1
|
Shambhavi HP, Makwana P, Pradeep ANR. LP30K protein manifested in hemocytes of Bombyx mori larva on Nosema bombycis infection and showed functional evolution based on glucose- binding domain. 3 Biotech 2023; 13:264. [PMID: 37408732 PMCID: PMC10317940 DOI: 10.1007/s13205-023-03685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Infection by microsporidian Nosema bombycis induced appearance of exclusive protein conjugate of 190 kDa in hemocytes of silkworm Bombyx mori L (Lepidoptera: Bombycidae). Mass spectrometry of the band showed peptides of low molecular weight 30 kDa lipoprotein (LP30K). Six accessions of LP30K identified from the hemocytes comprised 30 K lipoprotein 1, 30 K protein 1, 2, 6, 7 and 11. Two uncharacterised proteins (UCP) identified from the hemocytes showed 100% similarity with LP30K sequence, altogether showed abundance after the infection. The LP30K accessions H9J4F6 (Q00802), E5EVW2 and the UCP accessions D4QGC0 and D4QGB9 showed presence of glucose binding protein I domain "ADSDVPNDILEEQLYNSIVVADYDSAVEK" that binds with fungal glucans to inhibit infection. However glucose binding protein II domain "TLAPRTDDVLAEQLYMSVVIGEYETAIAK" is absent in LP30K accessions from hemocytes showed loss of DNA sequences encoding the domain. The accessions H9J4F5, H9B440, A7LIK7 and H9B444 showed 92% identity with B. mori LP30K protein (NP_001095198.2) however the glucose binding domain I is absent in these accessions suggesting isoform- specific restricted fungal defense activity. Phylogeny tree of the LP30K homologues showed four groups including microvitellogenin and 30 kDa proteins showing functional diversity endorsed with evolutionary diversity. LP30K accessions with glucose binding domain diverged from that without glucose binding domain exemplify co-evolution for domain- dependent functional roles like storage and immune reactions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03685-x.
Collapse
Affiliation(s)
| | - Pooja Makwana
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka 560035 India
- Biotechnology Division, Central Sericultural Research and Training Institute, Berhampore, West Bengal 742101 India
| | - Appukuttan Nair R. Pradeep
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka 560035 India
- Biotechnology Division, Central Sericultural Research and Training Institute, Berhampore, West Bengal 742101 India
| |
Collapse
|
2
|
Ryu J, Yang SJ, Son B, Lee H, Lee J, Joo J, Park HH, Park TH. Enhanced anti-cancer effect using MMP-responsive L-asparaginase fused with cell-penetrating 30Kc19 protein. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:278-285. [DOI: 10.1080/21691401.2022.2126851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jina Ryu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Sung Jae Yang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jongmin Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Lee H, Park G, Kim S, Son B, Joo J, Park HH, Park TH. Enhancement of anti-tumor activity in melanoma using arginine deiminase fused with 30Kc19α protein. Appl Microbiol Biotechnol 2022; 106:7531-7545. [PMID: 36227339 DOI: 10.1007/s00253-022-12218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
Arginine deiminase (ADI) is a microbial-derived enzyme which catalyzes the conversion of L-arginine into L-citrulline. ADI originating from Mycoplasma has been reported to present anti-tumor activity against arginine-auxotrophic tumors, including melanoma. Melanoma cells are sensitive to arginine depletion due to reduced expression of argininosuccinate synthase 1 (ASS1), a key enzyme for arginine biosynthesis. However, clinical applications of recombinant ADI for melanoma treatment present some limitations. Since recombinant ADI is not human-derived, it shows instability, proteolytic degradation, and antigenicity in human serum. In addition, there is a problem of drug resistance issue due to the intracellular expression of once-silenced ASS1. Moreover, recombinant ADI proteins are mainly expressed as inclusion body forms in Escherichia coli and require a time-consuming refolding process to turn them back into active form. Herein, we propose fusion of recombinant ADI from Mycoplasma hominis and 30Kc19α, a cell-penetrating protein which also increases stability and soluble expression of cargo proteins, to overcome these problems. We inserted matrix metalloproteinase-2 cleavable linker between ADI and 30Kc19α to increase enzyme activity in melanoma cells. Compared to ADI, ADI-LK-30Kc19α showed enhanced solubility, stability, and cell penetration. The fusion protein demonstrated selective cytotoxicity and reduced drug resistance in melanoma cells, thus would be a promising strategy for the improved efficacy in melanoma treatment. KEY POINTS: • Fusion of ADI with 30Kc19α enhances soluble expression and productivity of recombinant ADI in E. coli • 30Kc19α protects ADI from the proteolytic degradation by shielding effect, helping ADI to remain active • Intracellular delivery of ADI by 30Kc19α overcomes ADI resistance in melanoma cells by degrading intracellularly expressed arginine.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Geunhwa Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea. .,Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea.
