1
|
Sokołowska M, Molnar K, Puskas JE, El Fray M. Improving the Sustainability of Enzymatic Synthesis of Poly(butylene adipate)-Based Copolyesters: Polycondensation Reaction in Bulk vs Diphenyl Ether. ACS OMEGA 2024; 9:38385-38395. [PMID: 39310126 PMCID: PMC11411551 DOI: 10.1021/acsomega.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
In response to mounting global concerns such as CO2 emissions, environmental pollution, and the depletion of fossil resources, the field of polymer science is shifting its focus toward sustainability. This research investigates the synthesis of poly(butylene adipate)-co-(dilinoleic adipate) (PBA-DLA) copolymers using two distinct methods: bulk polycondensation and polycondensation in diphenyl ether. The objective is to assess the environmental impact, chemical structure, composition, and key properties of the resulting copolymers, with a particular emphasis on determining the viability of bulk synthesis as a more sustainable approach. Various analytical methods, including nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and size exclusion chromatography, were employed to confirm successful copolymerization and highlight differences in molecular weight and microstructure. Additionally, thermal and dynamic mechanical analyses were conducted to thoroughly characterize the copolymers' properties. This research provides significant findings into the sustainable production of PBA-DLA copolymers, offering a more environmentally friendly approach without compromising product quality or performance.
Collapse
Affiliation(s)
- Martyna Sokołowska
- Szczecin,
Faculty of Chemical Technology and Engineering, Department of Polymer
and Biomaterials Science, West Pomeranian
University of Technology, Al. Piastow 45, 70-311 Szczecin, Poland
| | - Kristof Molnar
- Department
of Food, Agricultural and Biological Engineering, College of Food,
Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, United States
- Laboratory
of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad ter 4, Budapest 1089, Hungary
| | - Judit E. Puskas
- Department
of Food, Agricultural and Biological Engineering, College of Food,
Agricultural and Environmental Science, The Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, United States
| | - Miroslawa El Fray
- Szczecin,
Faculty of Chemical Technology and Engineering, Department of Polymer
and Biomaterials Science, West Pomeranian
University of Technology, Al. Piastow 45, 70-311 Szczecin, Poland
| |
Collapse
|
2
|
Enzymatic Polycondensation of 1,6-Hexanediol and Diethyl Adipate: A Statistical Approach Predicting the Key-Parameters in Solution and in Bulk. Polymers (Basel) 2020; 12:polym12091907. [PMID: 32847050 PMCID: PMC7565462 DOI: 10.3390/polym12091907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Among the various catalysts that can be used for polycondensation reactions, enzymes have been gaining interest for three decades, offering a green and eco-friendly platform towards the sustainable design of renewable polyesters. However, limitations imposed by their delicate nature, render them less addressed. As a case study, we compare herein bulk and solution polycondensation of 1,6-hexanediol and diethyl adipate catalyzed by an immobilized lipase from Candida antarctica. The influence of various parameters including time, temperature, enzyme loading, and vacuum was assessed in the frame of a two-step polymerization with the help of response surface methodology, a statistical technique that investigates relations between input and output variables. Results in solution (diphenyl ether) and bulk conditions showed that a two-hour reaction time was enough to allow adequate oligomer growth for the first step conducted under atmospheric pressure at 100 °C. The number-average molecular weight (Mn) achieved varied between 5000 and 12,000 g·mol-1 after a 24 h reaction and up to 18,500 g∙mol-1 after 48 h. The statistical analysis showed that vacuum was the most influential factor affecting the Mn in diphenyl ether. In sharp contrast, enzyme loading was found to be the most influential parameter in bulk conditions. Recyclability in bulk conditions showed a constant Mn of the polyester over three cycles, while a 17% decrease was noticed in solution. The following work finally introduced a statistical approach that can adequately predict the Mn of poly(hexylene adipate) based on the choice of parameter levels, providing a handy tool in the synthesis of polyesters where the control of molecular weight is of importance.
Collapse
|
3
|
Kassekert LA, Dingwell CE, De Hoe GX, Hillmyer MA. Processable epoxy-telechelic polyalkenamers and polyolefins for photocurable elastomers. Polym Chem 2020. [DOI: 10.1039/c9py01486a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Processable epoxy-telechelic polyalkenamers and polyolefins were synthesized using ring-opening metathesis polymerization and photochemically cured to furnish the corresponding crosslinked elastomers.
