1
|
Chen J, Chen V, Kawamura T, Hoang I, Yang Y, Wong AT, McBride R, Repunte-Canonigo V, Millhauser GL, Sanna PP. Charge Characteristics of Agouti-Related Protein Implicate Potent Involvement of Heparan Sulfate Proteoglycans in Metabolic Function. iScience 2019; 22:557-570. [PMID: 31863782 PMCID: PMC6928319 DOI: 10.1016/j.isci.2019.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/21/2019] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
The endogenous melanocortin peptide agouti-related protein (AgRP) plays a well-known role in foraging, but its contribution to metabolic regulation is less understood. Mature AgRP(83-132) has distinct residues for melanocortin receptor binding and heparan sulfate interactions. Here, we show that AgRP increases ad libitum feeding and operant responding for food in mice, decreases oxygen consumption, and lowers body temperature and activity, indicating lower energy expenditure. AgRP increased the respiratory exchange ratio, indicating a reduction of fat oxidation and a shift toward carbohydrates as the primary fuel source. The duration and intensity of AgRP's effects depended on the density of its positively charged amino acids, suggesting that its orexigenic and metabolic effects depend on its affinity for heparan sulfate. These findings may have major clinical implications by unveiling the critical involvement of interactions between AgRP and heparan sulfate to the central regulation of energy expenditure, fat utilization, and possibly their contribution to metabolic disease. AgRP increases both ad libitum and operant food intake and reduces energy expenditure AgRP reduces fat utilization as a fuel source, which promotes body fat accumulation These actions of AgRP depend on the positive charges, outside its ICK motif, that bind heparan sulfate
Collapse
Affiliation(s)
- Jihuan Chen
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Valerie Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Tomoya Kawamura
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ivy Hoang
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yang Yang
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ashley Tess Wong
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Ryan McBride
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Genomics Core, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vez Repunte-Canonigo
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | - Pietro Paolo Sanna
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Ericson MD, Haskell-Luevano C. A Review of Single-Nucleotide Polymorphisms in Orexigenic Neuropeptides Targeting G Protein-Coupled Receptors. ACS Chem Neurosci 2018; 9:1235-1246. [PMID: 29714060 DOI: 10.1021/acschemneuro.8b00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many physiological pathways are involved in appetite, food intake, and the maintenance of energy homeostasis. In particular, neuropeptides within the central nervous system have been demonstrated to be critical signaling molecules for modulating appetite. Both anorexigenic (appetite-decreasing) and orexigenic (appetite-stimulating) neuropeptides have been described. The biological effects of these neuropeptides can be observed following central administration in animal models. This review focuses on single nucleotide polymorphisms (SNPs) in six orexigenic neuropeptides: agouti-related protein (AGRP), galanin, melanin concentrating hormone (MCH), neuropeptide Y (NPY), orexin A, and orexin B. Following a brief summary of the neuropeptides and their orexigenic activities, reports associating SNPs within the orexigenic neuropeptides to energy homeostasis, food intake, obesity, and BMI in humans are reviewed. Additionally, the NIH tool Variation Viewer was utilized to identify missense SNPs within the mature, biologically active neuropeptide sequences. For SNPs found through Variation Viewer, a concise discussion on relevant pharmacological structure-activity relationship studies for select SNPs is included. This review is meant to update reported orexigenic neuropeptide SNPs and demonstrate the potential utility of genomic sequence databases for finding SNPs that may result in altered receptor signaling for neuropeptide pathways associated with appetite.
Collapse
Affiliation(s)
- Mark D. Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Palomino R, Lee HW, Millhauser GL. The agouti-related peptide binds heparan sulfate through segments critical for its orexigenic effects. J Biol Chem 2017; 292:7651-7661. [PMID: 28264929 DOI: 10.1074/jbc.m116.772822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Syndecans potently modulate agouti-related peptide (AgRP) signaling in the central melanocortin system. Through heparan sulfate moieties, syndecans are thought to anchor AgRP near its receptor, enhancing its orexigenic effects. Original work proposed that the N-terminal domain of AgRP facilitates this interaction. However, this is not compatible with evidence that this domain is posttranslationally cleaved. Addressing this long-standing incongruity, we used calorimetry and magnetic resonance to probe interactions of AgRP peptides with glycosaminoglycans, including heparan sulfate. We show that mature, cleaved, C-terminal AgRP, not the N-terminal domain, binds heparan sulfate. NMR shows that the binding site consists of regions distinct from the melanocortin receptor-binding site. Using a library of designed AgRP variants, we find that the strength of the syndecan interaction perfectly tracks orexigenic action. Our data provide compelling evidence that AgRP is a heparan sulfate-binding protein and localizes critical regions in the AgRP structure required for this interaction.
