1
|
Akilandeswari G, Varshashankari V, Muthusamy S, Aarthy M, Thamizhvani K, Mercyjayapriya J, Ashokraj S, Mohandass P, Prem S, Ayyadurai N. Photocrosslinkable triple helical protein with enhanced higher-order formation for biomaterial applications. J Biomed Mater Res A 2024; 112:1632-1645. [PMID: 38553971 DOI: 10.1002/jbm.a.37716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 08/02/2024]
Abstract
Bacterial collagen, produced via recombinant DNA methods, offers advantages including consistent purity, customizable properties, and reduced allergy potential compared to animal-derived collagen. Its controlled production environment enables tailored features, making it more sustainable, non-pathogenic, and compatible with diverse applications in medicine, cosmetics, and other industries. Research has focused on the engineering of collagen-like proteins to improve their structure and function. The study explores the impact of introducing tyrosine, an amino acid known for its role in fibril formation across diverse proteins, into a newly designed bacterial collagen-like protein (Scl2), specifically examining its effect on self-assembly and fibril formation. Biophysical analyses reveal that the introduction of tyrosine residues didn't compromise the protein's structural stability but rather promoted self-assembly, resulting in the creation of nanofibrils-a phenomenon absent in the native Scl2 protein. Additionally, stable hydrogels are formed when the engineered protein undergoes di-tyrosine crosslinking under light exposure. The hydrogels, shown to support cell viability, also facilitate accelerated wound healing in mouse fibroblast (NIH/3T3) cells. These outcomes demonstrate that the targeted inclusion of functional residues in collagen-like proteins enhances fibril formation and facilitates the generation of robust hydrogels using riboflavin chemistry, presenting promising paths for research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Gopalan Akilandeswari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Vijayakumar Varshashankari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Shalini Muthusamy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Karthigeyan Thamizhvani
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India
| | - Jebakumar Mercyjayapriya
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sundarapandian Ashokraj
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pachaiyappan Mohandass
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Prem
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Huessy B, Bumann D, Ebert D. Ectopical expression of bacterial collagen-like protein supports its role as adhesin in host-parasite coevolution. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231441. [PMID: 38577215 PMCID: PMC10987987 DOI: 10.1098/rsos.231441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
For a profound understanding of antagonistic coevolution, it is necessary to identify the coevolving genes. The bacterium Pasteuria and its host, the microcrustacean Daphnia, are a well-characterized paradigm for co-evolution, but the underlying genes remain largely unknown. A genome-wide association study suggested a Pasteuria collagen-like protein 7 (Pcl7) as a candidate mediating parasite attachment and driving its coevolution with the host. Since Pasteuria ramosa cannot currently be genetically manipulated, we used Bacillus thuringiensis to express a fusion protein of a Pcl7 carboxy-terminus from P. ramosa and the amino-terminal domain of a B. thuringiensis collagen-like protein (CLP). Mutant B. thuringiensis (Pcl7-Bt) spores but not wild-type B. thuringiensis (WT-Bt) spores attached to the same site of susceptible hosts as P. ramosa. Furthermore, Pcl7-Bt spores attached readily to susceptible host genotypes, but only slightly to resistant host genotypes. These findings indicated that the fusion protein was properly expressed and folded and demonstrated that indeed the C-terminus of Pcl7 mediates attachment in a host genotype-specific manner. These results provide strong evidence for the involvement of a CLP in the coevolution of Daphnia and P. ramosa and open new avenues for genetic epidemiological studies of host-parasite interactions.
Collapse
Affiliation(s)
- Benjamin Huessy
- Department of Environmental Sciences, Zoology, University of Basel, Basel4051, Switzerland
- University of Basel, Basel4056, Switzerland
| | | | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel4051, Switzerland
| |
Collapse
|
3
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
4
|
Croucher NJ, Campo JJ, Le TQ, Pablo JV, Hung C, Teng AA, Turner C, Nosten F, Bentley SD, Liang X, Turner P, Goldblatt D. Genomic and panproteomic analysis of the development of infant immune responses to antigenically-diverse pneumococci. Nat Commun 2024; 15:355. [PMID: 38191887 PMCID: PMC10774285 DOI: 10.1038/s41467-023-44584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. This study characterises the immunoglobulin G (IgG) repertoire recognising pneumococci from birth to 24 months old (mo) in a prospectively-sampled cohort of 63 children using a panproteome array. IgG levels are highest at birth, due to transplacental transmission of maternal antibodies. The subsequent emergence of responses to individual antigens exhibit distinct kinetics across the cohort. Stable differences in the strength of individuals' responses, correlating with maternal IgG concentrations, are established by 6 mo. By 12 mo, children develop unique antibody profiles that are boosted by re-exposure. However, some proteins only stimulate substantial responses in adults. Integrating genomic data on nasopharyngeal colonisation demonstrates rare pneumococcal antigens can elicit strong IgG levels post-exposure. Quantifying such responses to the diverse core loci (DCL) proteins is complicated by cross-immunity between variants. In particular, the conserved N terminus of DCL protein zinc metalloprotease B provokes the strongest early IgG responses. DCL proteins' ability to inhibit mucosal immunity likely explains continued pneumococcal carriage despite hosts' polyvalent antibody repertoire. Yet higher IgG levels are associated with reduced incidence, and severity, of pneumonia, demonstrating the importance of the heterogeneity in response strength and kinetics across antigens and individuals.
Collapse
Affiliation(s)
- Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W12 0BZ, UK.
| | - Joseph J Campo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Timothy Q Le
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Jozelyn V Pablo
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Christopher Hung
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Andy A Teng
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Claudia Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Xiaowu Liang
- Antigen Discovery Inc, 1 Technology Drive, Irvine, CA, 92618, USA
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, 9V54+8FQ, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
5
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Bielak K, Hołubowicz R, Zoglowek A, Żak A, Kędzierski P, Ożyhar A, Dobryszycki P. N'-terminal- and Ca 2+-induced stabilization of high-order oligomers of full-length Danio rerio and Homo sapiens otolin-1. Int J Biol Macromol 2022; 209:1032-1047. [PMID: 35447266 DOI: 10.1016/j.ijbiomac.2022.04.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023]
Abstract
Otolin-1 is a C1q family member and a major component of the organic matrix of fish otoliths and human otoconia. To date, the protein molecular properties have not been characterized. In this work, we describe biochemical characterization and comparative studies on saccular-specific otolin-1 derived from Danio rerio and Homo sapiens. Due to the low abundance of proteins in the otoconial matrix, we developed a production and purification method for both recombinant homologues of otolin-1. Danio rerio and Homo sapiens otolin-1 forms higher-order oligomers that can be partially disrupted under reducing conditions. The presence of Ca2+ stabilizes the oligomers and significantly increases the thermal stability of the proteins. Despite the high sequence coverage, the oligomerization of Danio rerio otolin-1 is more affected by the reducing conditions and presence of Ca2+ than the human homologue. The results show differences in molecular behaviour, which may be reflected in Danio rerio and Homo sapiens otolin-1 role in otolith and otoconia formation.