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea. .,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Lv J, Li S, Liu Y, Sun Z, Wang D, You Z, Jiang C, Sheng Q, Nie Z. The acetylation modification regulates the stability of Bm30K-15 protein and its mechanism in silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21823. [PMID: 34075635 DOI: 10.1002/arch.21823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The 30 K proteins are the major silkworm hemolymph proteins and are involved in a variety of physiological processes, such as nutrient and energy storage, embryogenesis, immune response, and inhibition of apoptosis. The Bm30K-15 protein is one of the 30 K proteins and is abundant in the hemolymph of fifth instar silkworm larva. We previously found that the Bm30K-15 protein can be acetylated. In the present study, we found that acetylation can improve the protein stability of Bm30K-15. Further exploration confirmed that the increase in protein stability by acetylation was caused by competition between acetylation and ubiquitination. In summary, these findings aim to provide insight into the effect of acetylation modification on the protein level and stability of the Bm30K-15 and the possible molecular mechanism of its existence in silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Jiao Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shouliang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yue Liu
- Zhejiang Institute of Economics and Trade, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Knorr DY, Hartung D, Schneider K, Hintz L, Pies HS, Heinrich R. Locust Hemolymph Conveys Erythropoietin-Like Cytoprotection via Activation of the Cytokine Receptor CRLF3. Front Physiol 2021; 12:648245. [PMID: 33897456 PMCID: PMC8063046 DOI: 10.3389/fphys.2021.648245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The cytokine receptor-like factor 3 (CRLF3) is an evolutionary conserved class 1 cytokine receptor present in all major eumetazoan groups. Endogenous CRLF3 ligands have not been identified and the physiological responses mediated by mammalian CRLF3 are poorly characterized. Insect CRLF3 is activated by erythropoietin (Epo) and several related molecules that protect mammalian neurons from stress-induced apoptosis. However, insects neither express Epo nor “classical” Epo receptor. Cell-protective effects of insect hemolymph have been described for several species. In this study, we explored the possibility that the endogenous CRLF3 ligand is contained in locust hemolymph. PCR analyses confirmed expression of crfl3-transcripts in neurons and hemocytes of Locusta migratoria and Tribolium castaneum. Survival of locust hemocytes in primary cultures was significantly increased by supplementation of culture medium with locust hemolymph serum. Locust primary neuron cultures were also protected by locust hemolymph, though preceding exposure to fetal bovine serum changed the hemolymph dose-dependency of neuroprotection. Direct comparison of 10% hemolymph serum with recombinant human Epo in its optimal neuroprotective concentration revealed equivalent anti-apoptotic effects on hypoxia-exposed locust neurons. The same concentration of locust hemolymph serum also protected hypoxia-exposed T. castaneum neurons. This indicates that the neuroprotective factor in locust hemolymph is sufficiently conserved in insects to allow activation of neuroprotective receptors in different species. Locust hemolymph-induced neuroprotection in both L. migratoria and T. castaneum was abolished after RNAi-mediated suppression of crlf3-expression. In summary, we report the presence of a conserved endogenous cytokine in locust hemolymph that activates CRLF3 and connected anti-apoptotic processes in hemocytes and neurons. Identification and characterization of the CRLF3 ligand will promote knowledge about cytokine evolution and may unravel cell-protective agents with potential clinical application.
Collapse
Affiliation(s)
- Debbra Y Knorr
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Denise Hartung
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Kristin Schneider
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luzia Hintz
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Hanna S Pies
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Lee H, An YH, Kim TK, Ryu J, Park GK, Park MJ, Ko J, Kim H, Choi HS, Hwang NS, Park TH. Enhancement of Wound Healing Efficacy by Increasing the Stability and Skin-Penetrating Property of bFGF Using 30Kc19α-Based Fusion Protein. Adv Biol (Weinh) 2021; 5:e2000176. [PMID: 33724733 PMCID: PMC7996635 DOI: 10.1002/adbi.202000176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Indexed: 12/19/2022]
Abstract
The instability of recombinant basic fibroblast growth factor (bFGF) is a major disadvantage for its therapeutic use and means frequent applications to cells or tissues are required for sustained effects. Originating from silkworm hemolymph, 30Kc19α is a cell-penetrating protein that also has protein stabilization properties. Herein, it is investigated whether fusing 30Kc19α to bFGF can enhance the stability and skin penetration properties of bFGF, which may consequently increase its therapeutic efficacy. The fusion of 30Kc19α to bFGF protein increases protein stability, as confirmed by ELISA. 30Kc19α-bFGF also retains the biological activity of bFGF as it facilitates the migration and proliferation of fibroblasts and angiogenesis of endothelial cells. It is discovered that 30Kc19α can improve the transdermal delivery of a small molecular fluorophore through the skin of hairless mice. Importantly, it increases the accumulation of bFGF and further facilitates its translocation into the skin through follicular routes. Finally, when applied to a skin wound model in vivo, 30Kc19α-bFGF penetrates the dermis layer effectively, which promotes cell proliferation, tissue granulation, angiogenesis, and tissue remodeling. Consequently, the findings suggest that 30Kc19α improves the therapeutic functionalities of bFGF, and would be useful as a protein stabilizer and/or a delivery vehicle in therapeutic applications.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae Keun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jina Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - G Kate Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mihn Jeong Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunbum Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Xiao Y, Li LL, Bibi A, Zhang N, Chen T, Mo Y, Yue W, Miao Y. Role of Bm30kc6 gene in cell apoptosis and the silk gland degradation signaling pathway in Bombyx mori L. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21741. [PMID: 33002240 DOI: 10.1002/arch.21741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Apoptosis is a process of programmed cell death that is regulated by genes independently. The Bm30kc6 gene is a kind of small molecular lipoprotein about 30 kDa, expressed highly in the late stage of the silkworm hemolymph. Our study showed that overexpression of Bm30kc6 could decrease caspase-3 activation. Meanwhile, activation of caspase-3 increased when Bm30kc6 expression was disturbed by small interfering RNA (siRNA). Cell apoptosis was decreased when Bm30kc6 was overexpressed under UV treatment. The apoptosis rate induced by actinomycin D is similar to the trend by UV. It was inferred that Bm30kc6 has an inhibitory effect on the apoptosis of silkworm cells. The apoptosis-related genes, such as BmFadd, BmDredd, and BmDaxx were increased after overexpression of Bm30kc6 or decreased after interference of siRNA. It was speculated that there was an interactive relationship between Bm30kc6, BmDaxx, BmFadd, and BmDredd in the apoptosis signaling pathways. We investigated the transcription expression of the Bm30kc6 gene in different growth stages and tissues of the silkworm. The results showed that Bm30kc6 reached its peak in the hemolymph during the 6th to 7th days of the 5th instar, or in spinning post 24 h of the silk gland. In the silkworm BmN cells treated with caspase-3/7 inhibitor, the caspase-3 enzyme activity, and the expression levels of Bm30kc6, BmFadd, BmDredd, and BmDaxx were significantly reduced. The expression levels of Bm30kc6 increased sharply when silkworms were treated by molting hormone at Day 3 or 5 of the 5th instar. The results indicated that the expression of the Bm30kc6 gene was affected by the molting hormone and was likely to be its downstream target. In conclusion, the results suggest that the Bm30kc6 gene is involved in the regulation of the apoptotic signaling pathway and plays a role in the apoptotic process.
