1
|
Sarma S, Catella CM, San Pedro ET, Xiao X, Durmusoglu D, Menegatti S, Crook N, Magness ST, Hall CK. Design of 8-mer peptides that block Clostridioides difficile toxin A in intestinal cells. Commun Biol 2023; 6:878. [PMID: 37634026 PMCID: PMC10460389 DOI: 10.1038/s42003-023-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Infections by Clostridioides difficile, a bacterium that targets the large intestine (colon), impact a large number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can be delivered to the gut and inhibit the biocatalytic activity of these toxins represent a promising therapeutic strategy to prevent and treat C. diff. infection. We describe an approach that combines a Peptide Binding Design (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in colon epithelial cells. One peptide, SA1, is found to block TcdA toxicity in primary-derived human colon (large intestinal) epithelial cells. SA1 binds TcdA with a KD of 56.1 ± 29.8 nM as measured by surface plasmon resonance (SPR).
Collapse
Affiliation(s)
- Sudeep Sarma
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Carly M Catella
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Ellyce T San Pedro
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Xingqing Xiao
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Deniz Durmusoglu
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Stefano Menegatti
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, 27695, USA
| | - Nathan Crook
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Carol K Hall
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
2
|
Gao X, Zhao J, Chen W, Zhai Q. Food and drug design for gut microbiota-directed regulation: Current experimental landscape and future innovation. Pharmacol Res 2023; 194:106867. [PMID: 37499703 DOI: 10.1016/j.phrs.2023.106867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Most diets and medications enhance host health via microbiota-dependent ways, but it is in the present situation of untargeted regulation. Non-targeted regulation may lead to the ineffectiveness of dietary supplements or drug treatment. Microbiota-directed food, aiming to improve diseases by targeting specific microbes without affecting other bacteria, have been proposed to deal with this problem. However, there is currently no universally applicable method to explore such foods or drugs. In this review, thirty studies on recent efforts in microbiota directed diets and medications are summarized from various databases. The methods used to find new foods and medications are primarily divided into four groups depending on the experimental models: in vivo and in vitro, as well as predictions based on bioinformatics. We also discuss their implementation, interpretation, and respective limitations, and describe the present situation. We further put forward a framework for microbiota-directed foods and medicine according to above methods and other microbiome manipulation, which will spur precision medicine.
Collapse
Affiliation(s)
- Xiaoxiang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Sarma S, Catella CM, Pedro ETS, Xiao X, Durmusoglu D, Menegatti S, Crook N, Magness ST, Hall CK. Design of 8-mer Peptides that Block Clostridioides difficile Toxin A in Intestinal Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523493. [PMID: 36711911 PMCID: PMC9882058 DOI: 10.1101/2023.01.10.523493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Clostridioides difficile ( C. diff .) is a bacterium that causes severe diarrhea and inflammation of the colon. The pathogenicity of C. diff . infection is derived from two major toxins, toxins A (TcdA) and B (TcdB). Peptide inhibitors that can be delivered to the gut to inactivate these toxins are an attractive therapeutic strategy. In this work, we present a new approach that combines a pep tide b inding d esign algorithm (PepBD), molecular-level simulations, rapid screening of candidate peptides for toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block the glucosyltransferase activity of TcdA by targeting its glucosyltransferase domain (GTD). Using PepBD and explicit-solvent molecular dynamics simulations, we identified seven candidate peptides, SA1-SA7. These peptides were selected for specific TcdA GTD binding through a custom solid-phase peptide screening system, which eliminated the weaker inhibitors SA5-SA7. The efficacies of SA1-SA4 were then tested using a trans-epithelial electrical resistance (TEER) assay on monolayers of the human gut epithelial culture model. One peptide, SA1, was found to block TcdA toxicity in primary-derived human jejunum (small intestinal) and colon (large intestinal) epithelial cells. SA1 bound TcdA with a K D of 56.1 ± 29.8 nM as measured by surface plasmon resonance (SPR). Significance Statement Infections by Clostridioides difficile , a bacterium that targets the large intestine (colon), impact a significant number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can inhibit the biocatalytic activity of these toxins represent a promising strategy to prevent and treat C. diff . infection. We describe an approach that combines a Peptide B inding D esign (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in small intestinal and colon epithelial cells. Importantly, our designed peptide, SA1, bound toxin A with nanomolar affinity and blocked toxicity in colon cells.