Collapse
Affiliation(s)
- Klaudia Bielak
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Zoglowek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Paweł Kędzierski
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Dobryszycki
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland.
| |
Collapse
|
7
|
Picker J, Lan Z, Arora S, Green M, Hahn M, Cosgriff-Hernandez E, Hook M. Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Front Bioeng Biotechnol 2022; 10:840939. [PMID: 35372322 PMCID: PMC8968730 DOI: 10.3389/fbioe.2022.840939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Collagens are the major structural component in animal extracellular matrices and are critical signaling molecules in various cell-matrix interactions. Its unique triple helical structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence requirements for animal-derived collagen led to the discovery of prokaryotic collagen-like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally similar to mammalian collagens in many ways. However, unlike the challenges associated with recombinant expression of mammalian collagens, these prokaryotic collagen-like proteins can be readily expressed in E. coli and are amenable to genetic modification. In this review article, we will first discuss the properties of mammalian collagen and provide a comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We will then review the use of prokaryotic collagen-like proteins to both study the biology of conventional collagen and develop a new biomaterial platform. Finally, we will describe the application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound dressing and matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| |
Collapse
|
8
|
Abdali Z, Renner-Rao M, Chow A, Cai A, Harrington MJ, Dorval Courchesne NM. Extracellular Secretion and Simple Purification of Bacterial Collagen from Escherichia coli. Biomacromolecules 2022; 23:1557-1568. [PMID: 35258298 DOI: 10.1021/acs.biomac.1c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of structural similarities with type-I animal collagen, recombinant bacterial collagen-like proteins have been progressively used as a source of collagen for biomaterial applications. However, the intracellular expression combined with current costly and time-consuming chromatography methods for purification makes the large-scale production of recombinant bacterial collagen challenging. Here, we report the use of an adapted secretion pathway, used natively byEscherichia colito secrete curli fibers, for extracellular secretion of the bacterial collagen. We confirmed that a considerable fraction of expressed collagen (∼70%) is being secreted freely into the extracellular medium, with an initial purity of ∼50% in the crude culture supernatant. To simplify the purification of extracellular collagen, we avoided cell lysis and used cross-flow filtration or acid precipitation to concentrate the voluminous supernatant and separate the collagen from impurities. We confirmed that the secreted collagen forms triple helical structures, using Sirius Red staining and circular dichroism. We also detected collagen biomarkers via Raman spectroscopy, further supporting that the recombinant collagen forms a stable triple helical conformation. We further studied the effect of the isolation methods on the morphology and secondary structure, concluding that the final collagen structure is process-dependent. Overall, we show that the curli secretion system can be adapted for extracellular secretion of the bacterial collagen, eliminating the need for cell lysis, which simplifies the collagen isolation process and enables a simple cost-effective method with potential for scale-up.
Collapse
Affiliation(s)
- Zahra Abdali
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Max Renner-Rao
- Department of Chemistry, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Amy Chow
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | | | | |
Collapse
|
9
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
10
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
11
|
Abstract
Recombinant or artificial designer collagens have developed to a point where they are viable candidates for replacing extracted animal collagens in regenerative medicine applications. Biomimetic corneas made have shown promise as replacements for human donor corneas, and have previously been fabricated from several different collagens or collagen-like peptides (CLPs). Prokaryotic expression systems allow for cheap, rapid, gram scale production of collagens/CLPs. Here, we describe a procedure for production of collagen-like peptides for the manufacture of a biomimetic cornea.
Collapse
|
12
|
Ilamaran M, Sundarapandian A, Aarthy M, Shanmugam G, Ponesakki G, Ramudu KN, Niraikulam A. Growth factor-mimicking 3,4-dihydroxyphenylalanine-encoded bioartificial extracellular matrix like protein promotes wound closure and angiogenesis. Biomater Sci 2020; 8:6773-6785. [PMID: 33141121 DOI: 10.1039/d0bm01379j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present work reports a new route to prepare a "smart biomaterial" by mimicking long-acting cellular growth factor showing enhanced cell-material interactions by promoting cell proliferation and angiogenesis. For that, reactive non-proteogenic amino acid 3,4-dihydroxyphenylalanine (DOPA) was genetically introduced into an intrinsic triple-helical hierarchical structure forming protein to initiate hierarchical self-assembly to form a macromolecular structure. The self-assembled scaffold displayed vascular endothelial growth factor mimicking the pro-angiogenic reactive group for repairing and remodeling of damaged tissue cells. We customized the recombinant collagen-like protein (CLP) with DOPA to promote rapid wound healing and cell migrations. Selective incorporation of catechol in variable and C-terminal region of CLP enhanced interaction between inter- and intra-triple-helical collagen molecules that resulted in a structure resembling higher-order native collagen fibril. Turbidity analysis indicated that the triple-helical CLP self-assembled at neutral pH via a catechol intra-crosslinking mechanism. After self-assembly, only DOPA-encoded CLP formed branched filamentous structures suggesting that catechol mediated network coordination. The catechol-encoded CLP also acted as a "smart material" by mimicking long-acting cellular growth factor showing enhanced cell-material interactions by promoting cell proliferation and angiogenesis. It eliminates release rate, stability, and shelf-life of hybrid growth factor conjugated biomaterials. The newly synthesized CLP has the potential to promote accelerated cell migration, pro-angiogenesis, and biocompatibility and could be used in the field of implantable medical devices and tissue engineering.
Collapse
Affiliation(s)
- Meganathan Ilamaran
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | | | | | | | | | | | | |
Collapse
|
13
|
Pedersen JS, Kot W, Plöger M, Lametsh R, Neve H, Franz CM, Hansen LH. A Rare, Virulent Clostridium perfringens Bacteriophage Susfortuna Is the First Isolated Bacteriophage in a New Viral Genus. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:230-236. [PMID: 36147286 PMCID: PMC9041476 DOI: 10.1089/phage.2020.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: Clostridium perfringens is a well known swine pathogen. C. perfringens type A is considered the causative agent of enteric diseases in neonatal and weaned piglets. Phage therapy using C. perfringens phages in vivo has previously proved effective. Materials and Methods: Pig fecal samples were used to isolate phages, with Clostridium perfringens type A as host. Complete genome sequencing, comparative genomics, a proteome analysis and electron microscopy were used to characterize the phage. Results: Clostridium phage Susfortuna has a double-stranded DNA genome of 19,046 bp with a G+C% content of 29.2, inverted terminal repeats and 28 predicted coding sequences (CDSs). Putative functions could not be assigned to most of the CDSs (64.3%). Transmission electron microscopy of phage Susfortuna revealed an isometric head and a short protruding tail stub resembling the structure of the Podoviridae family. A proteome analysis of phage Susfortuna identified seven structural proteins, but only one could be assigned with a putative function. Conclusions: Based on the morphology, the inverted terminal repeats and the small genome size, phage Susfortuna belongs to subfamily Picovirinae within the Podoviridae family in the order Caudovirales. Together with C. perfringens bacteriophage CPD7, phage Susfortuna represent a new genus of bacteriophages with very limited DNA sequence similarity to other known C. perfringens phages. Despite the limited DNA sequence similarity, the gene synteny among putative structural genes of phage Susfortuna is conserved among several C. perfringens bacteriophages belonging to the Podoviridae family indicating a common ancestor.
