1
|
Kotova S, Kostjuk S, Rochev Y, Efremov Y, Frolova A, Timashev P. Phase transition and potential biomedical applications of thermoresponsive compositions based on polysaccharides, proteins and DNA: A review. Int J Biol Macromol 2023; 249:126054. [PMID: 37532189 DOI: 10.1016/j.ijbiomac.2023.126054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Smart thermoresponsive polymers have long attracted attention as materials of a great potential for biomedical applications, mainly for drug delivery, tissue engineering and wound dressing, with a special interest to injectable hydrogels. Poly-N-isopropylacrylamide (PNIPAM) is the most important synthetic thermoresponsive polymer due to its physiologically relevant transition temperature. However, the use of unmodified PNIPAM encounters such problems as low biodegradability, low drug loading capacity, slow response to thermal stimuli, and insufficient mechanical robustness. The use of natural polysaccharides and proteins in combinations with PNIPAM, in the form of grafted copolymers, IPNs, microgels and physical mixtures, is aimed at overcoming these drawbacks and creating dual-functional materials with both synthetic and natural polymers' properties. When developing such compositions, special attention should be paid to preserving their key property, thermoresponsiveness. Addition of hydrophobic and hydrophilic fragments to PNIPAM is known to affect its transition temperature. This review covers various classes of natural polymers - polysaccharides, fibrous and non-fibrous proteins, DNA - used in combination with PNIPAM for the prospective biomedical purposes, with a focus on their phase transition temperatures and its relation to the natural polymer's structure.
Collapse
Affiliation(s)
- Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - Sergei Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Department of Chemistry, Belarusian State University, Minsk 220006, Belarus; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus
| | - Yuri Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; National University of Ireland Galway, Galway H91 CF50, Ireland
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Anastasia Frolova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Sambyal K, Singh RV. Exploitation of E. coli for the production of penicillin G amidase: a tool for the synthesis of semisynthetic β-lactam antibiotics. J Genet Eng Biotechnol 2021; 19:156. [PMID: 34652570 PMCID: PMC8521562 DOI: 10.1186/s43141-021-00263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Penicillin G amidase/acylases from microbial sources is a unique enzyme that belongs to the N-terminal nucleophilic hydrolase structural superfamily. It catalyzes the selective hydrolysis of side chain amide/acyl bond of penicillins and cephalosporins whereas the labile amide/acyl bond in the β-lactam ring remains intact. This review summarizes the production aspects of PGA from various microbial sources at optimized conditions. The minimal yield from wild strains has been extensively improved using varying strain improvement techniques like recombination and mutagenesis; further applied for the subsequent synthesis of 6-aminopenicillanic acid, which is an intermediate molecule for synthesis of a wide range of novel β-lactam antibiotics. Immobilization of PGA has also been attempted to enhance the durability of enzyme for the industrial purposes. SHORT CONCLUSION The present review provides an emphasis on exploitation of E. coli to enhance the microbial production of PGA. The latest achievements in the production of recombinant enzymes have also been discussed. Besides E. coli, other potent microbial strains with PGA activity must be explored to enhance the yields.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Rahul Vikram Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Lin Y, Jin W, Wang J, Cai Z, Wu S, Zhang G. A novel method for simultaneous purification and immobilization of a xylanase-lichenase chimera via SpyTag/SpyCatcher spontaneous reaction. Enzyme Microb Technol 2018; 115:29-36. [DOI: 10.1016/j.enzmictec.2018.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/01/2023]
|
4
|
Shakya AK, Nandakumar KS. An update on smart biocatalysts for industrial and biomedical applications. J R Soc Interface 2018; 15:20180062. [PMID: 29491182 PMCID: PMC5832743 DOI: 10.1098/rsif.2018.0062] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
Recently, smart biocatalysts, where enzymes are conjugated to stimuli-responsive (smart) polymers, have gained significant attention. Based on the presence or absence of external stimuli, the polymer attached to the enzyme changes its conformation to protect the enzyme from the external environment and regulate the enzyme activity, thus acting as a molecular switch. Owing to this behaviour, smart biocatalysts can be separated easily from a reaction mixture and re-used several times. Several such smart polymer-based biocatalysts have been developed for industrial and biomedical applications. In addition, they have been used in biosensors, biometrics and nano-electronic devices. This review article covers recent advances in developing different kinds of stimuli-responsive enzyme bioconjugates, including conjugation strategies, and their applications.
