1
|
Davydov RM, Jennings G, Hoffman BM, Podust LM. Short-lived neutral FMN and FAD semiquinones are transient intermediates in cryo-reduced yeast NADPH-cytochrome P450 reductase. Arch Biochem Biophys 2019; 673:108080. [PMID: 31445894 DOI: 10.1016/j.abb.2019.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 11/28/2022]
Abstract
The electron configuration of flavin cofactors, FMN and FAD, is a critical factor governing the reactivity of NADPH-cytochrome P450 reductase (CPR). The current view of electron transfer by the mammalian CPR, based on equilibrium redox potentials of the flavin cofactors, is that the two electron-reduced FMN hydroquinone (FMNH2), rather than one electron-reduced FMN semiquinone, serves as electron donor to the terminal protein acceptors. However, kinetic and thermodynamic studies on the CPR species originated from different organisms have shown that redox potentials measured at distinct electron transfer steps differ from redox potentials determined by equilibrium titration. Collectively, previous observations suggest that the short-lived transient semiquinone species may carry electrons in diflavin reductases. In this work, we have investigated spectroscopic properties of the CPR-bound FAD and FMN reduced at 77 K by radiolytically-generated thermalized electrons. Using UV-vis spectroscopy, we demonstrated that upon cryo-reduction of oxidized yeast CPR (yCPR) containing an equimolar ratio of both FAD and FMN, or FAD alone, neutral semiquinones were trapped at 77 K. During annealing at the elevated temperatures, unstable short-lived neutral semiquinones relaxed to spectroscopically distinct air-stable neutral semiquinones. This transition was independent of pH within the 6.0-10.7 range. Our data on yeast CPR are in line with the previous observations of others that the flavin short-lived transient semiquinone intermediates may have a role in the electron transfer by CPR at physiological conditions.
Collapse
Affiliation(s)
- Roman M Davydov
- The Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Gareth Jennings
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Brian M Hoffman
- The Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Larissa M Podust
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Shcherbinin DS, Gnedenko OV, Khmeleva SA, Usanov SA, Gilep AA, Yantsevich AV, Shkel TV, Yushkevich IV, Radko SP, Ivanov AS, Veselovsky AV, Archakov AI. Computer-aided design of aptamers for cytochrome p450. J Struct Biol 2015; 191:112-9. [PMID: 26166326 DOI: 10.1016/j.jsb.2015.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/25/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with high affinity and specificity. Usually, they are experimentally selected using the SELEX method. Here, we describe an approach toward the in silico selection of aptamers for proteins. This approach involves three steps: finding a potential binding site, designing the recognition and structural parts of the aptamers and evaluating the experimental affinity. Using this approach, a set of 15-mer aptamers for cytochrome P450 51A1 was designed using docking and molecular dynamics simulation. An experimental evaluation of the synthesized aptamers using SPR biosensor showed that these aptamers interact with cytochrome P450 51A1 with Kd values in the range of 10(-6)-10(-7) M.
Collapse
Affiliation(s)
- Dmitrii S Shcherbinin
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia.
| | - Oksana V Gnedenko
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| | - Svetlana A Khmeleva
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Andrei A Gilep
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Aliaksei V Yantsevich
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Tatsiana V Shkel
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Ivan V Yushkevich
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Kuprevich str., 5/2, Minsk 220141, Belarus
| | - Sergey P Radko
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| | - Alexis S Ivanov
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| | | | - Alexander I Archakov
- Institute of Biomedical Chemistry RAMS, Pogodinskaya str., 10, Moscow 119121, Russia
| |
Collapse
|
3
|
Gnedenko OV, Kaluzhskiy LA, Molnar AA, Yantsevich AV, Mukha DV, Gilep AA, Usanov SA, Stonik VA, Ivanov AS, Lisitsa AV, Archakov AI. The SPR-based biosensor test system for analysis of small compounds interaction with human cytochrome P450 51A1 (CYP51A1). BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2013. [DOI: 10.1134/s1990750813030049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Gnedenko O, Kaluzhskiy L, Molnar A, Yantsevich A, Mukha D, Gilep A, Usanov S, Stonik V, Ivanov A, Lisitsa A, Archakov A. SPR-biosensor assay for analysis of small compounds interaction with human cytochrome P450 51A1 (CYP51A1). ACTA ACUST UNITED AC 2013; 59:388-98. [DOI: 10.18097/pbmc20135904388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The SPR assay for human cytochrome P450 51A1's (CYP51A1) ligand screening was developed. Assay has been validated with known azole inhibitors of cytochrome P450s. The studied azoles selectively interacted with human cytochrome P450 51A1, which showed the highest affinity towards ketoconazole. The efficiency of the SPR assay was showed with 19 steroid and triterpene compounds, which were not investigated as potential ligands of CYP51A1.