Collapse
Affiliation(s)
- Julie Stenberg Pedersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Witold Kot
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Maja Plöger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Réne Lametsh
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Charles M.A.P. Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
14
|
Ellison AJ, Dempwolff F, Kearns DB, Raines RT. Role for Cell-Surface Collagen of Streptococcus pyogenes in Infections. ACS Infect Dis 2020; 6:1836-1843. [PMID: 32413256 DOI: 10.1021/acsinfecdis.0c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Group A Streptococcus (GAS) displays cell-surface proteins that resemble human collagen. We find that a fluorophore-labeled collagen mimetic peptide (CMP) labels GAS cells but not Escherichia coli or Bacillus subtilis cells, which lack such proteins. The CMP likely engages in a heterotrimeric helix with endogenous collagen, as the nonnatural d enantiomer of the CMP does not label GAS cells. To identify a molecular target, we used reverse genetics to "knock-in" the GAS genes that encode two proteins with collagen-like domains, Scl1 and Scl2, into B. subtilis. The fluorescent CMP labels the cells of these B. subtilis strains. Moreover, these strains bind tightly to a surface of mammalian collagen. These data are consistent with streptococcal collagen forming triple helices with damaged collagen in a wound bed and thus have implications for microbial virulence.
Collapse
Affiliation(s)
| | - Felix Dempwolff
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Abstract
Prokaryotic proteins with extended collagen domain are found in many bacterial species that are pathogenic to humans and animals. The collagen domain is often fused to additional ligand-binding domains and plays both structural and functional roles in modular "bacterial collagens." Here, we describe the step-by-step expression and purification of the recombinant streptococcal collagen-like proteins, rScl, using the Strep-tag II system. The integrity and structural characterization of recombinant collagen-like proteins is very important for defining their function.
Collapse
Affiliation(s)
- Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| | - Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Kananavičiūtė R, Kvederavičiūtė K, Dabkevičienė D, Mackevičius G, Kuisienė N. Collagen-like sequences encoded by extremophilic and extremotolerant bacteria. Genomics 2019; 112:2271-2281. [PMID: 31884159 DOI: 10.1016/j.ygeno.2019.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022]
Abstract
Collagens and collagen-like proteins are found in a wide range of organisms. The common feature of these proteins is a triple helix fold, requiring a characteristic pattern of amino acid sequences, composed of Gly-X-Y tripeptide repeats. Collagen-like proteins from bacteria are heterogeneous in terms of length and amino acid composition of their collagenous sequences. However, different bacteria live in different environments, some at extreme temperatures and conditions. This study explores the occurrence of collagen-like sequences in the genomes of different extreme condition-adapted bacteria, and investigates features that could be linked to conditions where they thrive. Our results show that proteins containing collagen-like sequences are encoded by genomes of various extremophiles. Some of these proteins contain conservative domains, characteristic of cell or endospore surface proteins, while most other proteins are unknown. The characteristics of collagenous sequences may depend on both, the phylogenetic relationship and the living conditions of the bacteria.
Collapse
Affiliation(s)
- Rūta Kananavičiūtė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT- 10257 Vilnius, Lithuania.
| | - Kotryna Kvederavičiūtė
- Institute of Biotechnology Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT- 10257 Vilnius, Lithuania
| | - Daiva Dabkevičienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT- 10257 Vilnius, Lithuania
| | - Gytis Mackevičius
- Faculty of Mathematics and Informatics, Vilnius University, Naugarduko g. 24, LT-03225 Vilnius, Lithuania
| | - Nomeda Kuisienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT- 10257 Vilnius, Lithuania
| |
Collapse
|
17
|
Ilamaran M, Janeena A, Valappil S, Ramudu KN, Shanmugam G, Niraikulam A. A self-assembly and higher order structure forming triple helical protein as a novel biomaterial for cell proliferation. Biomater Sci 2019; 7:2191-2199. [PMID: 30900708 DOI: 10.1039/c9bm00186g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Collagen plays a critical role in the structural design of the extracellular matrix (ECM) and cell signaling in mammals, which makes it one of the most promising biomaterials with versatile applications. However, there is considerable concern regarding the purity and predictability of the product performance. At present, it is mainly derived as a mixture of collagen (different types) from animal tissues, where the selective enrichment of a particular type of collagen is generally difficult and expensive. Collagen derived from bovine sources poses the risk of transmitting diseases and can cause adverse immunologic and inflammatory responses. Hence, recombinant collagen can be a good alternative. Nevertheless, the necessity of post-translational hydroxyproline (Hyp) modification limits large-scale recombinant collagen production. Here, we recombinantly expressed the collagen-like protein (CLTP) and genetically introduced the Hyp in the CLTP to form a higher order self-assembled fibril structure, similar to human collagen. During the current study, it was observed that the Hyp incorporated CLTP protein (CLTHP) formed a stable triple helical polyproline-II like structure and self-assembled to form fibrils at neutral pH, which had an initial lag phase followed by a growth phase similar to animal collagen. In contrast, the higher order fibrillar assembly was missing in the nonhydroxylated CLTP. This study demonstrated that CLTHP self-association is based on the common underlying lateral interactions between triple helical structured proteins, where the hydroxyproline forms the significantly stable hydration network. Hence, this work will be the first fundamental empirical research for flexible modifications of recombinant collagen for structural analysis and biomedical applications.
Collapse
Affiliation(s)
- Meganathan Ilamaran
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI), Chennai, India.
| | | | | | | | | | | |
Collapse
|
18
|
McNitt DH, Van De Water L, Marasco D, Berisio R, Lukomski S. Streptococcal Collagen-like Protein 1 Binds Wound Fibronectin: Implications in Pathogen Targeting. Curr Med Chem 2019; 26:1933-1945. [PMID: 30182848 DOI: 10.2174/0929867325666180831165704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023]
Abstract
Group A Streptococcus (GAS) infections are responsible for significant morbidity and mortality worldwide. The outlook for an effective global vaccine is reduced because of significant antigenic variation among GAS strains worldwide. Other challenges in GAS therapy include the lack of common access to antibiotics in developing countries, as well as allergy to and treatment failures with penicillin and increasing erythromycin resistance in the industrialized world. At the portal of entry, GAS binds to newly deposited extracellular matrix, which is rich in cellular fibronectin isoforms with extra domain A (EDA, also termed EIIIA) via the surface adhesin, the streptococcal collagen-like protein 1 (Scl1). Recombinant Scl1 constructs, derived from diverse GAS strains, bind the EDA loop segment situated between the C and C' β-strands. Despite the sequence diversity in Scl1 proteins, multiple sequence alignments and secondary structure predictions of Scl1 variants, as well as crystallography and homology modeling studies, point to a conserved mechanism of Scl1-EDA binding. We propose that targeting this interaction may prevent the progression of infection. A synthetic cyclic peptide, derived from the EDA C-C' loop, binds to recombinant Scl1 with a micromolar dissociation constant. This review highlights the current concept of EDA binding to Scl1 and provides incentives to exploit this binding to treat GAS infections and wound colonization.
