1
|
Lin J, Neo SH, Ho SCL, Yeo JHM, Wang T, Zhang W, Bi X, Chao SH, Yang Y. Impact of Signal Peptides on Furin-2A Mediated Monoclonal Antibody Secretion in CHO Cells. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/03/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jian'er Lin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Shu Hui Neo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Tianhua Wang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
- Department of Microbiology; National University of Singapore; Block MD4, 5 Science Drive 2 Singapore 117597 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR); 20 Biopolis Way, #06-01 Centros Singapore 138668 Singapore
| |
Collapse
|
2
|
Martin RW, Majewska NI, Chen CX, Albanetti TE, Jimenez RBC, Schmelzer AE, Jewett MC, Roy V. Development of a CHO-Based Cell-Free Platform for Synthesis of Active Monoclonal Antibodies. ACS Synth Biol 2017; 6:1370-1379. [PMID: 28350472 DOI: 10.1021/acssynbio.7b00001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chinese Hamster Ovary (CHO) cells are routinely optimized to stably express monoclonal antibodies (mAbs) at high titers. At the early stages of lead isolation and optimization, hundreds of sequences for the target protein of interest are screened. Typically, cell-based transient expression technology platforms are used for expression screening, but these can be time- and resource-intensive. Here, we have developed a cell-free protein synthesis (CFPS) platform utilizing a commercially available CHO extract for the rapid in vitro synthesis of active, aglycosylated mAbs. Specifically, we optimized reaction conditions to maximize protein yields, established an oxidizing environment to enable disulfide bond formation, and demonstrated the importance of temporal addition of heavy chain and light chain plasmids for intact mAb production. Using our optimized platform, we demonstrate for the first time to our knowledge the cell-free synthesis of biologically active, intact mAb at >100 mg/L using a eukaryotic-based extract. We then explored the utility of our system as a tool for ranking yields of candidate antibodies. Unlike stable or transient transfection-based screening, which requires a minimum of 7 days for setup and execution, results using our CHO-based CFPS platform are attained within 2 days and it is well-suited for automation. Further development would provide a tool for rapid, high-throughput prediction of mAb expression ranking to accelerate design-build-test cycles required for antibody expression and engineering. Looking forward, the CHO-based CFPS platform could facilitate the synthesis of toxic proteins as well.
Collapse
Affiliation(s)
- Rey W. Martin
- Department
of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, and §Interdisciplinary
Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Cell Culture and Fermentation
Sciences and ⊥Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
- Member, Robert H. Lurie Comprehensive Cancer Center and ∇Member, Simpson
Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Natalia I. Majewska
- Department
of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, and §Interdisciplinary
Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Cell Culture and Fermentation
Sciences and ⊥Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
- Member, Robert H. Lurie Comprehensive Cancer Center and ∇Member, Simpson
Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Cindy X. Chen
- Department
of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, and §Interdisciplinary
Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Cell Culture and Fermentation
Sciences and ⊥Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
- Member, Robert H. Lurie Comprehensive Cancer Center and ∇Member, Simpson
Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Thomas E. Albanetti
- Department
of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, and §Interdisciplinary
Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Cell Culture and Fermentation
Sciences and ⊥Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
- Member, Robert H. Lurie Comprehensive Cancer Center and ∇Member, Simpson
Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Rod Brian C. Jimenez
- Department
of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, and §Interdisciplinary
Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Cell Culture and Fermentation
Sciences and ⊥Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
- Member, Robert H. Lurie Comprehensive Cancer Center and ∇Member, Simpson
Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Albert E. Schmelzer
- Department
of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, and §Interdisciplinary
Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Cell Culture and Fermentation
Sciences and ⊥Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
- Member, Robert H. Lurie Comprehensive Cancer Center and ∇Member, Simpson
Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, and §Interdisciplinary
Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Cell Culture and Fermentation
Sciences and ⊥Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
- Member, Robert H. Lurie Comprehensive Cancer Center and ∇Member, Simpson
Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Varnika Roy
- Department
of Chemical and Biological Engineering, ‡Chemistry of Life Processes Institute, and §Interdisciplinary
Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Cell Culture and Fermentation
Sciences and ⊥Analytical Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
- Member, Robert H. Lurie Comprehensive Cancer Center and ∇Member, Simpson
Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
3
|
Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology - Improving cell factory performance. Metab Eng 2014; 24:38-60. [PMID: 24747045 DOI: 10.1016/j.ymben.2014.03.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 11/16/2022]
Abstract
An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed.