Collapse
Affiliation(s)
| | - Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
|
6
|
Yang D, Liu H, Shi J, Wang X, Zhang S, Zou H, Jiang Z. Enhancing 6-APA Productivity and Operational Stability of Penicillin G Acylase via Rapid Surface Capping on Commercial Resins. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Hua Liu
- Collaborative
Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jiafu Shi
- Collaborative
Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Key
Laboratory of Biomass-based Oil and Gas (Tianjin University), China Petroleum and Chemical Industry Federation, Tianjin 300072, China
| | - Xueyan Wang
- Collaborative
Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Shaohua Zhang
- Collaborative
Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongjian Zou
- Collaborative
Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Collaborative
Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
7
|
Visser F, Müller B, Rose J, Prüfer D, Noll GA. Forizymes - functionalised artificial forisomes as a platform for the production and immobilisation of single enzymes and multi-enzyme complexes. Sci Rep 2016; 6:30839. [PMID: 27502156 PMCID: PMC4977538 DOI: 10.1038/srep30839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/11/2016] [Indexed: 01/27/2023] Open
Abstract
The immobilisation of enzymes plays an important role in many applications, including biosensors that require enzyme activity, stability and recyclability in order to function efficiently. Here we show that forisomes (plant-derived mechanoproteins) can be functionalised with enzymes by translational fusion, leading to the assembly of structures designated as forizymes. When forizymes are expressed in the yeast Saccharomyces cerevisiae, the enzymes are immobilised by the self-assembly of forisome subunits to form well-structured protein bodies. We used glucose-6-phosphate dehydrogenase (G6PDH) and hexokinase 2 (HXK2) as model enzymes for the one-step production and purification of catalytically active forizymes. These structures retain the typical stimulus-response reaction of the forisome and the enzyme remains active even after multiple assay cycles, which we demonstrated using G6PDH forizymes as an example. We also achieved the co-incorporation of both HXK2 and G6PDH in a single forizyme, facilitating a two-step reaction cascade that was 30% faster than the coupled reaction using the corresponding enzymes on different forizymes or in solution. Our novel forizyme immobilisation technique therefore not only combines the sensory properties of forisome proteins with the catalytic properties of enzymes but also allows the development of multi-enzyme complexes for incorporation into technical devices.
Collapse
Affiliation(s)
- Franziska Visser
- University of Münster, Institute of Plant Biology and Biotechnology, Münster, 48143, Germany
| | - Boje Müller
- University of Münster, Institute of Plant Biology and Biotechnology, Münster, 48143, Germany
| | - Judith Rose
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, 48143, Germany
| | - Dirk Prüfer
- University of Münster, Institute of Plant Biology and Biotechnology, Münster, 48143, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, 48143, Germany
| | - Gundula A Noll
- University of Münster, Institute of Plant Biology and Biotechnology, Münster, 48143, Germany
| |
Collapse
|
8
|
Katz E. Modified Electrodes and Electrochemical Systems Switchable by Temperature Changes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Evgeny Katz
- Department of Chemistry and Biomolecular Science; Clarkson University; Potsdam NY 13699-5810 USA
| |
Collapse
|
9
|
Das A, Theato P. Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chem Rev 2015; 116:1434-95. [DOI: 10.1021/acs.chemrev.5b00291] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindita Das
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute
for Technical and
Macromolecular Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| |
Collapse
|
10
|
Ramanathan M, Muthuramalingam R, Lakshmanan R. The Mathematical Theory of Diffusion and Reaction in Enzymes Immoblized Artificial Membrane. The Theory of the Non-Steady State. J Membr Biol 2015; 248:1127-35. [PMID: 26265446 DOI: 10.1007/s00232-015-9829-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
In this paper, mathematical model pertaining to the decomposition of enzyme-substrate complex in an artificial membrane is discussed. Here the transport through liquid membrane phases is considered. The model involves the system of non-linear reaction diffusion equations. The non-linear terms in this model are related to Michaelis-Menten reaction scheme. Approximate analytical expressions for the concentrations of substrate and product have been derived by solving the system of non-linear reaction diffusion equations using new approach of homotopy perturbation method for all values of Michaelis-Menten constant, diffusion coefficient, and rate constant. Approximate flux expression for substrate and product for non-steady-state conditions are also reported. A comparison of the analytical approximation and numerical simulation is also presented. The results obtained in this work are valid for the entire solution domain.
