liehn
- Institut für Molekulare Herz-Kreislaufforschung (IMCAR) Uniklinikum Aachen Germany
| | - Frank Tacke
- Medizinische Klinik III Uniklinikum Aachen Germany
| | - Twan Lammers
- Institut für Experimentelle Molekulare Bildgebung (ExMI) Uniklinikum Aachen Germany
| | - Horst Kunz
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Rudolf Zentel
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
20
|
Braunová A, Kostka L, Sivák L, Cuchalová L, Hvězdová Z, Laga R, Filippov S, Černoch P, Pechar M, Janoušková O, Šírová M, Etrych T. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J Control Release 2016; 245:41-51. [PMID: 27871991 DOI: 10.1016/j.jconrel.2016.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/31/2016] [Accepted: 11/17/2016] [Indexed: 11/17/2022]
Abstract
New amphiphilic diblock polymer nanotherapeutics serving simultaneously as a drug delivery system and an inhibitor of multidrug resistance were designed, synthesized, and evaluated for their physico-chemical and biological characteristics. The amphiphilic character of the diblock polymer, containing a hydrophilic block based on the N-(2-hydroxypropyl)methacrylamide copolymer and a hydrophobic poly(propylene oxide) block (PPO), caused self-assembly into polymer micelles with an increased hydrodynamic radius (Rh of approximately 15nm) in aqueous solutions. Doxorubicin (Dox), as a cytostatic drug, was bound to the diblock polymer through a pH-sensitive hydrazone bond, enabling prolonged circulation in blood, the delivery of Dox into a solid tumor and the subsequent stimuli-sensitive controlled release within the tumor mass and tumor cells at a decreased pH. The applicability of micellar nanotherapeutics as drug carriers was confirmed by an in vivo evaluation using EL4 lymphoma-bearing C57BL/6 mice. We observed significantly higher accumulation of micellar conjugates in a solid tumor because of the EPR effect compared with similar polymer-drug conjugates that do not form micellar structures or with the parent free drug. In addition, highly increased anti-tumor efficacy of the micellar polymer nanotherapeutics, even at a sub-optimal dose, was observed. The presence of PPO in the structure of the diblock polymer ensured, during in vitro tests on human and mouse drug-sensitive and resistant cancer cell lines, the inhibition of P-glycoprotein, one of the most frequently expressed ATP-dependent efflux pump that causes multidrug resistance. In addition, we observed highly increased rate of the uptake of the diblock polymer nanotherapeutics within the cells. We suppose that combination of unique properties based on MDR inhibition, stimuli sensitiveness (pH sensitive activation of drug), improved pharmacokinetics and increased uptake into the cells made the described polymer micelle a good candidate for investigation as potential drug delivery system.
Collapse
Affiliation(s)
- Alena Braunová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ladislav Sivák
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Lucie Cuchalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zuzana Hvězdová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Sergey Filippov
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Milada Šírová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic.
| |
Collapse
|
21
|
Mohr N, Kappel C, Kramer S, Bros M, Grabbe S, Zentel R. Targeting cells of the immune system: mannosylated HPMA–LMA block-copolymer micelles for targeting of dendritic cells. Nanomedicine (Lond) 2016; 11:2679-2697. [DOI: 10.2217/nnm-2016-0167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Successful tumor immunotherapy depends on the induction of strong and sustained tumor antigen-specific immune responses by activated antigen-presenting cells (APCs) such as dendritic cells (DCs). Since nanoparticles have the potential to codeliver tumor-specific antigen and DC-stimulating adjuvant in a DC-targeting manner, we wanted to assess the suitability of mannosylated HPMA-LMA block polymers for immunotherapy. Materials & methods: Fluorescence-labeled block copolymer micelles derived from P(HPMA)-block-P(LMA) copolymers and according statistical copolymers were synthesized via RAFT polymerization, and loaded with the APC activator L18-MDP. Both types of copolymers were conjugated with D-mannose to target the mannose receptor as expressed by DCs and macrophages. The extent and specificity of micelle binding and activation of APCs was monitored using mouse spleen cells and bone marrow-derived DC (BMDC). Results: Nontargeting HPMA-LMA statistical copolymers showed strong unspecific cell binding. HPMA-LMA block copolymers bound DC only when conjugated with mannose, and in a mannose receptor-specific manner. Mannosylated HPMA-LMA block copolymers were internalized by DC. DC-targeting HPMA-LMA block copolymers mediated DC activation when loaded with L18-MDP. Conclusion: Mannosylated HPMA-LMA block copolymers are a promising candidate for the delvopment of DC-targeting nanovaccines.