Collapse
|
4
|
Wilson JA, Ates Z, Pflughaupt RL, Dove AP, Heise A. Polymers from macrolactones: From pheromones to functional materials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Finnveden M, Brännström S, Johansson M, Malmström E, Martinelle M. Novel sustainable synthesis of vinyl ether ester building blocks, directly from carboxylic acids and the corresponding hydroxyl vinyl ether, and their photopolymerization. RSC Adv 2018; 8:24716-24723. [PMID: 35542160 PMCID: PMC9082454 DOI: 10.1039/c8ra04636k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 01/26/2023] Open
Abstract
Synthesis of bifunctional vinyl ether ester monomers directly from the corresponding alcohol and carboxylic acid.
Collapse
Affiliation(s)
- Maja Finnveden
- Department of Industrial Biotechnology
- KTH Royal Institute of Technology
- AlbaNova University Centre
- SE-106 91 Stockholm
- Sweden
| | - Sara Brännström
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Mats Johansson
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Eva Malmström
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Mats Martinelle
- Department of Industrial Biotechnology
- KTH Royal Institute of Technology
- AlbaNova University Centre
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
7
|
Myers D, Witt T, Cyriac A, Bown M, Mecking S, Williams CK. Ring opening polymerization of macrolactones: high conversions and activities using an yttrium catalyst. Polym Chem 2017. [DOI: 10.1039/c7py00985b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ring-opening polymerization of macrolactones (C15–C23) is reported using an yttrium catalyst which shows high rates and conversions in the production of long-chain aliphatic polyesters.
Collapse
Affiliation(s)
- D. Myers
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| | - T. Witt
- Department of Chemistry
- University of Konstanz
- 78457 Konstanz
- Germany
| | - A. Cyriac
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| | - M. Bown
- CSIRO Manufacturing
- Ian Wark Laboratory
- Clayton
- Australia
| | - S. Mecking
- Department of Chemistry
- University of Konstanz
- 78457 Konstanz
- Germany
| | - C. K. Williams
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
- Department of Chemistry
| |
Collapse
|
8
|
Pflughaupt RL, Hopkins SA, Wright PM, Dove AP. Synthesis of poly(ω-pentadecalactone)-b-poly(acrylate) diblock copolymers via a combination of enzymatic ring-opening and RAFT polymerization techniques. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Robin L. Pflughaupt
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| | | | - Peter M. Wright
- Infineum UK Ltd; Milton Hill Abingdon OX13 6BB United Kingdom
| | - Andrew P. Dove
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| |
Collapse
|
9
|
Çakır S, Eriksson M, Martinelle M, Koning CE. Multiblock copolymers of polyamide 6 and diepoxy propylene adipate obtained by solid state polymerization. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Wilson JA, Hopkins SA, Wright PM, Dove AP. Dependence of Copolymer Sequencing Based on Lactone Ring Size and ε-Substitution. ACS Macro Lett 2016; 5:346-350. [PMID: 35614702 DOI: 10.1021/acsmacrolett.5b00940] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The copolymerization of an ε-substituted ε-lactone, menthide (MI), and a range of nonsubstituted lactones (6-, 7-, 8-, and 9-membered rings) was investigated in order to determine the factors that affect the sequencing of the MI copolymers. Analysis by quantitative 13C NMR spectroscopy showed the copolymerization of MI with a nonsubstituted lactone of ring size 7 or less produced a randomly sequenced copolymer, as a consequence of the smaller lactone polymerizing first and undergoing rapid transesterification as MI was incorporated. Conversely, copolymerization with larger ring lactones (ring size 8 and above) produced block-like copolymers as a consequence of MI polymerizing initially, which does not undergo rapid transesterification side reactions during the incorporation of the second monomer. Terpolymerizations of a small ring lactone, macrolactone, and menthide demonstrated methods of producing lactone terpolymers with different final sequences, depending on when the small ring lactone was injected into the reaction mixture.