Collapse
Affiliation(s)
- Malinidevi Ramanathan
- Department of Mathematics, The Standard Fireworks Rajaratnam College for Women, Sivakasi, Tamil Nadu, 626 123, India.
| | - Rasi Muthuramalingam
- Department of Mathematics, Sethu Institute of Technology, Kariapatti, Tamil Nadu, 626 115, India.
| | - Rajendran Lakshmanan
- Department of Mathematics, Sethu Institute of Technology, Kariapatti, Tamil Nadu, 626 115, India.
| |
Collapse
|
11
|
Palai T, Kumar A, Bhattacharya PK. Kinetic studies and model development for the formation of galacto-oligosaccharides from lactose using synthesized thermo-responsive bioconjugate. Enzyme Microb Technol 2015; 70:42-9. [DOI: 10.1016/j.enzmictec.2014.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/04/2014] [Accepted: 12/20/2014] [Indexed: 01/13/2023]
|
12
|
Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. NATURE MATERIALS 2015; 14:143-59. [PMID: 25401924 DOI: 10.1038/nmat4106] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The chemical structure and function of biomacromolecules has evolved to fill many essential roles in biological systems. More specifically, proteins, peptides, nucleic acids and polysaccharides serve as vital structural components, and mediate chemical transformations and energy/information storage processes required to sustain life. In many cases, the properties and applications of biological macromolecules can be further expanded by attaching synthetic macromolecules. The modification of biomacromolecules by attaching a polymer that changes its properties in response to environmental variations, thus affecting the properties of the biomacromolecule, has led to the emergence of a new family of polymeric biomaterials. Here, we summarize techniques for conjugating responsive polymers to biomacromolecules and highlight applications of these bioconjugates reported so far. In doing so, we aim to show how advances in synthetic tools could lead to rapid expansion in the variety and uses of responsive bioconjugates.
Collapse
Affiliation(s)
- Isidro Cobo
- Key Centre for Polymers &Colloids, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ming Li
- Tyco Fire Protection Products, Mansfield, Texas 76063, USA
| | - Brent S Sumerlin
- George &Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science &Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Sébastien Perrier
- 1] Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK [2] Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Basak S, Punetha VD, Bisht G, Bisht SS, Sahoo NG, Cho JW. Recent Trends of Polymer-Protein Conjugate Application in Biocatalysis: A Review. POLYM REV 2015. [DOI: 10.1080/15583724.2014.971371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Obermeyer AC, Olsen BD. Synthesis and Application of Protein-Containing Block Copolymers. ACS Macro Lett 2015; 4:101-110. [PMID: 35596389 DOI: 10.1021/mz500732e] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins possess an impressive array of functionality ranging from catalytic activity to selective binding and mechanical strength, making them highly attractive for materials engineering. Conjugation of synthetic polymers to proteins has the potential to improve the physical properties of the protein as well as provide functionality not typically found in native proteins, such as stimuli-responsive behavior and the programmable ability to self-assemble. This viewpoint discusses the design of protein-polymer conjugates, an important class of block copolymers. Use of these hybrid molecules in biological and catalytic applications is highlighted, and the ability of the polymer to direct the solution and solid-state self-assembly of the hybrid block copolymers is reviewed. Future challenges in polymer and material science that will enable these hybrid molecules to reach their potential as protein-based materials are outlined.