Collapse
Affiliation(s)
- Nicole Mohr
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Cinja Kappel
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Stefan Kramer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| |
Collapse
|
22
|
Lomkova EA, Chytil P, Janoušková O, Mueller T, Lucas H, Filippov SK, Trhlíková O, Aleshunin PA, Skorik YA, Ulbrich K, Etrych T. Biodegradable Micellar HPMA-Based Polymer-Drug Conjugates with Betulinic Acid for Passive Tumor Targeting. Biomacromolecules 2016; 17:3493-3507. [PMID: 27636143 DOI: 10.1021/acs.biomac.6b00947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we present the synthesis, physicochemical, and preliminary biological characterization of micellar polymer-betulinic acid (BA) conjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carriers, enabling the controlled release of cytotoxic BA derivatives in solid tumors or tumor cells. Various HPMA copolymer conjugates differing in the structure of the spacer between the drug and the carrier were synthesized, all designed for pH-triggered drug release in tumor tissue or tumor cells. The high molecular weight of the micellar conjugates should improve the uptake of the drug in solid tumors due to the Enhanced permeability and retention (EPR) effect. Nevertheless, only the conjugate containing BA with methylated carboxyl groups enabled pH-dependent controlled release in vitro. Moreover, drug release led to the disassembly of the micellar structure, which facilitated elimination of the water-soluble HPMA copolymer carrier from the body by renal filtration. The methylated BA derivative and its polymer conjugate exhibited high cytostatic activity against DLD-1, HT-29, and HeLa carcinoma cell lines and enhanced tumor accumulation in HT-29 xenograft in mice.
Collapse
Affiliation(s)
- Ekaterina A Lomkova
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic.,St. Petersburg State Chemical Pharmaceutical Academy, 14 Prof. Popov St., St. Petersburg 197022, Russian Federation
| | - Petr Chytil
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Thomas Mueller
- Martin-Luther-University Halle-Wittenberg , Department of Internal Medicine IV, Oncology and Haematology, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Henrike Lucas
- Martin-Luther-University Halle-Wittenberg , Institute of Pharmacy, AG Pharmaceutical Technology, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Sergey K Filippov
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Pavel A Aleshunin
- St. Petersburg State Technological Institute (Technical University), 26 Moskovsky Pr., St. Petersburg, 190013, Russian Federation
| | - Yury A Skorik
- St. Petersburg State Chemical Pharmaceutical Academy, 14 Prof. Popov St., St. Petersburg 197022, Russian Federation.,Institute of Macromolecular Compounds, Russian Academy of Sciences , 31 Bolshoy pr. VO, St. Petersburg 199004, Russian Federation
| | - Karel Ulbrich
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, The Czech Academy of Sciences , Heyrovsky Sq. 2, Prague 6, 162 06, Czech Republic
| |
Collapse
|
23
|
Scherer M, Kappel C, Mohr N, Fischer K, Heller P, Forst R, Depoix F, Bros M, Zentel R. Functionalization of Active Ester-Based Polymersomes for Enhanced Cell Uptake and Stimuli-Responsive Cargo Release. Biomacromolecules 2016; 17:3305-3317. [DOI: 10.1021/acs.biomac.6b01049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Scherer
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Cinja Kappel
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Nicole Mohr
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Karl Fischer
- Institute
of Physical Chemistry, Johannes Gutenberg University Mainz, Jakob-Welder-Weg
11, 55099 Mainz, Germany
| | - Philipp Heller
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Romina Forst
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Frank Depoix
- Institute
of Zoology, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg
7, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 63, 55131 Mainz, Germany
| | - Rudolf Zentel
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
24
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
25
|
Tomcin S, Kelsch A, Staff RH, Landfester K, Zentel R, Mailänder V. HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules. Acta Biomater 2016; 35:12-22. [PMID: 26772526 DOI: 10.1016/j.actbio.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/09/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles' core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic drug model without the necessity of nanoparticle uptake. In addition, CLSM studies and quantitative calculations using the image processing program Volocity® show the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake. Our findings offer the possibility to combine the advantages of a fast release for hydrophobic and a controlled release for an amphiphilic molecule therefore pointing to the possibility to a 'multi-step and multi-site' targeting by one nanocarrier. STATEMENT OF SIGNIFICANCE We describe thoroughly how different components of a nanocarrier end up in cells. This enables different cargos of a nanocarrier having a consecutive release and delivery of distinct components. Most interestingly we demonstrate individual kinetics of distinct components of such a system: first the release of a fluorescent hydrophobic drug model at contact with the cell membrane without the necessity of nanoparticle uptake. Secondly, the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake occurs. This offers the possibility to combine the advantages of a fast release for a hydrophobic substance at the time of interaction of the nanoparticle with the cell surface and a controlled release for an amphiphilic molecule later on therefore pointing to the possibility to a 'multi-step and multisite' targeting by one nanocarrier. We therefore feel that this could be used for many cellular systems where the combined and orchestrated delivery of components is prerequisite in order to obtain the highest efficiency.
