1
|
Polak ML, Demšar L, Kirinčič S, Kozolc B, Polak T. Degradation of PCBs in liquid media: Effects of commercial meat starters. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Fagervold SK, Watts JEM, May HD, Sowers KR. Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. WATER RESEARCH 2011; 45:3899-3907. [PMID: 21601905 DOI: 10.1016/j.watres.2011.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 05/30/2023]
Abstract
Bioaugmentation is an attractive mechanism for reducing recalcitrant pollutants in sediments, especially if this technology could be applied in situ. To examine the potential effectiveness of a bioaugmentation strategy for PCB contamination, PCB dehalorespiring populations were inoculated into Baltimore Harbor sediment microcosms. A culture containing the two most predominant indigenous PCB dehalorespiring microorganisms and a culture containing a strain with a rare ortho dechlorination activity and a non-indigenous strain that attacks double-flanked chlorines, were inoculated into sediment microcosms amended with 2,2',3,5,5',6-hexachlorobiphenyl (PCB 151) and Aroclor 1260. Although we observed a similar reduction in the concentration of PCB 151 in all microcosms at day 300, a reduced lag time for dechlorination activity was observed only in the bioaugmented microcosms and the pattern of dechlorination was altered depending on the initial combination of microorganisms added. Dechlorination of Aroclor 1260 was most extensive when dehalorespiring microorganisms were added to sediment. Overall numbers of dehalorespiring microorganisms in both bioaugmented and non-bioaugmented microcosms increased 100- and 1000-fold with PCB 151 and Aroclor 1260, respectively, and they were sustained for the full 300 days of the experiments. The ability of bioaugmentation to redirect dechlorination reactions in the sediment microcosms indicates that the inoculated PCB dehalorespiring microorganisms effectively competed with the indigenous microbial populations and cooperatively enhanced or altered the specific pathways of PCB dechlorination. These observations indicate that bioaugmentation with PCB dehalorespiring microorganisms is a potentially tractable approach for in situ treatment of PCB impacted sites.
Collapse
Affiliation(s)
- Sonja K Fagervold
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
3
|
Field JA, Sierra-Alvarez R. Microbial transformation and degradation of polychlorinated biphenyls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 155:1-12. [PMID: 18035460 DOI: 10.1016/j.envpol.2007.10.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/14/2007] [Indexed: 05/25/2023]
Abstract
This paper reviews the potential of microorganisms to transform polychlorinated biphenyls (PCBs). In anaerobic environments, higher chlorinated biphenyls can undergo reductive dehalogenation. Meta- and para-chlorines in PCB congeners are more susceptible to dechlorination than ortho-chlorines. Anaerobes catalyzing PCB dechlorination have not been isolated in pure culture but there is strong evidence from enrichment cultures that some Dehalococcoides spp. and other microorganisms within the Chloroflexi phylum can grow by linking the oxidation of H(2) to the reductive dechlorination of PCBs. Lower chlorinated biphenyls can be co-metabolized aerobically. Some aerobes can also grow by utilizing PCB congeners containing only one or two chlorines as sole carbon/energy source. An example is the growth of Burkholderia cepacia by transformation of 4-chlorobiphenyl to chlorobenzoates. The latter compounds are susceptible to aerobic mineralization. Higher chlorinated biphenyls therefore are potentially fully biodegradable in a sequence of reductive dechlorination followed by aerobic mineralization of the lower chlorinated products.
Collapse
Affiliation(s)
- Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, PO Box 210011, Tucson, AZ 85721, USA.
| | | |
Collapse
|
4
|
Kjellerup BV, Sun X, Ghosh U, May HD, Sowers KR. Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities. Environ Microbiol 2008; 10:1296-309. [DOI: 10.1111/j.1462-2920.2007.01543.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 2008; 105:433-49. [PMID: 18558332 DOI: 10.1263/jbb.105.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/04/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Furukawa
- Depatment of Food and Bioscience, Faculty of Food and Nutrition, Beppu University, Beppu, Ohita 874-8501, Japan.