Collapse
Affiliation(s)
- Allie C. Obermeyer
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Palai T, Kumar A, Bhattacharya PK. Synthesis and characterization of thermo-responsive poly-N-isopropylacrylamide bioconjugates for application in the formation of galacto-oligosaccharides. Enzyme Microb Technol 2014; 55:40-9. [DOI: 10.1016/j.enzmictec.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
16
|
Kudina O, Zakharchenko A, Trotsenko O, Tokarev A, Ionov L, Stoychev G, Puretskiy N, Pryor SW, Voronov A, Minko S. Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Kudina O, Zakharchenko A, Trotsenko O, Tokarev A, Ionov L, Stoychev G, Puretskiy N, Pryor SW, Voronov A, Minko S. Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. Angew Chem Int Ed Engl 2013; 53:483-7. [DOI: 10.1002/anie.201306831] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Indexed: 11/06/2022]
|
18
|
Sheldon RA, van Pelt S. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 2013; 42:6223-35. [DOI: 10.1039/c3cs60075k] [Citation(s) in RCA: 1764] [Impact Index Per Article: 160.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Affiliation(s)
| | - Man Bock Gu
- College of Life Sciences and Biotechnology; Korea University; Seoul; Republic of Korea
| |
Collapse
|
20
|
Burova TV, Grinberg NV, Dubovik AS, Zhang G, Grinberg VY. Interpolyelectrolyte complexes of soybean peroxidase with thermoresponsive copolymers. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12060090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhang J, Riskin M, Tel-Vered R, Tian H, Willner I. Photochemical Switching of the Phase-Transition Temperatures of p-NIPAM-Pt Nanoparticles Thermosensitive Polymer Composites Associated with Electrodes: Functional Electrodes for Switchable Electrocatalysis. Chemistry 2011; 17:11237-42. [DOI: 10.1002/chem.201100714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Indexed: 11/09/2022]
|
22
|
Synthesis and characterization of thermo-responsive poly(N-isopropylacrylamide)-bovine liver catalase bioconjugate. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Ali Khan A, Alzohairy MA. Recent Advances and Applications of Immobilized Enzyme Technologies: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rjbsci.2010.565.575] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
|
25
|
Raghava S, Mondal K, Gupta MN, Pareek P, Kuckling D. Preparation and Properties of Thermoresponsive Bioconjugates of Trypsin. ACTA ACUST UNITED AC 2009; 34:323-36. [PMID: 16809133 DOI: 10.1080/10731190600683902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Covalent attachment of enzymes and other proteins to the smart polymer, poly(N-isopropylacrylamide) [poly (NIPAAm)], has been widely used as a method for the preparation of thermosensitive protein conjugates. In the present study, reversible soluble-insoluble polymer-enzyme conjugates were prepared by conjugating a copolymer of NIPAAm with 5-mol % of 6-acrylaminohexanoic acid to trypsin by the carbodiimide-NHS (N-hydroxysuccinimide) coupling method. Four bioconjugates with different units of enzyme coupled to the matrix were prepared. Increased enzymatic activity in terms of high effectiveness factor (in the range of 3-5) was found in the conjugates. Kinetic parameters for the immobilized and free enzyme were determined. The Vmax/Km value of the enzyme significantly increased on immobilization by the factors in the range of 12-28. The immobilized enzyme also showed stability to autolysis at 50 degrees C.