Collapse
Affiliation(s)
- Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| | - Livingston Van De Water
- Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II, Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, via Mezzocannone, 16, 80134, Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| |
Collapse
|
19
|
Abdel-Nour M, Su H, Duncan C, Li S, Raju D, Shamoun F, Valton M, Ginevra C, Jarraud S, Guyard C, Kerman K, Terebiznik MR. Polymorphisms of a Collagen-Like Adhesin Contributes to Legionella pneumophila Adhesion, Biofilm Formation Capacity and Clinical Prevalence. Front Microbiol 2019; 10:604. [PMID: 31024468 PMCID: PMC6460258 DOI: 10.3389/fmicb.2019.00604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
Legionellosis is a severe respiratory illness caused by the inhalation of aerosolized water droplets contaminated with the opportunistic pathogen Legionella pneumophila. The ability of L. pneumophila to produce biofilms has been associated with its capacity to colonize and persist in human-made water reservoirs and distribution systems, which are the source of legionellosis outbreaks. Nevertheless, the factors that mediate L. pneumophila biofilm formation are largely unknown. In previous studies we reported that the adhesin Legionella collagen-like protein (Lcl), is required for auto-aggregation, attachment to multiple surfaces and the formation of biofilms. Lcl structure contains three distinguishable regions: An N-terminal region with a predicted signal sequence, a central region containing tandem collagen-like repeats (R-domain) and a C-terminal region (C-domain) with no significant homology to other known proteins. Lcl R-domain encodes tandem repeats of the collagenous tripeptide Gly-Xaa-Yaa (GXY), a motif that is key for the molecular organization of mammalian collagen and mediates the binding of collagenous proteins to different cellular and environmental ligands. Interestingly, Lcl is polymorphic in the number of GXY tandem repeats. In this study, we combined diverse biochemical, genetic, and cellular approaches to determine the role of Lcl domains and GXY repeats polymorphisms on the structural and functional properties of Lcl, as well as on bacterial attachment, aggregation and biofilm formation. Our results indicate that the R-domain is key for assembling Lcl collagenous triple-helices and has a more preponderate role over the C-domain in Lcl adhesin binding properties. We show that Lcl molecules oligomerize to form large supramolecular complexes to which both, R and C-domains are required. Furthermore, we found that the number of GXY tandem repeats encoded in Lcl R-domain correlates positively with the binding capabilities of Lcl and with the attachment and biofilm production capacity of L. pneumophila strains. Accordingly, the number of GXY tandem repeats in Lcl influences the clinical prevalence of L. pneumophila strains. Therefore, the number of Lcl tandem repeats could be considered as a potential predictor for virulence in L. pneumophila isolates.
Collapse
Affiliation(s)
- Mena Abdel-Nour
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,The Mount Sinai Hospital, Toronto, ON, Canada
| | - Han Su
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada
| | - Shaopei Li
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Deepa Raju
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Feras Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Marine Valton
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Polytech Clermont-Ferrand, Aubière, France
| | - Christophe Ginevra
- CIRI-International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,INSERM U1111, Lyon, France.,Centre International de Recherche en Infectiologie, Claude Bernard University Lyon 1, Lyon, France.,National Center for Legionella, Hospices Civils de Lyon, Lyon, France
| | - Sophie Jarraud
- CIRI-International Center for Infectiology Research, Legionella Pathogenesis Team, Université de Lyon, Lyon, France.,INSERM U1111, Lyon, France.,Centre International de Recherche en Infectiologie, Claude Bernard University Lyon 1, Lyon, France.,National Center for Legionella, Hospices Civils de Lyon, Lyon, France
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,The Mount Sinai Hospital, Toronto, ON, Canada.,BIOASTER Microbiology Technology Institute, Lyon, France
| | - Kagan Kerman
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto at Scarborough, Toronto, ON, Canada
| |
Collapse
|
20
|
Peng YY, Nebl T, Glattauer V, Ramshaw JA. Incorporation of hydroxyproline in bacterial collagen from Streptococcus pyogenes. Acta Biomater 2018; 80:169-175. [PMID: 30218779 DOI: 10.1016/j.actbio.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Bacterial collagen-like proteins differ from vertebrate collagens in that they do not contain hydroxyproline, which is seen as a characteristic of the vertebrate collagens, and which provides a significant contribution to the stability of the collagen triple-helix at body temperature. Despite this difference, the bacterial collagens are stable at around body temperature through inclusion of other stabilising sequence elements. Another difference is the lack of aggregation, and certain vertebrate collagen binding domains that can be introduced into the bacterial sequence lack full function when hydroxyproline is absent. In the present study we have demonstrated that a simple method utilising co-translational incorporation during fermentation can be used to incorporate hydroxyproline into the recombinant bacterial collagen. The presence and amount of hydroxyproline incorporation was shown by amino acid analysis and by mass spectrometry. A small increase in thermal stability was observed using circular dichroism spectroscopy. STATEMENT OF SIGNIFICANCE: Recombinant bacterial collagens provide a new opportunity for biomedical materials as they are readily produced in large quantity in E. coli. Unlike animal collagens, they are stable without the need for inclusion of a secondary modification system for hydroxyproline incorporation. In animal collagens, however, introduction of hydroxyproline is essential for stability and is also important for functional molecular interactions within the mammalian extracellular matrix. The present study has shown that hydroxyproline can be readily introduced into recombinant S. pyogenes bacterial collagen through direct co-translational incorporation of this modified imino acid during expression using the codons for proline in the introduced gene construct. This hydroxylation further improves the stability of the collagen and is available to enhance any introduced molecular functions.
Collapse
|
21
|
Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest. Biochem J 2018; 475:3123-3140. [PMID: 30315001 DOI: 10.1042/bcj20180482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
The scenario of chemical reactions prompted by the infection by Mycobacterium tuberculosis is huge. The infection generates a localized inflammatory response, with the recruitment of neutrophils, monocytes, and T-lymphocytes. Consequences of this immune reaction can be the eradication or containment of the infection, but these events can be deleterious to the host inasmuch as lung tissue can be destroyed. Indeed, a hallmark of tuberculosis (TB) is the formation of lung cavities, which increase disease development and transmission, as they are sites of high mycobacterial burden. Pulmonary cavitation is associated with antibiotic failure and the emergence of antibiotic resistance. For cavities to form, M. tuberculosis induces the overexpression of host proteases, like matrix metalloproteinases and cathepsin, which are secreted from monocyte-derived cells, neutrophils, and stromal cells. These proteases destroy the lung parenchyma, in particular the collagen constituent of the extracellular matrix (ECM). Namely, in an attempt to destroy infected cells, the immune reactions prompted by mycobacterial infections induce the destruction of vital regions of the lung, in a process that can become fatal. Here, we review structure and function of the main molecular actors of ECM degradation due to M. tuberculosis infection and the proposed mechanisms of tissue destruction, mainly attacking fibrillar collagen. Importantly, enzymes responsible for collagen destruction are emerging as key targets for adjunctive therapies to limit immunopathology in TB.