| | | |
Collapse
|
6
|
Zanaveskin LN, Aver'yanov VA. Polychlorobiphenyls: problems of the pollution of the environment and technological neutralisation methods. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1998v067n08abeh000412] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Di Toro S, Zanaroli G, Fava F. Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bioaugmentation with a non acclimated, complex source of microorganisms. Microb Cell Fact 2006; 5:11. [PMID: 16549016 PMCID: PMC1456983 DOI: 10.1186/1475-2859-5-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 03/20/2006] [Indexed: 11/10/2022] Open
Abstract
Background The biotreatability of actual-site polychlorinated biphenyl (PCB)-contaminated soils is often limited by their poor content of autochthonous pollutant-degrading microorganisms. In such cases, inoculation might be the solution for a successful bioremediation. Some pure and mixed cultures of characterized PCB degrading bacteria have been tested to this purpose. However, several failures have been recorded mostly due to the inability of inoculated microbes to compete with autochthonous microflora and to face the toxicity and the scarcity of nutrients occurring in the contaminated biotope. Complex microbial systems, such as compost or sludge, normally consisting of a large variety of robust microorganisms and essential nutrients, would have better chances to succeed in colonizing degraded contaminated soils. However, such sources of microorganisms have been poorly applied in soil bioremediation and in particular in the biotreatment of soil with PCBs. Thus, in this study the effects of Enzyveba, i.e. a consortium of non-adapted microorganisms developed from composted material, on the slurry- and solid-phase aerobic bioremediation of an actual-site, aged PCB-contaminated soil were studied. Results A slow and only partial biodegradation of low-chlorinated biphenyls, along with a moderate depletion of initial soil ecotoxicity, were observed in the not-inoculated reactors. Enzyveba significantly increased the availability and the persistence of aerobic PCB- and chlorobenzoic acid-degrading cultivable bacteria in the bioreactors, in particular during the earlier phase of treatment. It also markedly enhanced PCB-biodegradation rate and extent (from 50 to 100%) as well as the final soil detoxification, in particular under slurry-phase conditions. Taken together, data obtained suggest that Enzyveba enhanced the biotreatability of the selected soil by providing exogenous bacteria and fungi able to remove inhibitory or toxic intermediates of PCB biodegradation and/or exogenous nutrients able to sustain microorganisms in charge for PCB mineralization. Conclusion Enzyveba appears a promising agent for bioaugmenting actual-site PCB-polluted soils with a native low content of indigenous specialized microflora. This not only for its positive effects on the soil biotreatability but also for its availability on the market at a relatively low cost.
Collapse
Affiliation(s)
- Sara Di Toro
- DICASM, Faculty of Engineering, Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Giulio Zanaroli
- DICASM, Faculty of Engineering, Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Fabio Fava
- DICASM, Faculty of Engineering, Alma Mater Studiorum-University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| |
Collapse
|
8
|
Leães FL, Daniel AP, Mello GB, Battisti V, Bogusz S, Emanuelli T, Fries LLM, Costabeber I. Degradation of polychlorinated biphenyls (PCBs) by Staphylococcus xylosus in liquid media and meat mixture. Food Chem Toxicol 2006; 44:847-54. [PMID: 16387403 DOI: 10.1016/j.fct.2005.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/08/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
We investigated the growth of the meat starter Staphylococcus xylosus (10(4) cells mL(-1)) in liquid media containing 0.01 ppm of each polychlorinated biphenyls (PCBs 10, 28, 52, 138, 153, and 180) and its ability to degrade PCBs during 168 h of incubation in liquid media (10(4) cells mL(-1), 0.01 ppm of each PCB congener) and cured meat mixture (0.1% of meat starter, 1 microg g(-1) fat of each PCB congener). PCBs did not affect the growth of the starter microorganism in nutritive (brain heart infusion, BHI) or mineral salts medium (MSM) when compared to control (no PCB). S. xylosus degraded some of the PCB congeners tested. PCBs 138 and 153 were degraded both in BHI (78% and 68%, respectively; p<0.05) and in MSM (71% and 66%, respectively; p<0.05), with maximum degradation being observed within 24 h. Highly significant negative exponential relationships was observed between incubation time and concentrations of PCB 28 and 180 in BHI, as well as for PCBs 52 and 180 in MSM. In the cured meat mixture highly significant negative exponential relationship was observed between incubation time and the concentration of PCB 10. These results indicate that although S. xylosus reduced residues of various PCB congeners in liquid media, it was less effective in cured meat.