Collapse
Affiliation(s)
- Stephanie Tomcin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; University Medicine of the Johannes Gutenberg University, Dermatology Clinic, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Annette Kelsch
- Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Roland H Staff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rudolf Zentel
- Johannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; University Medicine of the Johannes Gutenberg University, Dermatology Clinic, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
26
|
Günay KA, Klok HA. Synthesis of cyclic peptide disulfide–PHPMA conjugates via sequential active ester aminolysis and CuAAC coupling. Polym Chem 2016. [DOI: 10.1039/c5py01817j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy for the preparation of cyclic peptide disulfide–polymer conjugates that does not require peptide protecting groups is reported.
Collapse
Affiliation(s)
- Kemal Arda Günay
- École Polytechnique Fédérale de Lausanne (EPFL)
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques
- Laboratoire des Polymères
- CH-1015 Lausanne
- Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL)
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques
- Laboratoire des Polymères
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
27
|
Scherer M, Fischer K, Depoix F, Fritz T, Thiermann R, Mohr K, Zentel R. Pentafluorophenyl Ester-based Polymersomes as Nanosized Drug-Delivery Vehicles. Macromol Rapid Commun 2015; 37:60-66. [DOI: 10.1002/marc.201500444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/16/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Martin Scherer
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55099 Mainz Germany
| | - Karl Fischer
- Institute of Physical Chemistry; Johannes Gutenberg University Mainz; Jakob-Welder-Weg 11 55099 Mainz Germany
| | - Frank Depoix
- Institute of Zoology; Johannes Gutenberg University Mainz; J.-J.-Becher-Weg 7 55128 Mainz Germany
| | - Thomas Fritz
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg University Mainz; Staudinger Weg 5 55128 Mainz Germany
| | | | - Kristin Mohr
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55099 Mainz Germany
| |
Collapse
|
28
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
29
|
Shi Y, van Nostrum CF, Hennink WE. Interfacially Hydrazone Cross-linked Thermosensitive Polymeric Micelles for Acid-Triggered Release of Paclitaxel. ACS Biomater Sci Eng 2015; 1:393-404. [DOI: 10.1021/acsbiomaterials.5b00006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Shi
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
30
|
Zwitterionic polymeric micelles that undergo a pH-triggered positive charge for enhanced cellular uptake. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.02.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Ferrari R, Callari M, Moscatelli D. Multiple strategies to produce lipophilic nanoparticles leaving water-soluble poly(HPMA). RSC Adv 2015. [DOI: 10.1039/c5ra10604d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
N-(2-Hydroxypropyl) methacrylamide (HPMA) is used to produce water-soluble polymers with non-immumogenic properties that can be used in drug delivery applications.
Collapse
Affiliation(s)
- Raffaele Ferrari
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- Zurich
- Switzerland
| | - Marco Callari
- Department of Chemistry
- Materials and Chemical Engineering
- Politecnico di Milano
- 20131 Milano
- Italy
| | - Davide Moscatelli
- Department of Chemistry
- Materials and Chemical Engineering
- Politecnico di Milano
- 20131 Milano
- Italy
| |
Collapse
|
32
|
Rosman C, Pierrat S, Tarantola M, Schneider D, Sunnick E, Janshoff A, Sönnichsen C. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2479-2488. [PMID: 25671143 PMCID: PMC4311695 DOI: 10.3762/bjnano.5.257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell-substrate impedance sensing, ECIS) was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm(2) (which corresponds to 0.5% of surface coverage with nanoparticles) diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.