Collapse
|
22
|
McNitt DH, Choi SJ, Keene DR, Van De Water L, Squeglia F, Berisio R, Lukomski S. Surface-exposed loops and an acidic patch in the Scl1 protein of group A Streptococcus enable Scl1 binding to wound-associated fibronectin. J Biol Chem 2018; 293:7796-7810. [PMID: 29615492 DOI: 10.1074/jbc.ra118.002250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/29/2018] [Indexed: 12/22/2022] Open
Abstract
Keratinized epidermis constitutes a powerful barrier of the mucosa and skin, effectively preventing bacterial invasion, unless it is wounded and no longer protective. Wound healing involves deposition of distinct extracellular matrix (ECM) proteins enriched in cellular fibronectin (cFn) isoforms containing extra domain A (EDA). The streptococcal collagen-like protein 1 (Scl1) is a surface adhesin of group A Streptococcus (GAS), which contains an N-terminal variable (V) domain and a C-terminally located collagen-like domain. During wound infection, Scl1 selectively binds EDA/cFn isoforms and laminin, as well as low-density lipoprotein (LDL), through its V domain. The trimeric V domain has a six-helical bundle fold composed of three pairs of anti-parallel α-helices interconnected by hypervariable loops, but the roles of these structures in EDA/cFn binding are unclear. Here, using recombinant Scl (rScl) constructs to investigate structure-function determinants of the Scl1-EDA/cFn interaction, we found that full-length rScl1, containing both the globular V and the collagen domains, is necessary for EDA/cFn binding. We established that the surface-exposed loops, interconnecting conserved α-helices, guide recognition and binding of Scl1-V to EDA and binding to laminin and LDL. Moreover, electrostatic surface potential models of the Scl1-V domains pointed to a conserved, negatively charged pocket, surrounded by positively charged and neutral regions, as a determining factor for the binding. In light of these findings, we propose an updated model of EDA/cFn recognition by the Scl1 adhesin from GAS, representing a significant step in understanding the Scl1-ECM interactions within the wound microenvironment that underlie GAS pathogenesis.
Collapse
Affiliation(s)
- Dudley H McNitt
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Soo Jeon Choi
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Douglas R Keene
- the Micro-imaging Center, Shriners Hospital for Children, Portland, Oregon 97239
| | - Livingston Van De Water
- the Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York 12208, and
| | - Flavia Squeglia
- the Institute of Biostructures and Bioimaging, Italian National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Rita Berisio
- the Institute of Biostructures and Bioimaging, Italian National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Slawomir Lukomski
- From the Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506,
| |
Collapse
|
23
|
Lukomski S, Bachert BA, Squeglia F, Berisio R. Collagen-like proteins of pathogenic streptococci. Mol Microbiol 2017; 103:919-930. [PMID: 27997716 DOI: 10.1111/mmi.13604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/19/2022]
Abstract
The collagen domain, which is defined by the presence of the Gly-X-Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen-like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall-anchored. These proteins contain the rod-shaped collagenous domain proximal to cell surface, as well as a variety of outermost non-collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well-characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation-fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals.
Collapse
Affiliation(s)
- Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| |
Collapse
|
24
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
25
|
Rodriguez-Pascual F, Slatter DA. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix. Sci Rep 2016; 6:37374. [PMID: 27876853 PMCID: PMC5120351 DOI: 10.1038/srep37374] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.
Collapse
Affiliation(s)
- Fernando Rodriguez-Pascual
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | | |
Collapse
|
26
|
Øvergård AC, Hamre LA, Harasimczuk E, Dalvin S, Nilsen F, Grotmol S. Exocrine glands ofLepeophtheirus salmonis(Copepoda: Caligidae): Distribution, developmental appearance, and site of secretion. J Morphol 2016; 277:1616-1630. [DOI: 10.1002/jmor.20611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Aina-Cathrine Øvergård
- Disease and Pathogen Transmission; SLCR-Sea Lice Research Centre, Institute of Marine Research; Nordnesgaten 50, Pb. 1870 Nordnes Bergen NO-5817 Norway
| | - Lars A. Hamre
- Department of Biology; SLCR-Sea Lice Research Centre, University of Bergen; Thormøhlensgt. 55, Pb. 7803 Bergen NO-5020 Norway
| | - Ewa Harasimczuk
- Disease and Pathogen Transmission; SLCR-Sea Lice Research Centre, Institute of Marine Research; Nordnesgaten 50, Pb. 1870 Nordnes Bergen NO-5817 Norway
| | - Sussie Dalvin
- Disease and Pathogen Transmission; SLCR-Sea Lice Research Centre, Institute of Marine Research; Nordnesgaten 50, Pb. 1870 Nordnes Bergen NO-5817 Norway
| | - Frank Nilsen
- Department of Biology; SLCR-Sea Lice Research Centre, University of Bergen; Thormøhlensgt. 55, Pb. 7803 Bergen NO-5020 Norway
| | - Sindre Grotmol
- Department of Biology; SLCR-Sea Lice Research Centre, University of Bergen; Thormøhlensgt. 55, Pb. 7803 Bergen NO-5020 Norway
| |
Collapse
|
27
|
Zhang S, Ding S, Qian Y, Yuan M, Lu J, Liu Z, Xiao J. Synthesis and Characterization of Fluorescent Silica Nanoparticles Functionalized with Collagens of Variable Lengths. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
29
|
An B, Abbonante V, Xu H, Gavriilidou D, Yoshizumi A, Bihan D, Farndale RW, Kaplan DL, Balduini A, Leitinger B, Brodsky B. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor. J Biol Chem 2015; 291:4343-55. [PMID: 26702058 PMCID: PMC4813464 DOI: 10.1074/jbc.m115.674507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 11/24/2022] Open
Abstract
A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.