Collapse
Affiliation(s)
- Ying Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lei-Lei Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Asma Bibi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ning Zhang
- Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Ting Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yitao Mo
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wanfu Yue
- Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yungen Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Lee H, Kim SHL, Yoon H, Ryu J, Park HH, Hwang NS, Park TH. Intracellular Delivery of Recombinant RUNX2 Facilitated by Cell-Penetrating Protein for the Osteogenic Differentiation of hMSCs. ACS Biomater Sci Eng 2020; 6:5202-5214. [PMID: 33455270 DOI: 10.1021/acsbiomaterials.0c00827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are a commonly used cell source for cell therapy and tissue engineering because of their easy accessibility and multipotency. Runt-related transcription factor 2 (RUNX2) is a master regulator of the osteogenic commitment of hMSCs. Either recombinant plasmid delivery or viral transduction has been utilized to activate RUNX2 gene expression for effective hMSC differentiation. In this study, recombinant RUNX2 fused with cell-penetrating 30Kc19α protein (30Kc19α-RUNX2) was delivered into hMSCs for osteogenic commitment. Fusion of recombinant RUNX2 with 30Kc19α resulted in successful delivery of the protein into cells and enhanced soluble expression of the protein. Intracellular delivery of the 30Kc19α-RUNX2 fusion protein enhanced the osteogenic differentiation of hMSCs in vitro. 30Kc19α-RUNX2 treatment resulted in increased ALP accumulation and elevated calcium deposition. Finally, implantation of hMSCs treated with 30Kc19α-RUNX2 showed osteogenesis via cell delivery into the subcutaneous tissue and bone regeneration in a cranial defect mouse model. Therefore, we suggest that 30Kc19α-RUNX2, an osteoinductive recombinant protein, is an efficient tool for bone tissue engineering.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungro Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jina Ryu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Protein-based direct reprogramming of fibroblasts to neuronal cells using 30Kc19 protein and transcription factor Ascl1. Int J Biochem Cell Biol 2020; 121:105717. [DOI: 10.1016/j.biocel.2020.105717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
|
10
|
Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, Nielsen LK, Marcellin E, Mahler S, Martínez VS. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng 2020; 117:1187-1203. [DOI: 10.1002/bit.27269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Matthew N. Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Michael A. MacDonald
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Peter P. Gray
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Patheon Biologics—A Part of Thermo Fisher Scientific Brisbane Queensland Australia
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
- The Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Queensland Australia
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
- Metabolomics Australia The University of Queensland Brisbane Queensland Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| | - Verónica S. Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI) Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
11
|
Enhanced single-cell viability using 30Kc6 for efficient expansion of human induced pluripotent stem cells. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Abdur Razzak M, Lee JE, Park HH, Park TH, Choi SS. Exploring Binding Mechanisms between Curcumin and Silkworm 30Kc19 Protein Using Spectroscopic Analyses and Computational Simulations. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0285-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Park HH, Woo YH, Ryu J, Lee HJ, Park JH, Park TH. Enzyme delivery using protein-stabilizing and cell-penetrating 30Kc19α protein nanoparticles. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Protective effects of silkworm hemolymph extract and its fractions on UV-induced photoaging. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0588-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Ryu J, Kim H, Park HH, Lee HJ, Park JH, Rhee WJ, Park TH. Protein-stabilizing and cell-penetrating properties of α-helix domain of 30Kc19 protein. Biotechnol J 2016; 11:1443-1451. [PMID: 27440394 PMCID: PMC5132017 DOI: 10.1002/biot.201600040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022]
Abstract
The protein-stabilizing and cell-penetrating activities of Bombyx mori 30Kc19 α-helix domain (30Kc19α) are investigated. Recently, 30Kc19 protein has been studied extensively as it has both protein-stabilizing and cell-penetrating properties. However, it is unknown which part of 30Kc19 is responsible for those properties. 30Kc19 protein is composed of two distinct domains, an α-helix N-terminal domain (30Kc19α) and a β-trefoil C-terminal domain (30Kc19β). The authors construct and produce truncated forms of 30Kc19 to demonstrate their biological functions. Interestingly, 30Kc19α was shown to be responsible for both the protein-stabilizing and cell-penetrating properties of 30Kc19 protein. 30Kc19α shows even higher protein delivery activity than did whole 30Kc19 protein and has low cytotoxicity when added to cell culture medium. Therefore, based on its multifunctional properties, 30Kc19α can be developed as a novel candidate for a therapeutic protein carrier into various cells and tissues.
