1
|
Yao ZY, Gong JS, Jiang JY, Su C, Zhao WH, Xu ZH, Shi JS. Unraveling the intricacies of glycosaminoglycan biosynthesis: Decoding the molecular symphony in understanding complex polysaccharide assembly. Biotechnol Adv 2024; 75:108416. [PMID: 39033835 DOI: 10.1016/j.biotechadv.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Wen-Han Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
2
|
Barbosa ACC, Venceslau SS, Pereira IAC. DsrMKJOP is the terminal reductase complex in anaerobic sulfate respiration. Proc Natl Acad Sci U S A 2024; 121:e2313650121. [PMID: 38285932 PMCID: PMC10861901 DOI: 10.1073/pnas.2313650121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.
Collapse
Affiliation(s)
- Ana C. C. Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| |
Collapse
|
5
|
Paritala H, Palde PB, Carroll KS. Functional Site Discovery in a Sulfur Metabolism Enzyme by Using Directed Evolution. Chembiochem 2016; 17:1873-1878. [PMID: 27411165 DOI: 10.1002/cbic.201600264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 11/07/2022]
Abstract
In human pathogens, the sulfate assimilation pathway provides reduced sulfur for biosynthesis of essential metabolites, including cysteine and low-molecular-weight thiol compounds. Sulfonucleotide reductases (SRs) catalyze the first committed step of sulfate reduction. In this reaction, activated sulfate in the form of adenosine-5'-phosphosulfate (APS) or 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is reduced to sulfite. Gene knockout, transcriptomic and proteomic data have established the importance of SRs in oxidative stress-inducible antimicrobial resistance mechanisms. In previous work, we focused on rational and high-throughput design of small-molecule inhibitors that target the active site of SRs. However, another critical goal is to discover functionally important regions in SRs beyond the traditional active site. As an alternative to conservation analysis, we used directed evolution to rapidly identify functional sites in PAPS reductase (PAPR). Four new regions were discovered that are essential to PAPR function and lie outside the substrate binding pocket. Our results highlight the use of directed evolution as a tool to rapidly discover functionally important sites in proteins.
Collapse
Affiliation(s)
- Hanumantharao Paritala
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA
| | - Prakash B Palde
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA.
| |
Collapse
|
6
|
Chao DY, Baraniecka P, Danku J, Koprivova A, Lahner B, Luo H, Yakubova E, Dilkes B, Kopriva S, Salt DE. Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulfur assimilation enzyme ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis species range. PLANT PHYSIOLOGY 2014; 166:1593-608. [PMID: 25245030 PMCID: PMC4226352 DOI: 10.1104/pp.114.247825] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Natural variation allows the investigation of both the fundamental functions of genes and their role in local adaptation. As one of the essential macronutrients, sulfur is vital for plant growth and development and also for crop yield and quality. Selenium and sulfur are assimilated by the same process, and although plants do not require selenium, plant-based selenium is an important source of this essential element for animals. Here, we report the use of linkage mapping in synthetic F2 populations and complementation to investigate the genetic architecture of variation in total leaf sulfur and selenium concentrations in a diverse set of Arabidopsis (Arabidopsis thaliana) accessions. We identify in accessions collected from Sweden and the Czech Republic two variants of the enzyme ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE2 (APR2) with strongly diminished catalytic capacity. APR2 is a key enzyme in both sulfate and selenate reduction, and its reduced activity in the loss-of-function allele apr2-1 and the two Arabidopsis accessions Hodonín and Shahdara leads to a lowering of sulfur flux from sulfate into the reduced sulfur compounds, cysteine and glutathione, and into proteins, concomitant with an increase in the accumulation of sulfate in leaves. We conclude from our observation, and the previously identified weak allele of APR2 from the Shahdara accession collected in Tadjikistan, that the catalytic capacity of APR2 varies by 4 orders of magnitude across the Arabidopsis species range, driving significant differences in sulfur and selenium metabolism. The selective benefit, if any, of this large variation remains to be explored.
Collapse
Affiliation(s)
- Dai-Yin Chao
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - Patrycja Baraniecka
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - John Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - Anna Koprivova
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - Brett Lahner
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - Hongbing Luo
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - Elena Yakubova
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - Brian Dilkes
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - Stanislav Kopriva
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom (D.-Y.C., J.D., D.E.S.);Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom (P.B., A.K., S.K.); andDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (B.L., H.L., E.Y., B.D.)
| |
Collapse
|
8
|
Gao H, Subramanian S, Couturier J, Naik SG, Kim SK, Leustek T, Knaff DB, Wu HC, Vignols F, Huynh BH, Rouhier N, Johnson MK. Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast [2Fe-2S] and [4Fe-4S] cluster-containing proteins. Biochemistry 2013; 52:6633-45. [PMID: 24032747 DOI: 10.1021/bi4007622] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nfu-type proteins are essential in the biogenesis of iron-sulfur (Fe-S) clusters in numerous organisms. A number of phenotypes including low levels of Fe-S cluster incorporation are associated with the deletion of the gene encoding a chloroplast-specific Nfu-type protein, Nfu2 from Arabidopsis thaliana (AtNfu2). Here, we report that recombinant AtNfu2 is able to assemble both [2Fe-2S] and [4Fe-4S] clusters. Analytical data and gel filtration studies support cluster/protein stoichiometries of one [2Fe-2S] cluster/homotetramer and one [4Fe-4S] cluster/homodimer. The combination of UV-visible absorption and circular dichroism and resonance Raman and Mössbauer spectroscopies has been employed to investigate the nature, properties, and transfer of the clusters assembled on Nfu2. The results are consistent with subunit-bridging [2Fe-2S](2+) and [4Fe-4S](2+) clusters coordinated by the cysteines in the conserved CXXC motif. The results also provided insight into the specificity of Nfu2 for the maturation of chloroplastic Fe-S proteins via intact, rapid, and quantitative cluster transfer. [2Fe-2S] cluster-bound Nfu2 is shown to be an effective [2Fe-2S](2+) cluster donor for glutaredoxin S16 but not glutaredoxin S14. Moreover, [4Fe-4S] cluster-bound Nfu2 is shown to be a very rapid and efficient [4Fe-4S](2+) cluster donor for adenosine 5'-phosphosulfate reductase (APR1), and yeast two-hybrid studies indicate that APR1 forms a complex with Nfu2 but not with Nfu1 and Nfu3, the two other chloroplastic Nfu proteins. This cluster transfer is likely to be physiologically relevant and is particularly significant for plant metabolism as APR1 catalyzes the second step in reductive sulfur assimilation, which ultimately results in the biosynthesis of cysteine, methionine, glutathione, and Fe-S clusters.
Collapse
Affiliation(s)
- Huanyao Gao
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia, 30602, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|