Collapse
Affiliation(s)
- Bo An
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Vittorio Abbonante
- the Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Huifang Xu
- the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Despoina Gavriilidou
- the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ayumi Yoshizumi
- the Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo 143-8540, Japan, and
| | - Dominique Bihan
- the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Richard W Farndale
- the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - David L Kaplan
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Alessandra Balduini
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, the Department of Molecular Medicine, Istituto di Ricerca e Cura a Carattere Scientifico San Matteo Foundation, University of Pavia, 27100 Pavia, Italy
| | - Birgit Leitinger
- the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom,
| | - Barbara Brodsky
- From the Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155,
| |
Collapse
|
30
|
Yigit S, Dinjaski N, Kaplan DL. Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnol Bioeng 2015; 113:913-29. [PMID: 26332660 DOI: 10.1002/bit.25820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Fibrous proteins, such as silk, elastin and collagen are finding broad impact in biomaterial systems for a range of biomedical and industrial applications. Some of the key advantages of biosynthetic fibrous proteins compared to synthetic polymers include the tailorability of sequence, protein size, degradation pattern, and mechanical properties. Recombinant DNA production and precise control over genetic sequence of these proteins allows expansion and fine tuning of material properties to meet the needs for specific applications. We review current approaches in the design, cloning, and expression of fibrous proteins, with a focus on strategies utilized to meet the challenges of repetitive fibrous protein production. We discuss recent advances in understanding the fundamental basis of structure-function relationships and the designs that foster fibrous protein self-assembly towards predictable architectures and properties for a range of applications. We highlight the potential of functionalization through genetic engineering to design fibrous protein systems for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sezin Yigit
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Chemistry, Tufts University, Somerville, Massachusetts, 02145
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.
| |
Collapse
|
31
|
Ramshaw JAM. Biomedical applications of collagens. J Biomed Mater Res B Appl Biomater 2015; 104:665-75. [DOI: 10.1002/jbm.b.33541] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022]
|
32
|
A Unique Set of the Burkholderia Collagen-Like Proteins Provides Insight into Pathogenesis, Genome Evolution and Niche Adaptation, and Infection Detection. PLoS One 2015; 10:e0137578. [PMID: 26356298 PMCID: PMC4565658 DOI: 10.1371/journal.pone.0137578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei and Burkholderia mallei, classified as category B priority pathogens, are significant human and animal pathogens that are highly infectious and broad-spectrum antibiotic resistant. Currently, the pathogenicity mechanisms utilized by Burkholderia are not fully understood, and correct diagnosis of B. pseudomallei and B. mallei infection remains a challenge due to limited detection methods. Here, we provide a comprehensive analysis of a set of 13 novel Burkholderia collagen-like proteins (Bucl) that were identified among B. pseudomallei and B. mallei select agents. We infer that several Bucl proteins participate in pathogenesis based on their noncollagenous domains that are associated with the components of a type III secretion apparatus and membrane transport systems. Homology modeling of the outer membrane efflux domain of Bucl8 points to a role in multi-drug resistance. We determined that bucl genes are widespread in B. pseudomallei and B. mallei; Fischer’s exact test and Cramer’s V2 values indicate that the majority of bucl genes are highly associated with these pathogenic species versus nonpathogenic B. thailandensis. We designed a bucl-based quantitative PCR assay which was able to detect B. pseudomallei infection in a mouse with a detection limit of 50 CFU. Finally, chromosomal mapping and phylogenetic analysis of bucl loci revealed considerable genomic plasticity and adaptation of Burkholderia spp. to host and environmental niches. In this study, we identified a large set of phylogenetically unrelated bucl genes commonly found in Burkholderia select agents, encoding predicted pathogenicity factors, detection targets, and vaccine candidates.
Collapse
|
33
|
Peng YY, Stoichevska V, Vashi A, Howell L, Fehr F, Dumsday GJ, Werkmeister JA, Ramshaw JAM. Non-animal collagens as new options for cosmetic formulation. Int J Cosmet Sci 2015; 37:636-41. [PMID: 26032853 DOI: 10.1111/ics.12243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/06/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine the potential of non-animal collagens as a new option for cosmetic applications. METHODS Non-animal collagens from three species, Streptococcus pyogenes, Solibacter usitatus and Methylobacterium sp 4-46, have been expressed as recombinant proteins in Escherichia coli using a cold-shock, pCold, expression system. The proteins were purified using either metal affinity chromatography or a simple process based on precipitation and proteolytic digestion of impurities, which is suitable for large-scale production. Samples were examined using a range of analytical procedures. RESULTS Analyses by gel electrophoresis and mass spectrometry were used to examine the purity and integrity of the products. Circular dichroism spectroscopy showed stabilities around 38°C, and calculated pI values were from 5.4 to 8.6. UV-visible light spectroscopy showed the clarity of collagen solutions. The collagens were soluble at low ionic strength between pH 5 and pH 8, but were less soluble under more acidic conditions. At lower pH, the insoluble material was well dispersed and did not form the fibrous associations and aggregates found with animal collagens. The materials were shown to be non-cytotoxic to cells in culture. CONCLUSIONS These novel, non-animal collagens may be potential alternatives to animal collagens for inclusion in cosmetic formulations.
Collapse
Affiliation(s)
- Y Y Peng
- CSIRO Manufacturing Flagship, Clayton, Vic., 3169, Australia
| | - V Stoichevska
- CSIRO Manufacturing Flagship, Clayton, Vic., 3169, Australia
| | - A Vashi
- CSIRO Manufacturing Flagship, Clayton, Vic., 3169, Australia
| | - L Howell
- CSIRO Manufacturing Flagship, Clayton, Vic., 3169, Australia
| | - F Fehr
- CSIRO Manufacturing Flagship, Clayton, Vic., 3169, Australia
| | - G J Dumsday
- CSIRO Manufacturing Flagship, Clayton, Vic., 3169, Australia
| | - J A Werkmeister
- CSIRO Manufacturing Flagship, Clayton, Vic., 3169, Australia
| | - J A M Ramshaw
- CSIRO Manufacturing Flagship, Clayton, Vic., 3169, Australia
| |
Collapse
|
34
|
Yu Z, An B, Ramshaw JA, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 2014; 186:451-61. [DOI: 10.1016/j.jsb.2014.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
35
|
Ramshaw JAM, Werkmeister JA, Dumsday GJ. Bioengineered collagens: emerging directions for biomedical materials. Bioengineered 2014; 5:227-33. [PMID: 24717980 DOI: 10.4161/bioe.28791] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mammalian collagen has been widely used as a biomedical material. Nevertheless, there are still concerns about the variability between preparations, particularly with the possibility that the products may transmit animal-based diseases. Many groups have examined the possible application of bioengineered mammalian collagens. However, translating laboratory studies into large-scale manufacturing has often proved difficult, although certain yeast and plant systems seem effective. Production of full-length mammalian collagens, with the required secondary modification to give proline hydroxylation, has proved difficult in E. coli. However, recently, a new group of collagens, which have the characteristic triple helical structure of collagen, has been identified in bacteria. These proteins are stable without the need for hydroxyproline and are able to be produced and purified from E. coli in high yield. Initial studies indicate that they would be suitable for biomedical applications.