Collapse
Affiliation(s)
- Jina Ryu
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Hyoju Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Hee Ho Park
- The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hong Jai Lee
- The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Tai Hyun Park
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea.,The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| |
Collapse
|
16
|
Lee HJ, Park HH, Sohn Y, Ryu J, Park JH, Rhee WJ, Park TH. α-Galactosidase delivery using 30Kc19-human serum albumin nanoparticles for effective treatment of Fabry disease. Appl Microbiol Biotechnol 2016; 100:10395-10402. [PMID: 27353764 DOI: 10.1007/s00253-016-7689-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Fabry disease is a genetic lysosomal storage disease caused by deficiency of α-galactosidase, the enzyme-degrading neutral glycosphingolipid that is transported to lysosome. Glycosphingolipid accumulation by this disease causes multi-organ dysfunction and premature death of the patient. Currently, enzyme replacement therapy (ERT) using recombinant α-galactosidase is the only treatment available for Fabry disease. To maximize the efficacy of treatment, enhancement of cellular delivery and enzyme stability is a challenge in ERT using α-galactosidase. In this study, protein nanoparticles using human serum albumin (HSA) and 30Kc19 protein, originating from silkworm, were used to enhance the delivery and intracellular α-galactosidase stability. 30Kc19-HSA nanoparticles loaded with the α-galactosidase were formed by desolvation method. 30Kc19-HSA nanoparticles had a uniform spherical shape and were well dispersed in cell culture media. 30Kc19-HSA nanoparticles had negligible toxicity to human cells. The nanoparticles exhibited enhanced cellular uptake and intracellular stability of delivered α-galactosidase in human foreskin fibroblast. Additionally, they showed enhanced globotriaosylceramide degradation in Fabry patients' fibroblasts. It is expected that 30Kc19-HSA protein nanoparticles could be used as an effective tool for efficient delivery and enhanced stability of drugs.
Collapse
Affiliation(s)
- Hong Jai Lee
- The School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hee Ho Park
- The School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Youngsoo Sohn
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Jina Ryu
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Academy-ro, Yeonsu-gu, Incheon, 406-772, Republic of Korea
| | - Tai Hyun Park
- The School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea.
- Advanced Institutes of Convergence Technology, Suwon, Republic of Korea.
| |
Collapse
|
17
|
Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein. Appl Microbiol Biotechnol 2015; 100:3523-32. [DOI: 10.1007/s00253-015-7199-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/15/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
|
18
|
Shi XF, Li YN, Yi YZ, Xiao XG, Zhang ZF. Identification and Characterization of 30 K Protein Genes Found in Bombyx mori (Lepidoptera: Bombycidae) Transcriptome. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev057. [PMID: 26078299 PMCID: PMC4535582 DOI: 10.1093/jisesa/iev057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
The 30 K proteins, the major group of hemolymph proteins in the silkworm, Bombyx mori (Lepidoptera: Bombycidae), are structurally related with molecular masses of ∼30 kDa and are involved in various physiological processes, e.g., energy storage, embryonic development, and immune responses. For this report, known 30 K protein gene sequences were used as Blastn queries against sequences in the B. mori transcriptome (SilkTransDB). Twenty-nine cDNAs (Bm30K-1-29) were retrieved, including four being previously unidentified in the Lipoprotein_11 family. The genomic structures of the 29 genes were analyzed and they were mapped to their corresponding chromosomes. Furthermore, phylogenetic analysis revealed that the 29 genes encode three types of 30 K proteins. The members increased in each type is mainly a result of gene duplication with the appearance of each type preceding the differentiation of each species included in the tree. Real-Time Quantitative Polymerase Chain Reaction (Q-PCR) confirmed that the genes could be expressed, and that the three types have different temporal expression patterns. Proteins from the hemolymph was separated by SDS-PAGE, and those with molecular mass of ∼30 kDa were isolated and identified by mass spectrometry sequencing in combination with searches of various databases containing B. mori 30K protein sequences. Of the 34 proteins identified, 13 are members of the 30 K protein family, with one that had not been found in the SilkTransDB, although it had been found in the B. mori genome. Taken together, our results indicate that the 30 K protein family contains many members with various functions. Other methods will be required to find more members of the family.