Collapse
Affiliation(s)
- Sudeep Sarma
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Carly M. Catella
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Ellyce T. San Pedro
- Department of Medicine, University of North Carolina at Chapel Hill, NC 27514, United States
| | - Xingqing Xiao
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Deniz Durmusoglu
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Stefano Menegatti
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Nathan Crook
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, NC 27514, United States
| | - Carol K. Hall
- Department of Chemical Engineering, North Carolina State University, Raleigh NC 27695-7905, USA
| |
Collapse
|
4
|
Xiao X, Sarma S, Menegatti S, Crook N, Magness ST, Hall CK. In Silico Identification and Experimental Validation of Peptide-Based Inhibitors Targeting Clostridium difficile Toxin A. ACS Chem Biol 2022; 17:118-128. [PMID: 34965093 DOI: 10.1021/acschembio.1c00743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile infection is mediated by two major exotoxins: toxins A (TcdA) and B (TcdB). Inhibiting the biocatalytic activities of these toxins with targeted peptide-based drugs can reduce the risk of C. difficile infection. In this work, we used a computational strategy that integrates a peptide binding design (PepBD) algorithm and explicit-solvent atomistic molecular dynamics simulation to determine promising toxin A-targeting peptides that can recognize and bind to the catalytic site of the TcdA glucosyltransferase domain (GTD). Our simulation results revealed that two out of three in silico discovered peptides, viz. the neutralizing peptides A (NPA) and B (NPB), exhibit lower binding free energies when bound to the TcdA GTD than the phage-display discovered peptide, viz. the reference peptide (RP). These peptides may serve as potential inhibitors against C. difficile infection. The efficacy of the peptides RP, NPA, and NPB to neutralize the cytopathic effects of TcdA was tested in vitro in human jejunum cells. Both phage-display peptide RP and in silico peptide NPA were found to exhibit strong toxin-neutralizing properties, thereby preventing the TcdA toxicity. However, the in silico peptide NPB demonstrates a relatively low efficacy against TcdA.
Collapse
Affiliation(s)
- Xingqing Xiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sudeep Sarma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Design and in situ biosynthesis of precision therapies against gastrointestinal pathogens. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Bacon K, Blain A, Burroughs M, McArthur N, Rao BM, Menegatti S. Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display. ACS COMBINATORIAL SCIENCE 2020; 22:519-532. [PMID: 32786323 DOI: 10.1021/acscombsci.0c00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have gained increasing attention for use in therapeutic and biotechnology applications. We describe the efficient isolation and characterization of cyclic peptide binders from genetically encoded combinatorial libraries using yeast surface display. Here, peptide cyclization is achieved by disuccinimidyl glutarate-mediated cross-linking of amine groups within a linear peptide sequence that is expressed as a yeast cell surface fusion. Using this approach, we first screened a library of cyclic heptapeptides using magnetic selection, followed by fluorescence activated cell sorting (FACS) to isolate binders for a model target (lysozyme) with low micromolar binding affinity (KD ∼ 1.2-3.7 μM). The isolated peptides bind lysozyme selectively and only when cyclized. Importantly, we showed that yeast surface displayed cyclic peptides can be used to efficiently obtain quantitative estimates of binding affinity, circumventing the need for chemical synthesis of the selected peptides. Subsequently, to demonstrate broader applicability of our approach, we isolated cyclic heptapeptides that bind human interleukin-17 (IL-17) using yeast-displayed IL-17 as a target for magnetic selection, followed by FACS using recombinant IL-17. Molecular docking simulations and follow-up experimental analyses identified a candidate cyclic peptide that likely binds IL-17 in its receptor binding region with moderate apparent affinity (KD ∼ 300 nM). Taken together, our results show that yeast surface display can be used to efficiently isolate and characterize cyclic peptides generated by chemical modification from combinatorial libraries.