Collapse
Affiliation(s)
- F L Leães
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, CEP 97105-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kuipers B, Cullen WR, Mohn WW. Reductive dechlorination of weathered Aroclor 1260 during anaerobic biotreatment of Arctic soils. Can J Microbiol 2003; 49:9-14. [PMID: 12674343 DOI: 10.1139/w03-005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the microbial reductive dechlorination of both weathered (aged) and nonweathered (freshly added) Aroclor 1260 in aerobic soil from Resolution Island, Nunavut, Canada. Initial polychlorinated biphenyl (PCB) concentrations were 106 and 100 ppm, respectively. The aerobic soil samples were inoculated with anaerobic sediment, incubated at 30 degrees C until methanogenic, inoculated with a dechlorinating enrichment culture, and incubated a further 8 weeks. The average number of chlorine substituents per biphenyl molecule was biologically reduced from 6.6 to 5.1 and from 6.2 to 4.5 for weathered and nonweathered Aroclor 1260, respectively. Removal of hexa- and heptachlorobiphenyls (CBs), the major homolog groups present, was significantly greater for nonweathered than for weathered Aroclor 1260. Formation of dechlorination products, primarily 2,2',4,4'- and 2,2',4,6'-tetraCBs, was also significantly greater for nonweathered than for weathered Aroclor 1260. We additionally compared the dechlorination at 21 degrees C of weathered Aroclor 1260 in soils from Resolution Island and Saglek, Labrador, Canada. The average number of chlorine substituents per biphenyl molecule was biologically reduced from 6.7 to 5.1 and from 6.5 to 4.6, respectively. This study demonstrated the potential for bioremediation of aerobic soil contaminated with Aroclor 1260 and showed that weathering may limit such treatment to an extent variable among different soils.
Collapse
Affiliation(s)
- Bianca Kuipers
- Environmental Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | | | | |
Collapse
|
10
|
Kim J, Rhee GY. Reductive dechlorination of polychlorinated biphenyls as affected by sediment characteristics. CHEMOSPHERE 2001; 44:1413-1420. [PMID: 11513120 DOI: 10.1016/s0045-6535(00)00312-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of sediment sources on the selection of polychlorinated biphenyl (PCB) dechlorinating competence was investigated using sediments from two different locations, the Grasse River and Owasco Lake. These two sediments had a similar organic carbon content but different particle size distribution. The two PCB-free sediments were spiked with Aroclor 1248 and inoculated with microorganisms from the Reynolds and General Motors sites in the St. Lawrence River, which exhibited different dechlorination patterns. When each inoculum was serially transferred into fresh sediments four times (every 8-10 weeks), they still maintained the initial dechlorination patterns regardless, the source of sediments and the number of transfers, and dechlorination patterns of the two inocula in the same sediments did not converge. In a parallel approach, when the acclimated microorganisms from the Reynolds site were inoculated into fresh sediments from both sources as well as sediments enriched with organic carbon (2%, w/v), the dechlorination pattern remained unchanged after a 40-week incubation. These results suggest that the sediment characteristics or organic carbon content did not play a role in the selection of dechlorinating populations.
Collapse
Affiliation(s)
- J Kim
- School of Public Health, State University of New York at Albany, 12201-0509, USA
| | | |
Collapse
|
11
|
Abstract
Under anaerobic conditions, microbial reductive dechlorination of polychlorinated biphenyls (PCBs) occurs in soils and aquatic sediments. In contrast to dechlorination of supplemented single congeners for which frequently ortho dechlorination has been observed, reductive dechlorination mainly attacks meta and/or para chlorines of PCB mixtures in contaminated sediments, although in a few instances ortho dechlorination of PCBs has been observed. Different microorganisms appear to be responsible for different dechlorination activities and the occurrence of various dehalogenation routes. No axenic cultures of an anaerobic microorganism have been obtained so far. Most probable number determinations indicate that the addition of PCB congeners, as potential electron acceptors, stimulates the growth of PCB-dechlorinating microorganisms. A few PCB-dechlorinating enrichment cultures have been obtained and partially characterized. Temperature, pH, availability of naturally occurring or of supplemented carbon sources, and the presence or absence of H(2) or other electron donors and competing electron acceptors influence the dechlorination rate, extent and route of PCB dechlorination. We conclude from the sum of the experimental data that these factors influence apparently the composition of the active microbial community and thus the routes, the rates and the extent of the dehalogenation. The observed effects are due to the specificity of the dehalogenating bacteria which become active as well as changing interactions between the dehalogenating and non-dehalogenating bacteria. Important interactions include the induced changes in the formation and utilization of H(2) by non-dechlorinating and dechlorinating bacteria, competition for substrates and other electron donors and acceptors, and changes in the formation of acidic fermentation products by heterotrophic and autotrophic acidogenic bacteria leading to changes in the pH of the sediments.
Collapse
Affiliation(s)
- J Wiegel
- Department of Microbiology and Center for Biological Resource Recovery, University of Georgia, 215 Biological Science Building, Athens, GA, USA
| | | |
Collapse
|
12
|
Wei B, Hor T. Room-temperature hydrodebromination of 4,4′-dibromobiphenyl catalyzed by 1,1′-bis(diphenylphosphino)ferrocene complexes of palladium. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1381-1169(97)00274-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|