Collapse
Affiliation(s)
- Christina Rosman
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Sebastien Pierrat
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems (IMS), Finkenstraße 61, 47057 Duisburg, Germany
| | - Marco Tarantola
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Fassberg 17, 37077 Göttingen, Germany
| | - David Schneider
- Institute of Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Straße 9b, 50931 Cologne, Germany
| | - Eva Sunnick
- Institute of Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| | - Carsten Sönnichsen
- Institute of Physical Chemistry, University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| |
Collapse
|
33
|
|
34
|
Coupillaud P, Vignolle J, Mecerreyes D, Taton D. Post-polymerization modification and organocatalysis using reactive statistical poly(ionic liquid)-based copolymers. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.02.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
He L, Szameit K, Zhao H, Hahn U, Theato P. Postpolymerization Modification Using Less Cytotoxic Activated Ester Polymers for the Synthesis of Biological Active Polymers. Biomacromolecules 2014; 15:3197-205. [DOI: 10.1021/bm500902t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lirong He
- Institute
for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Kristina Szameit
- Institute
for Biochemistry and Molecular Biology, University of Hamburg Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Hui Zhao
- Institute
for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Ulrich Hahn
- Institute
for Biochemistry and Molecular Biology, University of Hamburg Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and Macromolecular Chemistry, University of Hamburg Bundesstrasse 45, D-20146 Hamburg, Germany
| |
Collapse
|
36
|
Nuhn L, Barz M, Zentel R. New Perspectives of HPMA-based Copolymers Derived by Post-Polymerization Modification. Macromol Biosci 2014; 14:607-18. [DOI: 10.1002/mabi.201400028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/12/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Lutz Nuhn
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-15 55128 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-15 55128 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-15 55128 Mainz Germany
| |
Collapse
|
37
|
Stangl M, Hemmelmann M, Allmeroth M, Zentel R, Schneider D. A Minimal Hydrophobicity Is Needed To Employ Amphiphilic p(HPMA)-co-p(LMA) Random Copolymers in Membrane Research. Biochemistry 2014; 53:1410-9. [DOI: 10.1021/bi401611f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Stangl
- Institut
für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Mirjam Hemmelmann
- Institut
für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Mareli Allmeroth
- Institut
für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Rudolf Zentel
- Institut
für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Dirk Schneider
- Institut
für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| |
Collapse
|
38
|
Kakuchi R, Wongsanoh K, Hoven VP, Theato P. Activation of stable polymeric esters by using organo‐activated acyl transfer reactions. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryohei Kakuchi
- Institute for Technical and Macromolecular ChemistryUniversity of HamburgD‐20146Hamburg Germany
| | - Kwanjira Wongsanoh
- Institute for Technical and Macromolecular ChemistryUniversity of HamburgD‐20146Hamburg Germany
- Department of Chemistry, Faculty of ScienceChulalongkorn UniversityPathumwan Bangkok10330 Thailand
| | - Voravee P. Hoven
- Department of Chemistry, Faculty of ScienceChulalongkorn UniversityPathumwan Bangkok10330 Thailand
| | - Patrick Theato
- Institute for Technical and Macromolecular ChemistryUniversity of HamburgD‐20146Hamburg Germany
| |
Collapse
|
39
|
Chae S, Kim JH, Theato P, Zentel R, Sohn BH. Dual Functionalization of Nanostructures of Block Copolymers with Quantum Dots and Organic Fluorophores. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seungyong Chae