Collapse
|
36
|
Peng YY, Stoichevska V, Madsen S, Howell L, Dumsday GJ, Werkmeister JA, Ramshaw JA. A simple cost-effective methodology for large-scale purification of recombinant non-animal collagens. Appl Microbiol Biotechnol 2014; 98:1807-15. [PMID: 24402415 PMCID: PMC3968793 DOI: 10.1007/s00253-013-5475-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
Abstract
Recently, a different class of collagen-like molecules has been identified in numerous bacteria. Initial studies have shown that these collagens are readily produced in Escherichia coli and they have been isolated and purified by various small-scale chromatography approaches. These collagens are non-cytotoxic, are non-immunogenic, and can be produced in much higher yields than mammalian collagens, making them potential new collagens for biomedical materials. One of the major drawbacks with large-scale fermentation of collagens has been appropriate scalable down-stream processing technologies. Like other collagens, the triple helical domains of bacterial collagens are particularly resistant to proteolysis. The present study describes the development and optimization of a simple, scalable procedure using a combination of acid precipitation of the E. coli host proteins, followed by proteolysis of residual host proteins to produce purified collagens in large scale without the use of chromatographic methods.
Collapse
Affiliation(s)
- Yong Y. Peng
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Australia
| | - Violet Stoichevska
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Australia
| | - Soren Madsen
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Australia
| | - Linda Howell
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Australia
| | - Geoff J. Dumsday
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Australia
| | | | - John A.M. Ramshaw
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Australia
| |
Collapse
|
37
|
Sutherland TD, Peng YY, Trueman HE, Weisman S, Okada S, Walker AA, Sriskantha A, White JF, Huson MG, Werkmeister JA, Glattauer V, Stoichevska V, Mudie ST, Haritos VS, Ramshaw JAM. A new class of animal collagen masquerading as an insect silk. Sci Rep 2013; 3:2864. [PMID: 24091725 PMCID: PMC3790195 DOI: 10.1038/srep02864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/17/2013] [Indexed: 02/08/2023] Open
Abstract
Collagen is ubiquitous throughout the animal kingdom, where it comprises some 28 diverse molecules that form the extracellular matrix within organisms. In the 1960s, an extracorporeal animal collagen that forms the cocoon of a small group of hymenopteran insects was postulated. Here we categorically demonstrate that the larvae of a sawfly species produce silk from three small collagen proteins. The native proteins do not contain hydroxyproline, a post translational modification normally considered characteristic of animal collagens. The function of the proteins as silks explains their unusual collagen features. Recombinant proteins could be produced in standard bacterial expression systems and assembled into stable collagen molecules, opening the door to manufacture a new class of artificial collagen materials.
Collapse
Affiliation(s)
- Tara D. Sutherland
- CSIRO Ecosystem Sciences, Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Yong Y. Peng
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC, 3169, Australia
| | - Holly E. Trueman
- CSIRO Ecosystem Sciences, Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Sarah Weisman
- CSIRO Ecosystem Sciences, Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Shoko Okada
- CSIRO Ecosystem Sciences, Clunies Ross Street, Acton, ACT, 2601, Australia
| | - Andrew A. Walker
- CSIRO Ecosystem Sciences, Clunies Ross Street, Acton, ACT, 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | | | - Jacinta F. White
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC, 3169, Australia
| | - Mickey G. Huson
- CSIRO Materials Science and Engineering, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Jerome A. Werkmeister
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC, 3169, Australia
| | - Veronica Glattauer
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC, 3169, Australia
| | - Violet Stoichevska
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC, 3169, Australia
| | - Stephen T. Mudie
- Australian Synchrotron, Blackburn Road, Clayton, VIC, 3168, Australia
| | | | - John A. M. Ramshaw
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
38
|
Xu F, Silva T, Joshi M, Zahid S, Nanda V. Circular permutation directs orthogonal assembly in complex collagen peptide mixtures. J Biol Chem 2013; 288:31616-23. [PMID: 24043622 DOI: 10.1074/jbc.m113.501056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Multiple types of natural collagens specifically assemble and co-exist in the extracellular matrix. Although noncollagenous trimerization domains facilitate the folding of triple-helical regions, it is intriguing to ask whether collagen sequences are also capable of controlling heterospecific association. In this study, we designed a model system mimicking simultaneous specific assembly of two collagen heterotrimers using a genetically inspired operation, circular permutation. Previously, surface charge-pair interactions were optimized on three collagen peptides to promote the formation of an abc-type heterotrimer. Circular permutation of these sequences retained networks of stabilizing interactions, preserving both triple-helical structure and heterospecificity of assembly. Combining original peptides A, B, and C and permuted peptides D, E, and F resulted primarily in formation of A:B:C and D:E:F, a heterospecificity of 2 of 56 possible stoichiometries. This degree of specificity in collagen molecular recognition is unprecedented in natural or synthetic collagens. Analysis of natural collagen sequences indicates low similarity between the neighboring exons. Combining the synthetic collagen model and bioinformatic analysis provides insight on how fibrillar collagens might have arisen from the duplication of smaller domains.
Collapse
Affiliation(s)
- Fei Xu
- From the Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | | | | | | | | |
Collapse
|
39
|
Peng YY, Stoichevska V, Schacht K, Werkmeister JA, Ramshaw JAM. Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes. J Biomed Mater Res A 2013; 102:2189-96. [PMID: 23913780 DOI: 10.1002/jbm.a.34898] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/05/2013] [Accepted: 07/24/2013] [Indexed: 01/18/2023]
Abstract
Bacterially derived triple-helical, collagen-like proteins are attractive as potential biomedical materials. The collagen-like domain of the Scl2 protein from S. pyogenes lacks any specific binding sites for mammalian cells yet possesses the inherent structural integrity of the collagen triple-helix of animal collagens. It can, therefore, be considered as a structurally-stable "blank slate" into which various defined, biological sequences, derived from animal collagens, can be added by substitutions or insertions, to enable production of novel designed materials to fit specific functional requirements. In the present study, we have used site directed mutagenesis to substitute two functional sequences, one for heparin binding and the other for integrin binding, into different locations in the triple-helical structure. This provided three new constructs, two containing the single substitutions and one containing both substitutions. The stability of these constructs was marginally reduced when compared to the unmodified sequence. When compared to the unmodified bacterial collagen, both the modified collagens that contain the heparin binding site showed marked binding of fluorescently labeled heparin. Similarly, the modified collagens from both constructs containing the integrin binding site showed significant adhesion of L929 cells that are known to possess the appropriate integrin receptor. C2C12 cells that lack any appropriate integrins did not bind. These data show that bacterial collagen-like sequences can be modified to act like natural extracellular matrix collagens by inserting one or more unique biological domains with defined function.