Collapse
Affiliation(s)
- Xiao-Feng Shi
- The Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street Beijing, 100081, China The College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Yi-Nü Li
- The Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street Beijing, 100081, China
| | - Yong-Zhu Yi
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu Province, 212018, China
| | - Xing-Guo Xiao
- The College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Zhi-Fang Zhang
- The Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street Beijing, 100081, China
| |
Collapse
|
19
|
Park HH, Choi J, Lee HJ, Ryu J, Park JH, Rhee WJ, Park TH. Enhancement of human erythropoietin production in Chinese hamster ovary cells through supplementation of 30Kc19-30Kc6 fusion protein. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Pietrzyk AJ, Bujacz A, Łochynska M, Jaskolski M, Bujacz G. Crystal structure of Bombyx mori lipoprotein 6: comparative structural analysis of the 30-kDa lipoprotein family. PLoS One 2014; 9:e108761. [PMID: 25379889 PMCID: PMC4224370 DOI: 10.1371/journal.pone.0108761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/04/2014] [Indexed: 01/22/2023] Open
Abstract
The 30-kDa lipoprotein (LP) family of mulberry silkworm comprises major hemolymph proteins specific to the fifth instar larvae. The family consists of 46 members, 24 of which are referred to as typical 30-kDa LPs. To date, two crystal structures of 30-kDa LPs from Bombyx mori have been described (Bmlp3 and Bmlp7). Here, we present the crystal structure of Bmlp6, another 30-kDa LP member. Bmlp6 is comprised of two domains characteristic of this family, the VHS-type N-terminal domain and β-trefoil C-terminal domain. The structures of the three 30-kDa LPs have been compared and a number of differences are noted, including loop conformation, the surface electrostatic potential, and the potential binding cavities. We discuss the observed structural differences in the light of the potential different roles of the particular 30-kDa LP members in silkworm physiology.
Collapse
Affiliation(s)
- Agnieszka J. Pietrzyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Bujacz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland
| | | | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Grzegorz Bujacz
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
21
|
Park HH, Sohn Y, Yeo JW, Park JH, Lee HJ, Ryu J, Rhee WJ, Park TH. Dimerization of 30Kc19 protein in the presence of amphiphilic moiety and importance of Cys-57 during cell penetration. Biotechnol J 2014; 9:1582-93. [PMID: 25143246 PMCID: PMC4283735 DOI: 10.1002/biot.201400253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/29/2014] [Indexed: 12/19/2022]
Abstract
Recently, the recombinant 30Kc19 protein, originating from silkworm hemolymph of Bombyx mori has attracted attention due to its cell-penetrating property and potential application as a protein delivery system. However, this observation of penetration across cell membrane has raised questions concerning the interaction of the protein-lipid bilayer. Here, we report a dimerization propensity of the 30Kc19 protein in the presence of amphiphilic moieties; sodium dodecyl sulfate (SDS) or phospholipid. Native PAGE showed that the 30Kc19 monomer formed a dimer when SDS or phospholipid was present. In the glutathione-S-transferase (GST) pull-down assay, supplementation of the 30Kc19 protein to mammalian cell culture medium showed dimerization and penetration; due to phospholipids at the cell membrane, the main components of the lipid bilayer. Mutagenesis was performed, and penetration was observed by 30Kc19 C76A and not 30Kc19 C57A, which meant that the presence of cysteine at position 57 (Cys-57) is involved in dimerization of the 30Kc19 at the cell membrane during penetration. We anticipate application of the native 30Kc19 protein with high cell-penetrating efficiency for delivery of cargos to various cell types. The intracellular cargo delivery using the 30Kc19 protein is a non-virus derived (e.g. TAT) delivery method, which can open up new approaches for the delivery of therapeutics in bioindustries, such as pharma- and cosmeceuticals.
Collapse
Affiliation(s)
- Hee Ho Park
- The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Stabilization of cellular mitochondrial enzyme complex and sialyltransferase activity through supplementation of 30Kc19 protein. Appl Microbiol Biotechnol 2014; 99:2155-63. [PMID: 25193421 DOI: 10.1007/s00253-014-6045-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022]
Abstract
In previous studies, 30Kc19, a lipoprotein in silkworm hemolymph, enhanced productivity and glycosylation by expression of a 30Kc19 gene or supplementation with a recombinant 30Kc19 protein. Additionally, 30Kc19 exhibited enzyme-stabilizing and cell-penetrating abilities in vitro. In this study, we hypothesized that supplemented 30Kc19 penetrated into the cell and enhanced the stability of the cellular enzyme. We investigated this using in vitro and cellular assessments. The activity of sialyltransferase (ST) and isolated mitochondrial complex I/III was enhanced with 30Kc19 in dose-dependent manner while initial reaction rate was unchanged, suggesting that 30Kc19 enhanced enzyme stability rather than specific activity. For intracellular enzyme activity assessment, ST activity inside erythropoietin (EPO)-producing Chinese hamster ovary (CHO) cells increased more than 25 % and mitochondrial complex II activity in HeLa cells increased more than 50 % with 30Kc19. The increase in intracellular ST activity resulted in an increase in sialic acid content of glycoproteins produced in CHO cells supplemented with 30Kc19. Similarly, enhanced mitochondrial complex activity increased mitochondrial membrane potential and ATP production in HeLa cells with 30Kc19 by over 50 %. Because 30Kc19 stabilized intracellular enzymes for glycosylation and enhanced protein productivity with supplementation in the culture medium, we expect that 30Kc19 can be a valuable tool for effective industrial recombinant protein production.