Collapse
Affiliation(s)
- J. A. Wilson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - S. A. Hopkins
- Infineum UK Ltd., Milton
Hill, Abingdon, OX13 6BB, United Kingdom
| | - P. M. Wright
- Infineum UK Ltd., Milton
Hill, Abingdon, OX13 6BB, United Kingdom
| | - A. P. Dove
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
11
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
12
|
Curia S, Howdle SM. Towards sustainable polymeric nano-carriers and surfactants: facile low temperature enzymatic synthesis of bio-based amphiphilic copolymers in scCO2. Polym Chem 2016. [DOI: 10.1039/c6py00066e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate that useful bio-based amphiphilic polymers can be produced enzymatically at a mild temperature, in a solvent-free system and using renewably sourced monomers, by exploiting the unique properties of supercritical CO2(scCO2).
Collapse
Affiliation(s)
- S. Curia
- University of Nottingham
- School of Chemistry
- University Park
- Nottingham
- UK
| | - S. M. Howdle
- University of Nottingham
- School of Chemistry
- University Park
- Nottingham
- UK
| |
Collapse
|
13
|
Curia S, Barclay AF, Torron S, Johansson M, Howdle SM. Green process for green materials: viable low-temperature lipase-catalysed synthesis of renewable telechelics in supercritical CO2. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2015.0073. [PMID: 26574529 DOI: 10.1098/rsta.2015.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
We present a novel near-ambient-temperature approach to telechelic renewable polyesters by exploiting the unique properties of supercritical CO(2) (scCO(2)). Bio-based commercially available monomers have been polymerized and functional telechelic materials with targeted molecular weight prepared by end-capping the chains with molecules containing reactive moieties in a one-pot reaction. The use of scCO(2) as a reaction medium facilitates the effective use of Candida antarctica Lipase B (CaLB) as a catalyst at a temperature as low as 35°C, hence avoiding side reactions, maintaining the end-capper functionality and preserving the enzyme activity. The functionalized polymer products have been characterized by (1)H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, gel permeation chromatography and differential scanning calorimetry in order to carefully assess their structural and thermal properties. We demonstrate that telechelic materials can be produced enzymatically at mild temperatures, in a solvent-free system and using renewably sourced monomers without pre-modification, by exploiting the unique properties of scCO(2). The macromolecules we prepare are ideal green precursors that can be further reacted to prepare useful bio-derived films and coatings.
Collapse
Affiliation(s)
- S Curia
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - A F Barclay
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - S Torron
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - M Johansson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - S M Howdle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
14
|
Bassanini I, Hult K, Riva S. Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers. Beilstein J Org Chem 2015; 11:1583-95. [PMID: 26664578 PMCID: PMC4660951 DOI: 10.3762/bjoc.11.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy
| | - Karl Hult
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy ; School of Biotechnology, Department of Industrial Biotechnology, Albanova KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy
| |
Collapse
|
15
|
Corici L, Pellis A, Ferrario V, Ebert C, Cantone S, Gardossi L. Understanding Potentials and Restrictions of Solvent-Free Enzymatic Polycondensation of Itaconic Acid: An Experimental and Computational Analysis. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500182] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Wilson JA, Hopkins SA, Wright PM, Dove AP. Synthesis of ω-Pentadecalactone Copolymers with Independently Tunable Thermal and Degradation Behavior. Macromolecules 2015. [DOI: 10.1021/ma5022049] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- James A. Wilson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | | | - Peter M. Wright
- Infineum USA, 1900 East Linden Avenue, Linden, New Jersey 07036, United States
| | - Andrew P. Dove
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
17
|
|
18
|
Lipases in polymer chemistry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:69-95. [PMID: 20859733 DOI: 10.1007/10_2010_90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipases are highly active in the polymerization of a range of monomers. Both ring-opening polymerization of cyclic monomers such as lactones and carbonates as well as polycondensation reactions have been investigated in great detail. Moreover, in combination with other (chemical) polymerization techniques, lipase-catalyzed polymerization has been employed to synthesize a variety of polymer materials. Major advantages of enzymatic catalysts are the often-observed excellent regio-, chemo- and enantioselectivity that allows for the direct preparation of functional materials. In particular, the application of techniques such as Dynamic Kinetic Resolution (DKR) in the lipase-catalyzed polymerization of racemic monomers is a new development in enzymatic polymerization. This paper reviews selected examples of the application of lipases in polymer chemistry covering the synthesis of linear polymers, chemoenzymatic polymerization and applications of enantioselective techniques for the synthesis and modification of polymers.