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Letourneau JJ, Stroke IL, Hilbert DW, Cole AG, Sturzenbecker LJ, Marinelli BA, Quintero JG, Sabalski J, Li Y, Ma L, Pechik I, Stein PD, Webb ML. Synthesis and SAR studies of novel benzodiazepinedione-based inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB). Bioorg Med Chem Lett 2018; 28:3601-3605. [DOI: 10.1016/j.bmcl.2018.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 11/28/2022]
|
8
|
Spaulding CN, Klein RD, Schreiber HL, Janetka JW, Hultgren SJ. Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes 2018; 4:4. [PMID: 29507749 PMCID: PMC5829159 DOI: 10.1038/s41522-018-0048-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 01/15/2023] Open
Abstract
The emergence of drug-resistant pathogens has led to a decline in the efficacy of traditional antimicrobial therapy. The rise in resistance has been driven by widespread use, and in some cases misuse, of antibacterial agents in treating a variety of infections. A growing body of research has begun to elucidate the harmful effects of broad-spectrum antibiotic therapy on the beneficial host microbiota. To combat these threats, increasing effort is being directed toward the development of precision antimicrobial therapeutics that target key virulence determinants of specific pathogens while leaving the remainder of the host microbiota undisturbed. This includes the recent development of small molecules termed “mannosides” that specifically target uropathogenic E. coli (UPEC). Mannosides are glycomimetics of the natural mannosylated host receptor for type 1 pili, extracellular appendages that promotes UPEC colonization in the intestine. Type 1 pili are also critical for colonization and infection in the bladder. In both cases, mannosides act as molecular decoys which potently prevent bacteria from binding to host tissues. In mice, oral treatment with mannosides simultaneously clears active bladder infection and removes intestinal UPEC while leaving the gut microbiota structure relatively unchanged. Similar treatment strategies successfully target other pathogens, like adherent-invasive E. coli (AIEC), an organism associated with Crohn’s disease (CD), in mouse models. While not without its challenges, antibiotic-sparing therapeutic approaches hold great promise in a variety of disease systems, including UTI, CD, otitis media (OM), and others. In this perspective we highlight the benefits, progress, and roadblocks to the development of precision antimicrobial therapeutics.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- 1Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Roger D Klein
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Henry L Schreiber
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - James W Janetka
- 3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA.,4Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Scott J Hultgren
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
9
|
Letourneau JJ, Stroke IL, Hilbert DW, Sturzenbecker LJ, Marinelli BA, Quintero JG, Sabalski J, Ma L, Diller DJ, Stein PD, Webb ML. Identification and initial optimization of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB). Bioorg Med Chem Lett 2018; 28:756-761. [PMID: 29331267 DOI: 10.1016/j.bmcl.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
The discovery, synthesis and preliminary structure-activity relationship (SAR) of a novel class of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB) is described. A high throughput screening (HTS) campaign resulted in the identification of moderately active screening hits 1-5 the most potent of which was compound 1 (IC50 = 0.77 µM). In silico docking of an early analog offered suggestions for structural modification which resulted in the design and synthesis of highly potent analogs 13j(IC50 = 1 nM) and 13 l(IC50 = 7 nM) which were chosen as leads for further optimization.
Collapse
Affiliation(s)
- Jeffrey J Letourneau
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA.