Collapse
|
23
|
Identification and characterization of a novel cell-penetrating peptide of 30Kc19 protein derived from Bombyx mori. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Lee HJ, Park HH, Kim JA, Park JH, Ryu J, Choi J, Lee J, Rhee WJ, Park TH. Enzyme delivery using the 30Kc19 protein and human serum albumin nanoparticles. Biomaterials 2014; 35:1696-704. [DOI: 10.1016/j.biomaterials.2013.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
|
25
|
|
26
|
Chang MR, Lee WH, Rhee WJ, Park TH, Kim EJ. Anti-inflammatory effects of silkworm hemolymph on lipopolysaccharide-stimulated macrophages. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0108-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Two Novel 30K Proteins Overexpressed in Baculovirus System and Their Antiapoptotic Effect in Insect and Mammalian Cells. Int J Genomics 2013; 2013:323592. [PMID: 23862133 PMCID: PMC3686079 DOI: 10.1155/2013/323592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022] Open
Abstract
The 30K family of proteins is important in energy metabolism and may play a role in inhibiting cellular apoptosis in silkworms (Bombyx mori). Several 30K-family proteins have been identified. In this study, two new silkworm genes, referred to as Slp (NM 001126256) and Lsp-t (NM 001043443), were analyzed by a bioinformatics approach according to the sequences of 30K proteins previously reported in the silkworm. Both Slp and Lsp-t shared more than 41% amino acid sequence homology with the reported 30K proteins and displayed a conserved domain consistent with that of lipoprotein-11. Additionally, the cDNA sequences of both Slp and Lsp-t were obtained from the fat bodies of silkworm larvae by reverse transcription polymerase chain reaction. Both genes were expressed in BmN cells using the Bac-to-Bac system. Purified Slp and Lsp-t were added to cultured BmN and human umbilical vein endothelial cells (HUVEC) that were treated with H2O2. Both Slp and Lsp-t significantly enhanced the viability and suppressed DNA fragmentation in H2O2 treated BmN and HUVEC cells. This study suggested that Slp and Lsp-t exhibit similar biological activities as their known 30K-protein counterparts and mediate an inhibitory effect against H2O2-induced apoptosis.
Collapse
|
28
|
Chen JE, Li JY, You ZY, Liu LL, Liang JS, Ma YY, Chen M, Zhang HR, Jiang ZD, Zhong BX. Proteome Analysis of Silkworm, Bombyx mori, Larval Gonads: Characterization of Proteins Involved in Sexual Dimorphism and Gametogenesis. J Proteome Res 2013; 12:2422-38. [DOI: 10.1021/pr300920z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin-e Chen
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
- Institute
of Sericultural Research, Zhejiang Academy of Agricultural Sciences, Hangzhou
310021, PR China
| | - Jian-ying Li
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
- Institute
of Developmental and
Regenerative Biology, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Zheng-ying You
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| | - Li-li Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-she Liang
- College of Environmental and
Resource Sciences, Zhejiang University,
Hangzhou 310058, PR China
| | - Ying-ying Ma
- Zhejiang California International
NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310029, PR China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hua-rong Zhang
- Zhejiang California International
NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310029, PR China
| | - Zhen-dong Jiang
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| | - Bo-xiong Zhong
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| |
Collapse
|
29
|
Choi SS, Park TH. Antioxidant effect of protein-free silkworm hemolymph extract in mitochondrial membrane potential. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0032-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
30
|
A protein delivery system using 30Kc19 cell-penetrating protein originating from silkworm. Biomaterials 2012; 33:9127-34. [DOI: 10.1016/j.biomaterials.2012.08.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/28/2012] [Indexed: 02/03/2023]
|
31
|
Kim MY, Song HY, Kim JH, Kim BY, Park SW, Sung DK, Park HH, Jeon SH, Chung IS, Lee BH. Silkworm 30K protein inhibits ecdysone-induced apoptosis by blocking the binding of ultraspiracle to ecdysone receptor-B1 in cultured Bm5 cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:136-147. [PMID: 22890884 DOI: 10.1002/arch.21050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study investigates the mechanism through which increased 30K protein inhibits ecdysone-induced apoptosis in the Bm5 silkworm ovarian cell line. Treatment of Bm5 cells with 20-hydroxyecdysone (20E) after transfection with the pIZT/V5-His control vector triggered apoptosis, but 20E treatment did not trigger apoptosis in Bm5 cells transfected with the pIZT/30K/V5-His vector. To confirm its inhibitory effect on apoptosis, 30K protein was first purified from Escherichia coli transformed with a 30K expression vector and used to generate specific antibodies in mice. Anti-30K antiserum was used to confirm synthesis of the 30K protein in pIZT/30K/V5-His-transfected Bm5 cells and to detect 30K protein binding to the ecdysone receptor-B1 (EcR-B1). Anti-30K antiserum was used to immunoprecipitate protein complexes containing 30K from Bm5 cells transfected with pIZT/30K/V5-His vector and treated with 20E. We observed that 30K proteins bound primarily to the EcR-B1 and not to ultraspiracle (USP). Reciprocal immunoprecipitation of EcR-B1-containing complexes from Bm5 cells transfected with control pIZT/V5-His vector and treated with 20E showed that EcR-B1 bound to USP in the absence of 30K but did not bind to USP in pIZT/30K/V5-His-transfected Bm5 cells. These results demonstrate that 30K proteins block USP binding to EcR-B1 through formation of a 30K/EcR-B1 complex, resulting in inhibition of 20E-induced Bm5 cell apoptosis.