Collapse
|
19
|
Wilson JA, Hopkins SA, Wright PM, Dove AP. ‘Immortal’ ring-opening polymerization of ω-pentadecalactone by Mg(BHT)2(THF)2. Polym Chem 2014. [DOI: 10.1039/c4py00034j] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ‘immortal’ ring-opening polymerization (iROP) of pentadecalactone (PDL), catalysed by magnesium 2,6-di-tert-butyl-4-methylphenoxide (Mg(BHT)2(THF)2) under non-inert conditions is reported for the first time.
Collapse
|
20
|
Maisonneuve L, Lebarbé T, Grau E, Cramail H. Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym Chem 2013. [DOI: 10.1039/c3py00791j] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
|
22
|
Liu W, Chen B, Wang F, Tan T, Deng L. Lipase-catalyzed synthesis of aliphatic polyesters and properties characterization. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Eriksson M, Hult K, Malmström E, Johansson M, Trey SM, Martinelle M. One-pot enzymatic polycondensation to telechelic methacrylate-functional oligoesters used for film formation. Polym Chem 2011. [DOI: 10.1039/c0py00340a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Frampton MB, Subczynska I, Zelisko PM. Biocatalytic synthesis of silicone polyesters. Biomacromolecules 2010; 11:1818-25. [PMID: 20557038 DOI: 10.1021/bm100295z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The immobilized lipase B from Candida antarctica (CALB) was used to synthesize silicone polyesters. CALB routinely generated between 74-95% polytransesterification depending on the monomers that were used. Low molecular weight diols resulted in the highest rates of esterification. Rate constants were determined for the CALB catalyzed polytransesterifications at various reaction temperatures. The temperature dependence of the CALB-mediated polytransesterifications was examined. A lipase from C. rugosa was only successful in performing esterifications using carboxy-modified silicones that possessed alkyl chains greater than three methylene units between the carbonyl and the dimethylsiloxy groups. The proteases alpha-chymotrypsin and papain were not suitable enzymes for catalyzing any polytransesterification reactions.
Collapse
Affiliation(s)
- Mark B Frampton
- Department of Chemistry and Centre for Biotechnology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada
| | | | | |
Collapse
|
25
|
Eriksson M, Boyer A, Sinigoi L, Johansson M, Malmström E, Hult K, Trey S, Martinelle M. One-pot enzymatic route to tetraallyl ether functional oligoesters: Synthesis, UV curing, and characterization. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24328] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Gross RA, Ganesh M, Lu W. Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol 2010; 28:435-43. [PMID: 20598389 DOI: 10.1016/j.tibtech.2010.05.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 12/16/2022]
Abstract
Traditional chemical catalysts for polyester synthesis have enabled the generation of important commercial products. Undesirable characteristics of chemically catalyzed condensation polymerizations include the need to conduct reactions at high temperatures (150-280 degrees C) with metal catalysts that are toxic and lack selectivity. The latter is limiting when aspiring towards synthesis of increasingly complex and well-defined polyesters. This review describes an exciting technology that makes use of immobilized enzyme-catalysts for condensation polyester synthesis. Unlike chemical catalysts, enzymes function under mild conditions (< or =100 degrees C), which enables structure retention when polymerizing unstable monomers, circumvents the introduction of metals, and also provides selectivity that avoids protection-deprotection steps and presents unique options for structural control. Examples are provided that describe the progress made in enzyme-catalyzed polymerizations, as well as current limitations and future prospects for developing more efficient enzyme-catalysts for industrial processes.
Collapse
Affiliation(s)
- Richard A Gross
- Polytechnic Institute of NYU, Six Metro Tech Center, Brooklyn, NY 11201, USA.
| | | | | |
Collapse
|
27
|
Hydrolases Part I: Enzyme Mechanism, Selectivity and Control in the Synthesis of Well-Defined Polymers. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_86] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
28
|
Kobayashi S. Lipase-catalyzed polyester synthesis--a green polymer chemistry. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:338-65. [PMID: 20431260 PMCID: PMC3417799 DOI: 10.2183/pjab.86.338] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemoenzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting 'green polymer chemistry'.
Collapse
Affiliation(s)
- Shiro Kobayashi
- R & D Center for Biobased Materials, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|