- Department of Chemistry; Seoul National University; Seoul 151-747 Korea
| | - Jeong-Hee Kim
- Department of Chemistry; Seoul National University; Seoul 151-747 Korea
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry; Department of Chemistry; University of Hamburg; Hamburg D-20146 Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz; Mainz 55099 Germany
| | - Byeong-Hyeok Sohn
- Department of Chemistry; Seoul National University; Seoul 151-747 Korea
| |
Collapse
|
40
|
Birke A, Huesmann D, Kelsch A, Weilbächer M, Xie J, Bros M, Bopp T, Becker C, Landfester K, Barz M. Polypeptoid-block-polypeptide Copolymers: Synthesis, Characterization, and Application of Amphiphilic Block Copolypept(o)ides in Drug Formulations and Miniemulsion Techniques. Biomacromolecules 2014; 15:548-57. [DOI: 10.1021/bm401542z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alexander Birke
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - David Huesmann
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Annette Kelsch
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | | | - Jing Xie
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Matthias Bros
- Institute
for Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
| | | | | | - Katharina Landfester
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Matthias Barz
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
41
|
Nuhn L, Overhoff I, Sperner M, Kaltenberg K, Zentel R. RAFT-polymerized poly(hexafluoroisopropyl methacrylate)s as precursors for functional water-soluble polymers. Polym Chem 2014. [DOI: 10.1039/c3py01630g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Yin H, Kang HC, Huh KM, Bae YH. Effects of cholesterol incorporation on the physicochemical, colloidal, and biological characteristics of pH-sensitive AB₂ miktoarm polymer-based polymersomes. Colloids Surf B Biointerfaces 2013; 116:128-37. [PMID: 24463148 DOI: 10.1016/j.colsurfb.2013.12.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 11/24/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
In our previous study, a histidine-based AB2 miktoarm polymer, methoxy poly(ethylene glycol)-b-poly(l-histidine)2 (mPEG-b-(PolyHis)2), was designed to construct pH-sensitive polymersomes that transform in acidic pH; the polymer self-assembles into a structure that mimics phospholipids. In this study, the polymersomes further imitated liposomes due to the incorporation of cholesterol (CL). The hydrodynamic radii of the polymersomes increased with increasing CLwt% (e.g., 70 nm for 0 wt% vs. 91 nm for 1 wt%), resulting in an increased capacity for encapsulating hydrophilic drugs (e.g., 0.92 μL/mg for 0 wt% vs. 1.42 μL/mg for 1 wt%). The CL incorporation enhanced the colloidal stability of the polymersomes in the presence of serum protein and retarded their payload release. However, CL-incorporating polymersomes still demonstrated accelerated release of a hydrophilic dye (e.g., 5(6)-carboxyfluorescein (CF)) below pH 6.8 without losing their desirable pH sensitivity. CF-loaded CL-incorporating polymersomes showed better cellular internalization than the hydrophilic CF, whereas doxorubicin (DOX)-loaded CL-incorporating polymersomes presented similar or somewhat lower anti-tumor effects than free hydrophobic DOX. The findings suggest that CL-incorporating mPEG-b-(PolyHis)2-based polymersomes may have potential for intracellular drug delivery of chemical drugs due to their improved colloidal stability, lower drug loss during circulation, acidic pH-induced drug release, and endosomal disruption.
Collapse
Affiliation(s)
- Haiqing Yin
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 30 S 2000 E, Room 2972, Salt Lake City, UT 84112, USA
| | - Han Chang Kang
- Department of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, 30 S 2000 E, Room 2972, Salt Lake City, UT 84112, USA; Utah-Inha Drug Delivery Systems (DDS) and Advanced Therapeutics Research Center, 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea.