Collapse
Affiliation(s)
- Yong Y Peng
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, 3169, Australia
| | | | | | | | | |
Collapse
|
40
|
Truong YB, Glattauer V, Briggs KL, Zappe S, Ramshaw JA. Collagen-based layer-by-layer coating on electrospun polymer scaffolds. Biomaterials 2012; 33:9198-204. [DOI: 10.1016/j.biomaterials.2012.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/09/2012] [Indexed: 11/27/2022]
|
41
|
Peng YY, Howell L, Stoichevska V, Werkmeister JA, Dumsday GJ, Ramshaw JAM. Towards scalable production of a collagen-like protein from Streptococcus pyogenes for biomedical applications. Microb Cell Fact 2012; 11:146. [PMID: 23126526 PMCID: PMC3539881 DOI: 10.1186/1475-2859-11-146] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Collagen has proved valuable as biomedical materials for a range of clinical applications, particularly in wound healing. It is normally produced from animal sources, such as from bovines, but concerns have emerged over transmission of diseases. Recombinant collagens would be preferable, but are difficult to produce. Recently, studies have shown that 'collagens' from bacteria, including Streptococcus pyogenes, can be produced in the laboratory as recombinant products, and that these are biocompatible. In the present study we have established that examples of bacterial collagens can be produced in a bioreactor with high yields providing proof of manufacture of this important group of proteins. RESULTS Production trials in shake flask cultures gave low yields of recombinant product, < 1 g/L. Increased yields, of around 1 g/L, were obtained when the shake flask process was transferred to a stirred tank bioreactor, and the yield was further enhanced to around 10 g/L by implementation of a high cell density fed-batch process and the use of suitably formulated fully defined media. Similar yields were obtained with 2 different constructs, one containing an introduced heparin binding domain. The best yields, of up to 19 g/L were obtained using this high cell density strategy, with an extended 24 h production time. CONCLUSIONS These data have shown that recombinant bacterial collagen from S. pyogenes, can be produced in sufficient yield by a scalable microbial production process to give commercially acceptable yields for broad use in biomedical applications.
Collapse
Affiliation(s)
- Yong Y Peng
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, VIC 3168, Australia
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
McElroy K, Mouton L, Du Pasquier L, Qi W, Ebert D. Characterisation of a large family of polymorphic collagen-like proteins in the endospore-forming bacterium Pasteuria ramosa. Res Microbiol 2011; 162:701-14. [DOI: 10.1016/j.resmic.2011.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/04/2011] [Indexed: 11/26/2022]
|
44
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1221] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|
45
|
Yoshizumi A, Fletcher JM, Yu Z, Persikov AV, Bartlett GJ, Boyle AL, Vincent TL, Woolfson DN, Brodsky B. Designed coiled coils promote folding of a recombinant bacterial collagen. J Biol Chem 2011; 286:17512-20. [PMID: 21454493 DOI: 10.1074/jbc.m110.217364] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat.
Collapse
Affiliation(s)
- Ayumi Yoshizumi
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yu Z, Brodsky B, Inouye M. Dissecting a bacterial collagen domain from Streptococcus pyogenes: sequence and length-dependent variations in triple helix stability and folding. J Biol Chem 2011; 286:18960-8. [PMID: 21454494 DOI: 10.1074/jbc.m110.217422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better investigate the relationship between sequence, stability, and folding, the Streptococcus pyogenes collagenous domain CL (Gly-Xaa-Yaa)(79) was divided to create three recombinant triple helix subdomains A, B, and C of almost equal size with distinctive amino acid features: an A domain high in polar residues, a B domain containing the highest concentration of Pro residues, and a very highly charged C domain. Each segment was expressed as a monomer, a linear dimer, and a linear trimer fused with the trimerization domain (V domain) in Escherichia coli. All recombinant proteins studied formed stable triple helical structures, but the stability varied depending on the amino acid sequence in the A, B, and C segments and increased as the triple helix got longer. V-AAA was found to melt at a much lower temperature (31.0 °C) than V-ABC (V-CL), whereas V-BBB melted at almost the same temperature (∼36-37 °C). When heat-denatured, the V domain enhanced refolding for all of the constructs; however, the folding rate was affected by their amino acid sequences and became reduced for longer constructs. The folding rates of all the other constructs were lower than that of the natural V-ABC protein. Amino acid substitution mutations at all Pro residues in the C fragment dramatically decreased stability but increased the folding rate. These results indicate that the thermostability of the bacterial collagen is dominated by the most stable domain in the same manner as found with eukaryotic collagens.
Collapse
Affiliation(s)
- Zhuoxin Yu
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
47
|
Yu Z, Mirochnitchenko O, Xu C, Yoshizumi A, Brodsky B, Inouye M. Noncollagenous region of the streptococcal collagen-like protein is a trimerization domain that supports refolding of adjacent homologous and heterologous collagenous domains. Protein Sci 2010; 19:775-85. [PMID: 20162611 DOI: 10.1002/pro.356] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proper folding of the (Gly-Xaa-Yaa)(n) sequence of animal collagens requires adjacent N- or C-terminal noncollagenous trimerization domains which often contain coiled-coil or beta sheet structure. Collagen-like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen-like protein from Streptococcus pyogenes has an N-terminal globular domain, designated V(sp), adjacent to its triple-helix domain. The V(sp) domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant V(sp) domain alone is shown to form trimers with a significant alpha-helix content and to have a thermal stability of T(m) = 45 degrees C. Examination of a new construct shows that the V(sp) domain facilitates efficient in vitro refolding only when it is located N-terminal to the triple-helix domain but not when C-terminal to the triple-helix domain. Fusion of the V(sp) domain N-terminal to a heterologous (Gly-Xaa-Yaa)(n) sequence from Clostridium perfringens led to correct folding and refolding of this triple-helix, which was unable to fold into a triple-helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly-Xaa-Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple-helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.
Collapse
Affiliation(s)
- Zhuoxin Yu
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
48
|
Template-tethered collagen mimetic peptides for studying heterotrimeric triple-helical interactions. Biopolymers 2010; 95:94-104. [DOI: 10.1002/bip.21536] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 08/05/2010] [Accepted: 08/11/2010] [Indexed: 11/07/2022]
|
49
|
A Streptococcus pyogenes derived collagen-like protein as a non-cytotoxic and non-immunogenic cross-linkable biomaterial. Biomaterials 2010; 31:2755-61. [PMID: 20056274 DOI: 10.1016/j.biomaterials.2009.12.040] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/14/2009] [Indexed: 11/23/2022]
Abstract
A range of bacteria have been shown to contain collagen-like sequences that form triple-helical structures. Some of these proteins have been shown to form triple-helical motifs that are stable around body temperature without the inclusion of hydroxyproline or other secondary modifications to the protein sequence. This makes these collagen-like proteins particularly suitable for recombinant production as only a single gene product and no additional enzyme needs to be expressed. In the present study, we have examined the cytotoxicity and immunogenicity of the collagen-like domain from Streptococcus pyogenes Scl2 protein. These data show that the purified, recombinant collagen-like protein is not cytotoxic to fibroblasts and does not elicit an immune response in SJL/J and Arc mice. The freeze dried protein can be stabilised by glutaraldehyde cross-linking giving a material that is stable at >37 degrees C and which supports cell attachment while not causing loss of viability. These data suggest that bacterial collagen-like proteins, which can be modified to include specific functional domains, could be a useful material for medical applications and as a scaffold for tissue engineering.
Collapse
|