| | - Ilana L Stroke
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - David W Hilbert
- Femeris Women's Health Research Center, Genesis Biotechnology Group, 2000 Waterview Drive, Hamilton, NJ 08691, USA
| | - Laurie J Sturzenbecker
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Brett A Marinelli
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Jorge G Quintero
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Joan Sabalski
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Linh Ma
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - David J Diller
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Philip D Stein
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| | - Maria L Webb
- Venenum Biodesign, Genesis Biotechnology Group, 8 Black Forest Road, Hamilton, NJ 08691, USA
| |
Collapse
|
10
|
Peptide Inhibitors Targeting the Neisseria gonorrhoeae Pivotal Anaerobic Respiration Factor AniA. Antimicrob Agents Chemother 2017; 61:AAC.00186-17. [PMID: 28584144 DOI: 10.1128/aac.00186-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/27/2017] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is highly prevalent worldwide and has a major impact on reproductive and neonatal health. The superbug status of N. gonorrhoeae necessitates the development of drugs with different mechanisms of action. Here, we focused on targeting the nitrite reductase AniA, which is a pivotal component of N. gonorrhoeae anaerobic respiration and biofilm formation. Our studies showed that gonococci expressing AniA containing the altered catalytic residues D137A and H280A failed to grow under anaerobic conditions, demonstrating that the nitrite reductase function is essential. To facilitate the pharmacological targeting of AniA, new crystal structures of AniA were refined to 1.90-Å and 2.35-Å resolutions, and a phage display approach with libraries expressing randomized linear dodecameric peptides or heptameric peptides flanked by a pair of cysteine residues was utilized. Biopanning experiments led to the identification of 29 unique peptides, with 1 of them, C7-3, being identified multiple times. Evaluation of their ability to interact with AniA using enzyme-linked immunosorbent assay and computational docking studies revealed that C7-3 was the most promising inhibitor, binding near the type 2 copper site of the enzyme, which is responsible for interaction with nitrite. Subsequent enzymatic assays and biolayer interferometry with a synthetic C7-3 and its derivatives, C7-3m1 and C7-3m2, demonstrated potent inhibition of AniA. Finally, the MIC50 value of C7-3 and C7-3m2 against anaerobically grown N. gonorrhoeae was 0.6 mM. We present the first peptide inhibitors of AniA, an enzyme that should be further exploited for antigonococcal drug development.
Collapse
|
11
|
Zade HM, Keshavarz R, Shekarabi HSZ, Bakhshinejad B. Biased selection of propagation-related TUPs from phage display peptide libraries. Amino Acids 2017; 49:1293-1308. [DOI: 10.1007/s00726-017-2452-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
12
|
Larabee JL, Bland SJ, Hunt JJ, Ballard JD. Intrinsic Toxin-Derived Peptides Destabilize and Inactivate Clostridium difficile TcdB. mBio 2017; 8:e00503-17. [PMID: 28512094 PMCID: PMC5433098 DOI: 10.1128/mbio.00503-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection (CDI) is a major cause of hospital-associated, antibiotic-induced diarrhea, which is largely mediated by the production of two large multidomain clostridial toxins, TcdA and TcdB. Both toxins coordinate the action of specific domains to bind receptors, enter cells, and deliver a catalytic fragment into the cytosol. This results in GTPase inactivation, actin disassembly, and cytotoxicity. TcdB in particular has been shown to encode a region covering amino acids 1753 to 1851 that affects epitope exposure and cytotoxicity. Surprisingly, studies here show that several peptides derived from this region, which share the consensus sequence 1769NVFKGNTISDK1779, protect cells from the action of TcdB. One peptide, PepB2, forms multiple interactions with the carboxy-terminal region of TcdB, destabilizes TcdB structure, and disrupts cell binding. We further show that these effects require PepB2 to form a higher-order polymeric complex, a process that requires the central GN amino acid pair. These data suggest that TcdB1769-1779 interacts with repeat sequences in the proximal carboxy-terminal domain of TcdB (i.e., the CROP domain) to alter the conformation of TcdB. Furthermore, these studies provide insights into TcdB structure and functions that can be exploited to inactivate this critical virulence factor and ameliorate the course of CDI.IMPORTANCEClostridium difficile is a leading cause of hospital-associated illness that is often associated with antibiotic treatment. To cause disease, C. difficile secretes toxins, including TcdB, which is a multidomain intracellular bacterial toxin that undergoes conformational changes during cellular intoxication. This study describes the development of peptide-based inhibitors that target a region of TcdB thought to be critical for structural integrity of the toxin. The results show that peptides derived from a structurally important region of TcdB can be used to destabilize the toxin and prevent cellular intoxication. Importantly, this work provides a novel means of toxin inhibition that could in the future develop into a C. difficile treatment.
Collapse
Affiliation(s)
- Jason L Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sarah J Bland
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jonathan J Hunt
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
13
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
14
|
Wang B, Swaminathan S, Bhattacharyya MK. Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean. PLoS One 2015; 10:e0145156. [PMID: 26709700 PMCID: PMC4692527 DOI: 10.1371/journal.pone.0145156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/01/2015] [Indexed: 12/01/2022] Open
Abstract
Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed.