Collapse
Affiliation(s)
- Joachim Almquist
- Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Marija Cvijovic
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden; Mathematical Sciences, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Federale de Lausanne, CH 1015 Lausanne, Switzerland
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Mats Jirstrand
- Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden
| |
Collapse
|
5
|
Pfeffer M, Maurer M, Köllensperger G, Hann S, Graf AB, Mattanovich D. Modeling and measuring intracellular fluxes of secreted recombinant protein in Pichia pastoris with a novel 34S labeling procedure. Microb Cell Fact 2011; 10:47. [PMID: 21703020 PMCID: PMC3147017 DOI: 10.1186/1475-2859-10-47] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/26/2011] [Indexed: 12/24/2022] Open
Abstract
Background The budding yeast Pichia pastoris is widely used for protein production. To determine the best suitable strategy for strain improvement, especially for high secretion, quantitative data of intracellular fluxes of recombinant protein are very important. Especially the balance between intracellular protein formation, degradation and secretion defines the major bottleneck of the production system. Because these parameters are different for unlimited growth (shake flask) and carbon-limited growth (bioreactor) conditions, they should be determined under "production like" conditions. Thus labeling procedures must be compatible with minimal production media and the usage of bioreactors. The inorganic and non-radioactive 34S labeled sodium sulfate meets both demands. Results We used a novel labeling method with the stable sulfur isotope 34S, administered as sodium sulfate, which is performed during chemostat culivations. The intra- and extracellular sulfur 32 to 34 ratios of purified recombinant protein, the antibody fragment Fab3H6, are measured by HPLC-ICP-MS. The kinetic model described here is necessary to calculate the kinetic parameters from sulfur ratios of consecutive samples as well as for sensitivity analysis. From the total amount of protein produced intracellularly (143.1 μg g-1 h-1 protein per yeast dry mass and time) about 58% are degraded within the cell, 35% are secreted to the exterior and 7% are inherited to the daughter cells. Conclusions A novel 34S labeling procedure that enables in vivo quantification of intracellular fluxes of recombinant protein under "production like" conditions is described. Subsequent sensitivity analysis of the fluxes by using MATLAB, indicate the most promising approaches for strain improvement towards increased secretion.
Collapse
Affiliation(s)
- Martin Pfeffer
- University of Natural Resources and Life Sciences, Department of Biotechnology, Muthgasse 18, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
6
|
McLeod J, O'Callaghan PM, Pybus LP, Wilkinson SJ, Root T, Racher AJ, James DC. An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. Biotechnol Bioeng 2011; 108:2193-204. [PMID: 21445882 DOI: 10.1002/bit.23146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/31/2011] [Accepted: 03/14/2011] [Indexed: 12/16/2022]
Abstract
In this study we have combined empirically derived mathematical models of intracellular Mab synthesis to quantitatively compare the degree to which individual cellular processes limit recombinant IgG(4) monoclonal antibody production by GS-CHO cells throughout a state-of-the-art industrial fed-batch culture process. Based on the calculation of a production process control coefficient for each stage of the intracellular Mab synthesis and secretion pathway, we identified the major cellular restrictions on Mab production throughout the entire culture process to be recombinant heavy chain gene transcription and heavy chain mRNA translation. Surprisingly, despite a substantial decline in the rate of cellular biomass synthesis during culture, with a concomitant decline in the calculated rate constants for energy-intensive Mab synthetic processes (Mab folding/assembly and secretion), these did not exert significant control of Mab synthesis at any stage of production. Instead, cell-specific Mab production was maintained by increased Mab gene transcription which offset the decline in cellular biosynthetic rates. Importantly, this study shows that application of this whole-process predictive modeling strategy should rationally precede and inform cell engineering approaches to increase production of a recombinant protein by a mammalian host cell--where control of productivity is inherently protein product and cell line specific.
Collapse
Affiliation(s)
- Jane McLeod
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | | | | | | | | | | | | |
Collapse
|