Collapse
Affiliation(s)
- Rafael Palomino
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Hsiau-Wei Lee
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Glenn L Millhauser
- From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
4
|
Ghamari-Langroudi M, Digby GJ, Sebag JA, Millhauser GL, Palomino R, Matthews R, Gillyard T, Panaro BL, Tough IR, Cox HM, Denton JS, Cone RD. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 2015; 520:94-8. [PMID: 25600267 PMCID: PMC4383680 DOI: 10.1038/nature14051] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/10/2014] [Indexed: 02/04/2023]
Abstract
The regulated release of anorexigenic α-melanocyte stimulating hormone (α-MSH) and orexigenic Agouti-related protein (AgRP) from discrete hypothalamic arcuate neurons onto common target sites in the central nervous system has a fundamental role in the regulation of energy homeostasis. Both peptides bind with high affinity to the melanocortin-4 receptor (MC4R); existing data show that α-MSH is an agonist that couples the receptor to the Gαs signalling pathway, while AgRP binds competitively to block α-MSH binding and blocks the constitutive activity mediated by the ligand-mimetic amino-terminal domain of the receptor. Here we show that, in mice, regulation of firing activity of neurons from the paraventricular nucleus of the hypothalamus (PVN) by α-MSH and AgRP can be mediated independently of Gαs signalling by ligand-induced coupling of MC4R to closure of inwardly rectifying potassium channel, Kir7.1. Furthermore, AgRP is a biased agonist that hyperpolarizes neurons by binding to MC4R and opening Kir7.1, independently of its inhibition of α-MSH binding. Consequently, Kir7.1 signalling appears to be central to melanocortin-mediated regulation of energy homeostasis within the PVN. Coupling of MC4R to Kir7.1 may explain unusual aspects of the control of energy homeostasis by melanocortin signalling, including the gene dosage effect of MC4R and the sustained effects of AgRP on food intake.
Collapse
Affiliation(s)
- Masoud Ghamari-Langroudi
- Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Gregory J Digby
- Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Julien A Sebag
- Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Glenn L Millhauser
- Department of Chemistry &Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Rafael Palomino
- Department of Chemistry &Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Robert Matthews
- Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Taneisha Gillyard
- 1] Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pharmacology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | - Brandon L Panaro
- Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK
| | - Jerod S Denton
- 1] Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Roger D Cone
- Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
5
|
Leonova EI, Galzitskaya OV. Role of Syndecans in Lipid Metabolism and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:241-58. [PMID: 26149933 DOI: 10.1007/978-3-319-17344-3_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans involved in the regulation of cell growth, differentiation, adhesion, neuronal development, and lipid metabolism. Syndecans are expressed in a tissue-specific manner to facilitate diverse cellular processes. As receptors and co-receptors, syndecans provide promising therapeutic targets that bind to a variety of physiologically important ligands. Negatively charged glycosaminoglycan chains of syndecans, located in the extracellular compartment, are critical for such binding. Functions of syndecans are as diverse as their ligands. For example, hepatic syndecan-1 mediates clearance of triglyceride-rich lipoproteins. Syndecan-2 promotes localization of Alzheimer's amyloid Aβ peptide to the cell surface, which is proposed to contribute to amyloid plaque formation. Syndecan-3 helps co-localize the appetite-regulating melanocortin-4 receptor with its agonist, leading to an increased appetite. Finally, syndecan-4 initiates the capture of modified low-density lipoproteins by macrophages and thereby promotes the atheroma formation. We hypothesize that syndecan modifications such as desulfation of glycosaminoglycan chains may contribute to a wide range of diseases, from atherosclerosis to type 2 diabetes. At the same time, desulfated syndecans may have beneficial effects, as they can inhibit amyloid plaque formation or decrease the appetite. Despite considerable progress in understanding diverse functions of syndecans, the complex physiological roles of this intriguing family of proteoglycans are far from clear. Additional studies of syndecans may potentially help develop novel therapeutic approaches and diagnostic tools to alleviate complex human diseases such as cardiovascular and Alzheimer's diseases.
Collapse
Affiliation(s)
- Elena I Leonova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia,
| | | |
Collapse
|
6
|
Current World Literature. Curr Opin Support Palliat Care 2012; 6:543-52. [DOI: 10.1097/spc.0b013e32835ad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|