Collapse
Affiliation(s)
- Bing Wang
- Department of Agronomy, Iowa State University, Ames, 50011–1010, United States of America
| | - Sivakumar Swaminathan
- Department of Agronomy, Iowa State University, Ames, 50011–1010, United States of America
| | - Madan K. Bhattacharyya
- Department of Agronomy, Iowa State University, Ames, 50011–1010, United States of America
| |
Collapse
|
15
|
Ünal CM, Steinert M. Novel therapeutic strategies for Clostridium difficile infections. Expert Opin Ther Targets 2015; 20:269-85. [PMID: 26565670 DOI: 10.1517/14728222.2016.1090428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, Clostridium difficile has become the primary cause of antibiotic-associated diarrhea and pseudomembranous colitis, resulting in long and complicated hospital stays that represent a serious burden for patients as well as health care systems. Currently, conservative treatment of C. difficile infection (CDI) relies on the antibiotics vancomycin, metronidazole or fidaxomicin, or in case of multiple recurrences, fecal microbiota transplantation (FMT). AREAS COVERED The fast-spreading, epidemic nature of this pathogen urgently necessitates the search for alternative treatment strategies as well as antibiotic targets. Accordingly, in this review, we highlight the recent findings regarding virulence associated traits of C. difficile, evaluate their potential as alternative drug targets, and present current efforts in designing inhibitory compounds, with the aim of pointing out possibilities for future treatment strategies. EXPERT OPINION Increased attention on systematic analysis of the virulence mechanisms of C. difficile has already led to the identification of several alternative drug targets. In the future, applying state of the art 'omics' and the development of novel infection models that mimic the human gut, a highly complex ecological niche, will unveil the genomic and metabolic plasticity of this pathogen and will certainly help dealing with future challenges.
Collapse
Affiliation(s)
- Can M Ünal
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,b 2 Türk-Alman Üniversitesi, Fen Fakültesi , Şahinkaya Cad. 86, 34820, Istanbul, Turkey
| | - Michael Steinert
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,c 3 Helmholtz Centre for Infection Research , Mascheroder Weg 1, 38124, Braunschweig, Germany
| |
Collapse
|
16
|
Jarrad A, Karoli T, Blaskovich MAT, Lyras D, Cooper MA. Clostridium difficile drug pipeline: challenges in discovery and development of new agents. J Med Chem 2015; 58:5164-85. [PMID: 25760275 PMCID: PMC4500462 DOI: 10.1021/jm5016846] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 12/17/2022]
Abstract
In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization.
Collapse
Affiliation(s)
- Angie
M. Jarrad
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tomislav Karoli
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Dena Lyras
- School
of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Cooper
- The
Institute for Molecular Bioscience, University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
17
|
Hayakawa Y, Matsuno M, Tanaka M, Wada A, Kitamura K, Takei O, Sasaki R, Mizukami T, Hasegawa M. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori. J Pept Sci 2015; 21:710-6. [PMID: 26152929 DOI: 10.1002/psc.2795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 11/06/2022]
Abstract
Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications.
Collapse
Affiliation(s)
- Yumiko Hayakawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan
| | - Mitsuhiro Matsuno
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan
| | - Makoto Tanaka
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan
| | - Akihiro Wada
- Institute for Tropical Medicine, Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Koichiro Kitamura
- JANUSYS Co., Ltd., Kamiaoki 3-12-18-508, Kawaguchi, Saitama, 333-0844, Japan
| | - Osamu Takei
- Lifetech Co., Ltd., Miyadera 4074, Iruma, Saitama, 358-0014, Japan
| | - Ryuzo Sasaki
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan
| | - Tamio Mizukami
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan
| | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga, 526-0829, Japan
| |
Collapse
|
18
|
Sanhueza CA, Cartmell J, El-Hawiet A, Szpacenko A, Kitova EN, Daneshfar R, Klassen JS, Lang DE, Eugenio L, Ng KKS, Kitov PI, Bundle DR. Evaluation of a focused virtual library of heterobifunctional ligands for Clostridium difficile toxins. Org Biomol Chem 2015; 13:283-98. [DOI: 10.1039/c4ob01838a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Higher activity glycopeptoid ligands for two largeClostridium difficiletoxins TcdA and TcdB were discoveredviamodular fragment-based design and virtual screening.