| |
Collapse
|
43
|
Moers C, Nuhn L, Wissel M, Stangenberg R, Mondeshki M, Berger-Nicoletti E, Thomas A, Schaeffel D, Koynov K, Klapper M, Zentel R, Frey H. Supramolecular Linear-g-Hyperbranched Graft Polymers: Topology and Binding Strength of Hyperbranched Side Chains. Macromolecules 2013. [DOI: 10.1021/ma402081h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christian Moers
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz (JGU), Duesbergweg
10-14, D-55128 Mainz, Germany
- Graduate School Materials Science in Mainz (MAINZ), Staudinger Weg 9, D-55128 Mainz, Germany
| | - Lutz Nuhn
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz (JGU), Duesbergweg
10-14, D-55128 Mainz, Germany
| | - Marcel Wissel
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - René Stangenberg
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mihail Mondeshki
- Institute
of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz (JGU), Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Elena Berger-Nicoletti
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz (JGU), Duesbergweg
10-14, D-55128 Mainz, Germany
| | - Anja Thomas
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz (JGU), Duesbergweg
10-14, D-55128 Mainz, Germany
| | - David Schaeffel
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Markus Klapper
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Rudolf Zentel
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz (JGU), Duesbergweg
10-14, D-55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz (JGU), Duesbergweg
10-14, D-55128 Mainz, Germany
| |
Collapse
|
44
|
Li Y, Duong HT, Jones MW, Basuki JS, Hu J, Boyer C, Davis TP. Selective Postmodification of Copolymer Backbones Bearing Different Activated Esters with Disparate Reactivities. ACS Macro Lett 2013; 2:912-917. [PMID: 35607013 DOI: 10.1021/mz4004375] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this communication, we report an easy method for introducing functional groups into polymer structures by successively reacting two different activated ester functionalities (pentafluorophenyl (PFP) ester and azlactone (AZ)) with different functional amine compounds. By exploiting the difference in reactivity of the two activated esters (PFP and AZ) toward different amino compounds, we demonstrate, for the first time, a selective modification of the different activated ester groups, thereby introducing functional groups to the polymer backbone in a controlled manner. Statistical and block copolymers of vinyl dimethyl azlactone (VDM) and pentafluorophenyl acrylate (PFPA), i.e.,(p(VDM-stat-PFPA)) and (p(VDM-block-PFPA)), were prepared using reversible addition-fragmentation transfer (RAFT) polymerization and subsequently modified using a library of amino compounds, yielding macromolecules with bespoke functionality. In additional work, the functional macromolecules were self-assembled into nanoparticles.
Collapse
Affiliation(s)
- Yang Li
- Australian
Centre for Nanomedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hien T.T. Duong
- Australian
Centre for Nanomedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mathew W. Jones
- Australian
Centre for Nanomedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan S. Basuki
- Australian
Centre for Nanomedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinming Hu
- Monash
Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Cyrille Boyer
- Australian
Centre for Nanomedicine (ACN), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Centre
for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - Thomas P. Davis
- Monash
Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry CV47AL, U.K
| |
Collapse
|
45
|
Beija M, Li Y, Lowe AB, Davis TP, Boyer C. Factors influencing the synthesis and the post-modification of PEGylated pentafluorophenyl acrylate containing copolymers. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Hemmelmann M, Mohr K, Fischer K, Zentel R, Schmidt M. Interaction of pHPMA–pLMA Copolymers with Human Blood Serum and Its Components. Mol Pharm 2013; 10:3769-75. [DOI: 10.1021/mp400254b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mirjam Hemmelmann
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Kristin Mohr
- Institute for Physical Chemistry, University of Mainz, Welder Weg
11, D-55099 Mainz, Germany
| | - Karl Fischer
- Institute for Physical Chemistry, University of Mainz, Welder Weg
11, D-55099 Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Manfred Schmidt
- Institute for Physical Chemistry, University of Mainz, Welder Weg
11, D-55099 Mainz, Germany
| |
Collapse
|
47
|
Nuhn L, Hartmann S, Palitzsch B, Gerlitzki B, Schmitt E, Zentel R, Kunz H. Mit Glycopeptid-Antigenen und T-Zell-Epitopen verknüpfte wasserlösliche Polymere als potenzielle Antitumor-Vakzine. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Nuhn L, Hartmann S, Palitzsch B, Gerlitzki B, Schmitt E, Zentel R, Kunz H. Water-soluble polymers coupled with glycopeptide antigens and T-cell epitopes as potential antitumor vaccines. Angew Chem Int Ed Engl 2013; 52:10652-6. [PMID: 24038824 DOI: 10.1002/anie.201304212] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 12/29/2022]
Abstract
Highly decorated: Tumor-associated MUC1 glycopeptide and tetanus toxoid T-cell epitope P2 can be attached to water-soluble poly(N-(2-hydroxypropyl)methacrylamide) carriers by orthogonal ligation techniques. Fully synthetic vaccine A with additional nanostructure-promoting domains induced antibodies that exhibit high affinity to tumor cells.