Collapse
Affiliation(s)
- O.V. Gnedenko
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences
| | - L.A. Kaluzhskiy
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences
| | - A.A. Molnar
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences
| | | | | | | | | | - V.A. Stonik
- Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences
| | - A.S. Ivanov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences
| | - A.V. Lisitsa
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences
| | - A.I. Archakov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences
| |
Collapse
|
5
|
Abstract
Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases.
Collapse
Affiliation(s)
- Louise Aigrain
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; E-Mail:
| | - Fataneh Fatemi
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Oriane Frances
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Gilles Truan
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-567048813; Fax: +33-567048814
| |
Collapse
|
6
|
Wadsäter M, Laursen T, Singha A, Hatzakis NS, Stamou D, Barker R, Mortensen K, Feidenhans'l R, Møller BL, Cárdenas M. Monitoring shifts in the conformation equilibrium of the membrane protein cytochrome P450 reductase (POR) in nanodiscs. J Biol Chem 2012; 287:34596-603. [PMID: 22891242 PMCID: PMC3464565 DOI: 10.1074/jbc.m112.400085] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/09/2012] [Indexed: 11/06/2022] Open
Abstract
Nanodiscs are self-assembled ∼50-nm(2) patches of lipid bilayers stabilized by amphipathic belt proteins. We demonstrate that a well ordered dense film of nanodiscs serves for non-destructive, label-free studies of isolated membrane proteins in a native like environment using neutron reflectometry (NR). This method exceeds studies of membrane proteins in vesicle or supported lipid bilayer because membrane proteins can be selectively adsorbed with controlled orientation. As a proof of concept, the mechanism of action of the membrane-anchored cytochrome P450 reductase (POR) is studied here. This enzyme is responsible for catalyzing the transfer of electrons from NADPH to cytochrome P450s and thus is a key enzyme in the biosynthesis of numerous primary and secondary metabolites in plants. Neutron reflectometry shows a coexistence of two different POR conformations, a compact and an extended form with a thickness of 44 and 79 Å, respectively. Upon complete reduction by NADPH, the conformational equilibrium shifts toward the compact form protecting the reduced FMN cofactor from engaging in unspecific electron transfer reaction.
Collapse
Affiliation(s)
- Maria Wadsäter
- From the Nano-Science Center and Institute of Chemistry, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tomas Laursen
- the Plant Biochemistry Laboratory, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Aparajita Singha
- the Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nikos S. Hatzakis
- the Bio-Nanotechnology Laboratory, Department of Chemistry, Department of Neuroscience and Pharmacology, Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios Stamou
- the Bio-Nanotechnology Laboratory, Department of Chemistry, Department of Neuroscience and Pharmacology, Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Robert Barker
- the Institut Laue Langevin, 6 rue Jules Horowitz – BP 156, 38042 Grenoble Cedex 9, France, and
| | - Kell Mortensen
- the Nano-Science Center and Niels Bohr Institute, Universitetsparken 5, 2200 Copenhagen, Denmark
| | - Robert Feidenhans'l
- the Nano-Science Center and Niels Bohr Institute, Universitetsparken 5, 2200 Copenhagen, Denmark
| | - Birger Lindberg Møller
- the Plant Biochemistry Laboratory, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marité Cárdenas
- From the Nano-Science Center and Institute of Chemistry, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|