Collapse
Affiliation(s)
| | | | - Amr El-Hawiet
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Adam Szpacenko
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | | | | | - Dean E. Lang
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Luiz Eugenio
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Kenneth K.-S. Ng
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Pavel I. Kitov
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|
19
|
Swett RJ, Cisneros GA, Feig AL. Disruption of intrinsic motions as a mechanism for enzyme inhibition. Biophys J 2014; 105:494-501. [PMID: 23870270 DOI: 10.1016/j.bpj.2013.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 11/17/2022] Open
Abstract
Clostridium difficile (C. diff) is one of the most common and most severe hospital-acquired infections; its consequences range from lengthened hospital stay to outright lethality. C. diff causes cellular damage through the action of two large toxins TcdA and TcdB. Recently, there has been increased effort toward developing antitoxin therapies, rather than antibacterial treatments, in hopes of mitigating the acquisition of drug resistance. To date, no analysis of the recognition mechanism of TcdA or TcdB has been attempted. Here, we use small molecule flexible docking followed by unbiased molecular dynamics to obtain a more detailed perspective on how inhibitory peptides, exemplified by two species HQSPWHH and EGWHAHT function. Using principal component analysis and generalized masked Delaunay analysis, an examination of the conformational space of TcdB in its apo form as well as forms bound to the peptides and UDP-Glucose was performed. Although both species inhibit by binding in the active site, they do so in two very different ways. The simulations show that the conformational space occupied by TcdB bound to the two peptides are quite different and provide valuable insight for the future design of toxin inhibitors and other enzymes that interact with their substrates through conformational capture mechanisms and thus work by the disruption of the protein's intrinsic motions.
Collapse
Affiliation(s)
- Rebecca J Swett
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | | |
Collapse
|
20
|
Swett R, Cisneros GA, Feig AL. Conformational analysis of Clostridium difficile toxin B and its implications for substrate recognition. PLoS One 2012; 7:e41518. [PMID: 22844485 PMCID: PMC3402401 DOI: 10.1371/journal.pone.0041518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/21/2012] [Indexed: 01/02/2023] Open
Abstract
Clostridium difficile (C. difficile) is an opportunistic pathogen that can cause potentially lethal hospital-acquired infections. The cellular damage that it causes is the result of two large clostridial cytotoxins: TcdA and TcdB which act by glucosylating cytosolic G-proteins, mis-regulation of which induces apoptosis. TcdB is a large flexible protein that appears to undergo significant structural rearrangement upon accommodation of its substrates: UDP-glucose and a Rho-family GTPase. To characterize the conformational space of TcdB, we applied normal mode and hinge-region analysis, followed by long-timescale unbiased molecular dynamics. In order to examine the TcdB and RhoA interaction, macromolecular docking and simulation of the TcdB/RhoA complex was performed. Generalized Masked Delaunay analysis of the simulations determined the extent of significant motions. This combination of methods elucidated a wide range of motions within TcdB that are reiterated in both the low-cost normal mode analysis and the extensive MD simulation. Of particular interest are the coupled motions between a peripheral 4-helix bundle and a small loop in the active site that must rearrange to allow RhoA entry to the catalytic site. These extensive coupled motions are indicative of TcdB using a conformational capture mechanism for substrate accommodation.
Collapse
Affiliation(s)
- Rebecca Swett
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - G. Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| | - Andrew L. Feig
- Department of Chemistry, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
21
|
Ivarsson ME, Leroux JC, Castagner B. Targeting bacterial toxins. Angew Chem Int Ed Engl 2012; 51:4024-45. [PMID: 22441768 DOI: 10.1002/anie.201104384] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/21/2011] [Indexed: 12/18/2022]
Abstract
Protein toxins constitute the main virulence factors of several species of bacteria and have proven to be attractive targets for drug development. Lead candidates that target bacterial toxins range from small molecules to polymeric binders, and act at each of the multiple steps in the process of toxin-mediated pathogenicity. Despite recent and significant advances in the field, a rationally designed drug that targets toxins has yet to reach the market. This Review presents the state of the art in bacterial toxin targeted drug development with a critical consideration of achieved breakthroughs and withstanding challenges. The discussion focuses on A-B-type protein toxins secreted by four species of bacteria, namely Clostridium difficile (toxins A and B), Vibrio cholerae (cholera toxin), enterohemorrhagic Escherichia coli (Shiga toxin), and Bacillus anthracis (anthrax toxin), which are the causative agents of diseases for which treatments need to be improved.