Collapse
Affiliation(s)
- Lutz Nuhn
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz (Germany)
| | | | | | | | | | | | | |
Collapse
|
49
|
Allmeroth M, Moderegger D, Gündel D, Buchholz HG, Mohr N, Koynov K, Rösch F, Thews O, Zentel R. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: a quantitative study using radiolabeling and positron emission tomography. J Control Release 2013; 172:77-85. [PMID: 23954630 DOI: 10.1016/j.jconrel.2013.07.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/20/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022]
Abstract
This paper reports the body distribution of block copolymers (made by controlled radical polymerization) with N-(2-hydroxypropyl)methacrylamide (HPMA) as hydrophilic block and lauryl methacrylate (LMA) as hydrophobic block. They form micellar aggregates in aqueous solution. For this study the hydrophilic/hydrophobic balance was varied by incorporation of differing amounts of poly(ethylene glycol) (PEG) side chains into the hydrophilic block, while keeping the degree of polymerization of both blocks constant. PEGylation reduced the size of the micellar aggregates (Rh=113 to 38 nm) and led to a minimum size of 7% PEG side chains. Polymers were labeled with the positron emitter (18)F, which enables to monitor their biodistribution pattern for up to 4h with high spatial resolution. These block copolymers were investigated in Sprague-Dawley rats bearing the Walker 256 mammary carcinoma in vivo. Organ/tumor uptake was quantified by ex vivo biodistribution as well as small animal positron emission tomography (PET). All polymers showed renal clearance with time. Their uptake in liver and spleen decreased with size of the aggregates. This made PEGylated polymers--which form smaller aggregates--attractive as they show a higher blood pool concentration. Within the studied polymers, the block copolymer of 7% PEGylation exhibited the most favorable organ distribution pattern, showing highest blood-circulation level as well as lowest hepatic and splenic uptake. Most remarkably, the in vivo results revealed a continuous increase in tumor accumulation with PEGylation (independent of the blood pool concentration)--starting from lowest tumor uptake for the pure block copolymer to highest enrichment with 11% PEG side chains. These findings emphasize the need for reliable (non-invasive) in vivo techniques revealing overall polymer distribution and helping to identify drug carrier systems for efficient therapy.
Collapse
Affiliation(s)
- Mareli Allmeroth
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Dorothea Moderegger
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Daniel Gündel
- Institute of Physiology, University Halle, Magdeburger Str. 6, 06097 Halle (Saale), Germany
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, University Medicine Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Nicole Mohr
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Kaloian Koynov
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany.
| | - Oliver Thews
- Institute of Physiology, University Halle, Magdeburger Str. 6, 06097 Halle (Saale), Germany.
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany.
| |
Collapse
|
50
|
Shi Y, van den Dungen ETA, Klumperman B, van Nostrum CF, Hennink WE. Reversible Addition-Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the N-(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Lett 2013; 2:403-408. [PMID: 35581846 DOI: 10.1021/mz300662b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A diblock copolymer composed of N-(2-hydroxy propyl) methacrylamide (HPMAm) as hydrophilic block and N-(2-hydroxy propyl) methacrylamide dilactate (HPMAm-Lac2) as thermosensitive block was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. To this end, HPMAm was first polymerized with 4-cyano-4-[(dodecylsulfanylthiocarbonyl)-sulfanyl]pentanoic acid as the chain transfer agent and azobisisobutyronitrile (AIBN) as the initiator. The polymerization showed a linear increase in Mn as a function of monomer conversion. The living p(HPMAm) chain (7 kDa) was subsequently extended with HPMAm-Lac2 yielding a diblock copolymer (total Mn of 22 kDa). The copolymer showed reversible thermosensitivity in aqueous solution and self-assembled into micelles with a size of 58 nm (PDI 0.13) above its critical micelle temperature (CMT, 2.1 °C) and concentration (CMC, 0.044 mg/mL) and was soluble below the CMT. Paclitaxel, a hydrophobic chemotherapeutic drug, was encapsulated in the micelles with a loading capacity of 16.1 ± 1.2%. Hydrolysis of the dilactate side groups of the p(HPMAm-Lac2) block converted the copolymer to the fully hydrophilic p(HPMAm) homopolymer, resulting in dissociation of the micelles. In conclusion, the livingness and versatility of RAFT polymerization provide possibilities to synthesize block copolymers with HPMAm and derivatives thereof.
Collapse
Affiliation(s)
- Yang Shi
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht,
The Netherlands
| | - Eric T. A. van den Dungen
- Department
of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Bert Klumperman
- Department
of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht,
The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht,
The Netherlands
| |
Collapse
|