Collapse
Affiliation(s)
- Mi Young Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pietrzyk AJ, Panjikar S, Bujacz A, Mueller-Dieckmann J, Lochynska M, Jaskolski M, Bujacz G. High-resolution structure of Bombyx mori lipoprotein 7: crystallographic determination of the identity of the protein and its potential role in detoxification. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1140-51. [PMID: 22948915 DOI: 10.1107/s0907444912021555] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/11/2012] [Indexed: 11/11/2022]
Abstract
Three crystal structures of a lipoprotein (Bmlp7) of unknown function, a member of the 30 kDa lipoprotein family from mulberry silkworm (Bombyx mori L.) haemolymph, have been determined. The 1.33 Å resolution structure is an excellent example of how a precise crystallographic study can contribute to protein identification. The correct sequence of this haemolymph-isolated protein was assigned thanks to superb-quality electron-density maps. Two unexpected cadmium cations were found in this crystal structure [Bmlp7-I(Cd)] and their presence may be connected to a detoxification mechanism in this insect. For a comparison of the metal-binding sites, the crystal structure of a platinum complex (Bmlp7-Pt) was also solved at 1.94 Å resolution. The third (2.50 Å resolution) structure, of the native protein harvested in a different season (Bmlp7-II), corresponds to a different polymorph with an altered pattern of intermolecular interactions and with a total absence of cadmium ions and highlights the possible involvement of Bmlp7 in the response to environmental pollution. The N-terminal domain of Bmlp7 has a fold resembling a clockwise spiral created by six helices and can be classified as a VHS domain. The C-terminal domain is folded as a β-trefoil. The biological function of Bmlp7 is unknown, but its structural homology to sugar-binding proteins suggests that, in analogy to other 30 kDa haemolymph lipoproteins, it could play a role as an anti-apoptotic factor or function in the immune response of the insect to fungal infections.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang Z, Ma X, Zhao L, Fan L, Tan WS. Expression of anti-apoptotic 30Kc6 gene inhibiting hyperosmotic pressure-induced apoptosis in antibody-producing Chinese hamster ovary cells. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Song HY, Kim MY, Kim BY, Park SW, Sung DK, Kang PD, Park C, Jeon SH, Lee BH. Increase of 30K protein in identified motoneurons by hemolymph results in inhibition of programmed cell death in silkworm, Bombyx mori (Lepidoptera, Bombycidae). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:756-762. [PMID: 22414538 DOI: 10.1016/j.jinsphys.2012.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
This study demonstrates that a 30K protein was gradually synthesized in primary-cultured motoneurons from the accessory planta retractor (APR) of the 6th abdominal ganglion (APR6) in silkworm ventral ganglia through stimulation of hemolymph. An increase in 30K protein synthesis resulted in an inhibition of programmed cell death (PCD) of APR6 motoneurons. The 30K protein was gradually synthesized from the 30Kc6 gene of identified APR6s in day-6 4th instars to day-9 5th instar larvae, but synthesis of the 30K protein ceased in isolated APR6s of day-1 pupa, which normally begin to undergo PCD. When pupal APR6s were treated with larval hemolymph, however, the 30K protein was synthesized suggesting the existence of an anti-PCD factor in the larval hemolymph. An increase of 30K protein within the APR6s was confirmed by antiserum made against the recombinant 30K protein that originated from the APR 30Kc6 gene. Larval APR6, in which PCD was induced with 20-hydroxyecdysone (20E) added to the primary culture, exhibited some PCD characteristics of shrinkage of cell bodies, axonal fragmentation and loss of mitochondrial function. These results provide new insights on the survival or PCD of insect motoneurons through stimulation of hemolymph.
Collapse
Affiliation(s)
- Hwa Young Song
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Understanding the mechanistic roles of 30Kc6 gene in apoptosis and specific productivity in antibody-producing Chinese hamster ovary cells. Appl Microbiol Biotechnol 2012; 94:1243-53. [DOI: 10.1007/s00253-012-3899-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 12/19/2022]
|
36
|
Wang Z, Park JH, Park HH, Tan W, Park TH. Enhancement of therapeutic monoclonal antibody production in CHO cells using 30Kc6 gene. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Zhang JY, Pan MH, Sun ZY, Huang SJ, Yu ZS, Liu D, Zhao DH, Lu C. The genomic underpinnings of apoptosis in the silkworm, Bombyx mori. BMC Genomics 2010; 11:611. [PMID: 21040523 PMCID: PMC3091752 DOI: 10.1186/1471-2164-11-611] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 10/31/2010] [Indexed: 12/29/2022] Open
Abstract
Background Apoptosis is regulated in an orderly fashion by a series of genes, and has a crucial role in important physiological processes such as growth development, immunological response and so on. Recently, substantial studies have been undertaken on apoptosis in model animals including humans, fruit flies, and the nematode. However, the lack of genomic data for silkworms limits their usefulness in apoptosis studies, despite the advantages of silkworm as a representative of Lepidoptera and an effective model system. Herein we have identified apoptosis-related genes in the silkworm Bombyx mori and compared them to those from insects, mammals, and nematodes. Results From the newly assembled genome databases, a genome-wide analysis of apoptosis-related genes in Bombyx mori was performed using both nucleotide and protein Blast searches. Fifty-two apoptosis-related candidate genes were identified, including five caspase family members, two tumor necrosis factor (TNF) superfamily members, one Bcl-2 family member, four baculovirus IAP (inhibitor of apoptosis) repeat (BIR) domain family members and 1 RHG (Reaper, Hid, Grim, and Sickle; Drosophila cell death activators) family member. Moreover, we identified a new caspase family member, BmCaspase-New, two splice variants of BmDronc, and Bm3585, a mammalian TNF superfamily member homolog. Twenty-three of these apoptosis-related genes were cloned and sequenced using cDNA templates isolated from BmE-SWU1 cells. Sequence analyses revealed that these genes could have key roles in apoptosis. Conclusions Bombyx mori possesses potential apoptosis-related genes. We hypothesized that the classic intrinsic and extrinsic apoptotic pathways potentially are active in Bombyx mori. These results lay the foundation for further apoptosis-related study in Bombyx mori.