Collapse
Affiliation(s)
- Mattias E Ivarsson
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Wolfgang-Pauli-Strasse 10, Zurich, Switzerland
| | | | | |
Collapse
|
22
|
|
23
|
Azad MA, Wright GD. Determining the mode of action of bioactive compounds. Bioorg Med Chem 2012; 20:1929-39. [DOI: 10.1016/j.bmc.2011.10.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/14/2011] [Accepted: 10/30/2011] [Indexed: 10/14/2022]
|
24
|
Current Status of Nonantibiotic and Adjunct Therapies for Clostridium difficile Infection. Curr Infect Dis Rep 2011; 13:21-7. [PMID: 21308451 DOI: 10.1007/s11908-010-0155-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Clostridium difficile infection (CDI) is a leading cause of nosocomial infections and the most important cause of health care-associated diarrhea worldwide. Standard treatment of CDI consists of modifying underlying antibiotic exposure, aggressive supportive measures, and therapy with specific antibiotics, most commonly metronidazole or vancomycin. This general approach to CDI has remained largely unchanged for decades. In an effort to improve outcomes and reduce recurrences of CDI, interest has been renewed in the development of nonantibiotic and adjunct approaches to therapy. In this review, we highlight some of these recent, resurrected, and novel nonantibiotic treatments.
Collapse
|
25
|
Derda R, Tang SKY, Li SC, Ng S, Matochko W, Jafari MR. Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 2011; 16:1776-803. [PMID: 21339712 PMCID: PMC6259649 DOI: 10.3390/molecules16021776] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 01/15/2023] Open
Abstract
The amplification of phage-displayed libraries is an essential step in the selection of ligands from these libraries. The amplification of libraries, however, decreases their diversity and limits the number of binding clones that a screen can identify. While this decrease might not be a problem for screens against targets with a single binding site (e.g., proteins), it can severely hinder the identification of useful ligands for targets with multiple binding sites (e.g., cells). This review aims to characterize the loss in the diversity of libraries during amplification. Analysis of the peptide sequences obtained in several hundred screens of peptide libraries shows explicitly that there is a significant decrease in library diversity that occurs during the amplification of phage in bacteria. This loss during amplification is not unique to specific libraries: it is observed in many of the phage display systems we have surveyed. The loss in library diversity originates from competition among phage clones in a common pool of bacteria. Based on growth data from the literature and models of phage growth, we show that this competition originates from growth rate differences of only a few percent for different phage clones. We summarize the findings using a simple two-dimensional "phage phase diagram", which describes how the collapse of libraries, due to panning and amplification, leads to the identification of only a subset of the available ligands. This review also highlights techniques that allow elimination of amplification-induced losses of diversity, and how these techniques can be used to improve phage-display selection and enable the identification of novel ligands.
Collapse
Affiliation(s)
- Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G2G2, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Phage display: selecting straws instead of a needle from a haystack. Molecules 2011; 16:790-817. [PMID: 21248664 PMCID: PMC6259164 DOI: 10.3390/molecules16010790] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 11/25/2022] Open
Abstract
An increasing number of peptides with specific binding affinity to various protein and even non-protein targets are being discovered from phage display libraries. The power of this method lies in its ability to efficiently and rapidly identify ligands with a desired target property from a large population of phage clones displaying diverse surface peptides. However, the search for the needle in the haystack does not always end successfully. False positive results may appear. Thus instead of specific binders phage with no actual affinity toward the target are recovered due to their propagation advantages or binding to other components of the screening system, such as the solid phase, capturing reagents, contaminants in the target sample or blocking agents, rather than the target. Biopanning experiments on different targets performed in our laboratory revealed some previously identified and many new target-unrelated peptide sequences, which have already been frequently described and published, but not yet recognized as target-unrelated. Distinguishing true binders from false positives is an important step toward phage display selections of greater integrity. This article thoroughly reviews and discusses already identified and new target-unrelated peptides and suggests strategies to avoid their isolation.
Collapse
|