Collapse
Affiliation(s)
- Smita Raghava
- Chemistry Department, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | | | | | | | | |
Collapse
|
26
|
PREPARATION AND PROPERTIES OF A NOVEL THERMOSENSITIVE POLYMER CONTAINING COBALT PHTHALOCYANINE. ACTA POLYM SIN 2008. [DOI: 10.3724/sp.j.1105.2008.00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Thermodynamic and kinetic stability of penicillin acylase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:736-46. [PMID: 18314015 DOI: 10.1016/j.bbapap.2008.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 11/24/2022]
Abstract
Thermal denaturation of penicillin acylase (PA) from Escherichia coli has been studied by high-sensitivity differential scanning calorimetry as a function of heating rate, pH and urea concentration. It is shown to be irreversible and kinetically controlled. Upon decrease in the heating rate from 2 to 0.1 K min(-1) the denaturation temperature of PA at pH 6.0 decreases by about 6 degrees C, while the denaturation enthalpy does not change notably giving an average value of 31.6+/-2.1 J g(-1). The denaturation temperature of PA reaches a maximum value of 64.5 degrees C at pH 6.0 and decreases by about of 15 degrees C at pH 3.0 and 9.5. The pH induced changes in the denaturation enthalpy follow changes in the denaturation temperature. Increasing the urea concentration causes a decrease in both denaturation temperature and enthalpy of PA, where denaturation temperature obeys a linear relation. The heat capacity increment of PA is not sensitive to the heating rate, nor to pH, and neither to urea. Its average value is of 0.58+/-0.02 J g(-1) K(-1). The denaturation transition of PA is approximated by the Lumry-Eyring model. The first stage of the process is assumed to be a reversible unfolding of the alpha-subunit. It activates the second stage involving dissociation of two subunits and subsequent denaturation of the beta-subunit. This stage is irreversible and kinetically controlled. Using this model the temperature, enthalpy and free energy of unfolding of the alpha-subunit, and a rate constant of the irreversible stage are determined as a function of pH and urea concentration. Structural features of the folded and unfolded conformation of the alpha-subunit as well as of the transition state of the PA denaturation in aqueous and urea solutions are discussed.
Collapse
|
28
|
Li W, Tu W, Cao D. Synthesis of thermoresponsive polymeric micelles of PNIPAAm- b-OMMA as a drug carrier for loading and controlled release of prednisolone. J Appl Polym Sci 2008. [DOI: 10.1002/app.29125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
|
30
|
Enzymatic Hydrolysis of Penicillin for 6-APA Production in Three-Liquid-Phase System. Appl Biochem Biotechnol 2007; 144:145-59. [DOI: 10.1007/s12010-007-8018-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
|
32
|
|
33
|
Preparation and characterization of a temperature-sensitive sulfobetaine polymer–trypsin conjugate. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Ivanov AE, Ekeroth J, Nilsson L, Mattiasson B, Bergenståhl B, Galaev IY. Variations of wettability and protein adsorption on solid siliceous carriers grafted with poly(N-isopropylacrylamide). J Colloid Interface Sci 2006; 296:538-44. [PMID: 16243347 DOI: 10.1016/j.jcis.2005.09.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/28/2005] [Accepted: 09/28/2005] [Indexed: 11/30/2022]
Abstract
Poly(N-isopropylacrylamide), a thermally responsive polymer, was end-grafted to mercaptopropyl derivatives of silica gel, plane glass sheets and glass capillary tubing by free radical polymerization of the monomer in 1,4-dioxane at 100 degrees C. The polymer monolayer attached to the glass carriers provided them with thermally controlled wettability registered by two independent methods: direct measurements of the water contact angle and capillary rise. The water contact angle changed from 54+/-3 degrees to 68+/-3 degrees in the temperature range from 20 to 50 degrees C. The polymer grafting to silica gel (pore diameter 100 A, particle size 5 microm) resulted in 15-30-fold reduction in protein adsorption on the carrier at 35 degrees C. Adsorption isotherms of myoglobin indicate completely different characters of the protein adsorption to silica gel and its polyNIPAM-grafted derivative. Cooling of the grafted carrier containing adsorbed myoglobin to 9 degrees C led to a partial release of the protein to the contacting solution, whereas heating of the system to 35 degrees C resulted in reversible binding of the protein. Adsorption of myoglobin on polyNIPAM-coated silica was ca. 2-fold higher at 35 than at 9 degrees C, most probably due to steric repulsion displayed by the swollen copolymer at the lower temperature.
Collapse
Affiliation(s)
- Alexander E Ivanov
- Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Mori T, Mori H, Minagawa K, Tanaka M. Multi-step precipitation separation system using mixture of thermosensitive polymers. Polym Bull (Berl) 2005. [DOI: 10.1007/s00289-005-0486-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Kallenberg A, van Rantwijk F, Sheldon R. Immobilization of Penicillin G Acylase: The Key to Optimum Performance. Adv Synth Catal 2005. [DOI: 10.1002/adsc.200505042] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|