Collapse
Affiliation(s)
- Jin-Ye Zhang
- The Key Sericultural Laboratory of Agricultural Ministry, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Park JH, Park HH, Park TH. Cellular engineering for the high-level production of recombinant proteins in mammalian cell systems. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-010-0278-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Beneficial effect of 30Kc6 gene expression on production of recombinant interferon-β in serum-free suspension culture of CHO cells. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Souza APB, Peixoto CC, Maranga L, Carvalhal AV, Moraes RHP, Mendonça RMZ, Pereira CA, Carrondo MJT, Mendonça RZ. Purification and Characterization of an Anti-Apoptotic Protein Isolated from Lonomia obliqua Hemolymph. Biotechnol Prog 2008; 21:99-105. [PMID: 15903246 DOI: 10.1021/bp049831p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously it was reported that supplementation of insect cell culture with Lonomia obliqua hemolymph could extend culture longevity (Maranga et al. Biotechnol. Prog. 2003, 19, 58-63). In this work the anti-apoptotic properties of this hemolymph in Spodoptera frugiperda (Sf-9) cell culture were investigated. The presence or absence of apoptotic cells was characterized by light microscopy, flow cytometry, and agarose gel electrophoresis. Hemolymph was fractionated by several ion exchange and gel filtration chromatographic steps for identification of the compounds responsible for this effect. Fractions exhibiting a potent anti-apoptotic effect were isolated and tested in cell culture. A protein of about 51 kDa was identified, isolated, and tested for apoptosis inhibition. Addition of this purified protein to Sf-9 cultures was able to prevent apoptosis induced by nutrient depletion as well as by potent apoptosis chemical inducers such as Actinomycin D. This work confirms that the enhanced culture longevity obtained by supplementation with L. obliqua hemolymph is due to the presence of potent anti-apoptotic factors.
Collapse
Affiliation(s)
- Alvaro P B Souza
- Laboratório de Imunologia Viral, Laboratório de Parasitologia, and Laboratório de Virologia, Instituto Butantan, Av. Vital Brasil, 1500 São Paulo SP, 05503-900 Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Choi SS, Rhee WJ, Kim EJ, Park TH. Enhancement of recombinant protein production in Chinese hamster ovary cells through anti-apoptosis engineering using30Kc6 gene. Biotechnol Bioeng 2006; 95:459-67. [PMID: 16752368 DOI: 10.1002/bit.21023] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It was previously reported that silkworm hemolymph (SH) inhibits apoptosis and increases the production of recombinant human erythropoietin (EPO) in Chinese hamster ovary (CHO) cells. The apoptosis-inhibiting component in SH is a member of 30K protein family. In this study, the CHO cell line producing EPO was manipulated genetically to express the 30Kc6 gene encoding a 30K protein in the hemolymph of the silkworm, Bombyx mori. The transient expression of 30Kc6 significantly suppressed the cell death induced by serum deprivation. A stable cell line expressing 30Kc6 with an anti-apoptotic property was established. The stable expression of 30Kc6 inhibited serum-deprivation-induced apoptosis and increased the cell density and EPO titer by 5- and 10-fold, respectively. The positive effects of the 30Kc6 expression on cell viability and productivity were due to the stable maintenance of the mitochondrial activity. The 30Kc6 expression efficiently suppressed the depolarization of the mitochondrial membrane and subsequently balanced the generation/consumption of ATP. The use of the 30Kc6 gene is expected to provide a new method of host cell engineering for improving the productivity of the recombinant protein.
Collapse
Affiliation(s)
- Shin Sik Choi
- School of Chemical and Biological Engineering, Seoul National University, Gwanak-gu Sillim-dong San 56-1, Seoul 151-744, Korea
| | | | | | | |
Collapse
|
43
|
Choi SS, Rhee WJ, Park TH. Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production. Biotechnol Bioeng 2005; 91:793-800. [PMID: 15948145 DOI: 10.1002/bit.20550] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To produce erythropoietin (EPO), Chinese hamster ovary (CHO) cells were first cultured in a medium containing FBS (growth medium) and then in a serum-free medium containing sodium butyrate (production medium). Sodium butyrate increases recombinant protein production, but also induces apoptosis, which reduces cell viability and productivity. In a previous study, we found that silkworm hemolymph (SH), an insect serum, inhibits the apoptosis of insect and mammalian cells. To overcome sodium butyrate-induced apoptosis, we added SH to growth medium. This pretreatment with SH inhibited the sodium butyrate-induced apoptosis of CHO cells and consequently increased their longevity and their ability to produce EPO. As a result, the volumetric productivity of EPO was increased five-fold. SH was found to inhibit cytochrome c release from mitochondria into the cytosol, and prevented the activation of caspase-3 and other subsequent caspase reactions.
Collapse
Affiliation(s)
- Shin Sik Choi
- School of Chemical and Biological Engineering, Seoul National University, Gwanak-Gu Shilim-Dong San 56-1, Seoul 151-744, Korea
| | | | | |
Collapse
|
44
|
Increase of host cell longevity by the expression of 30K protein originating from silkworm hemolymph in an insect cell–baculovirus system. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2004.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|