1
|
Kuchiishi SS, Ramos Prigol S, Bresolin E, Fernandes Lenhard B, Pissetti C, García-Iglesias MJ, Gutiérrez-Martín CB, Martínez-Martínez S, Kreutz LC, Frandoloso R. Brazilian Clinical Strains of Actinobacillus pleuropneumoniae and Pasteurella multocida: Capsular Diversity, Antimicrobial Susceptibility ( In Vitro) and Proof of Concept for Prevention of Natural Colonization by Multi-Doses Protocol of Tildipirosin. Antibiotics (Basel) 2023; 12:1658. [PMID: 38136692 PMCID: PMC10740920 DOI: 10.3390/antibiotics12121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
One hundred Actinobacillus pleuropneumoniae (App) and sixty Pasteurella multocida subsp. multocida serogroup A (PmA) isolates were recovered from porcine pneumonic lungs collected from eight central or southern states of Brazil between 2014 and 2018 (App) or between 2017 and 2021 (PmA). A. pleuropneumoniae clinical isolates were typed by multiplex PCR and the most prevalent serovars were 8, 7 and 5 (43, 25% and 18%, respectively). In addition, three virulence genes were assessed in P. multocida isolates, all being positive to capA (PmA) and kmt1 genes, all negative to capD and toxA, and most of them (85%) negative to pfhA gene. The susceptibility of both pathogens to tildipirosin was investigated using a broth microdilution assay. The percentage of isolates susceptible to tildipirosin was 95% for App and 73.3% for PmA. The MIC50 values were 0.25 and 1 μg/mL and the MIC90 values were 4 and >64 μg/mL for App and PmA, respectively. Finally, a multiple-dose protocol of tildipirosin was tested in suckling piglets on a farm endemic for both pathogens. Tildipirosin was able to prevent the natural colonization of the tonsils by App and PmA and significantly (p < 0.0001) reduced the burden of Glaesserella parasuis in this tissue. In summary, our results demonstrate that: (i) tildipirosin can be included in the list of antibiotics to control outbreaks of lung disease caused by App regardless of the capsular type, and (ii) in the case of clinical strains of App and PmA that are sensitive to tildipirosin based on susceptibility testing, the use of this antibiotic in eradication programs for A. pleuropneumoniae and P. multocida can be strongly recommended.
Collapse
Affiliation(s)
- Suzana Satomi Kuchiishi
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99052-900, Brazil; (S.S.K.); (E.B.); (B.F.L.); (L.C.K.)
- Centro de Diagnóstico de Sanidade Animal—CEDISA, Concórdia 89727-000, Brazil;
| | | | - Eduarda Bresolin
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99052-900, Brazil; (S.S.K.); (E.B.); (B.F.L.); (L.C.K.)
- AFK Imunotech, Passo Fundo 99052-900, Brazil;
| | - Bianca Fernandes Lenhard
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99052-900, Brazil; (S.S.K.); (E.B.); (B.F.L.); (L.C.K.)
| | - Caroline Pissetti
- Centro de Diagnóstico de Sanidade Animal—CEDISA, Concórdia 89727-000, Brazil;
| | - María-José García-Iglesias
- Animal Health Department, Faculty of Veterinary Medicine, University of León, 24007 León, Spain; (M.-J.G.-I.); (C.-B.G.-M.); (S.M.-M.)
| | - César-Bernardo Gutiérrez-Martín
- Animal Health Department, Faculty of Veterinary Medicine, University of León, 24007 León, Spain; (M.-J.G.-I.); (C.-B.G.-M.); (S.M.-M.)
| | - Sonia Martínez-Martínez
- Animal Health Department, Faculty of Veterinary Medicine, University of León, 24007 León, Spain; (M.-J.G.-I.); (C.-B.G.-M.); (S.M.-M.)
| | - Luiz Carlos Kreutz
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99052-900, Brazil; (S.S.K.); (E.B.); (B.F.L.); (L.C.K.)
| | - Rafael Frandoloso
- Laboratory of Microbiology and Advanced Immunology, Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99052-900, Brazil; (S.S.K.); (E.B.); (B.F.L.); (L.C.K.)
| |
Collapse
|
2
|
Sultana R, Cordeiro RP, Timsit E, McAllister TA, Alexander TW. Prevalence and antimicrobial susceptibility of Mycoplasma bovis from the upper and lower respiratory tracts of healthy feedlot cattle and those diagnosed with bovine respiratory disease. Vet Microbiol 2023; 285:109838. [PMID: 37690145 DOI: 10.1016/j.vetmic.2023.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Abstract
Mycoplasma bovis is an important respiratory pathogen of cattle. In this study, the prevalence and antimicrobial susceptibility of M. bovis were evaluated from two Cohorts of feedlot cattle spanning an 8-year period. In the first study conducted in 2008-2009, nasopharyngeal swabs from cattle sampled at feedlot entry and after 60 days on feed were collected (Cohort 1). In a second study conducted in 2015-2016, nasopharyngeal and trans-tracheal samples were collected from cattle diagnosed with bovine respiratory disease (BRD) and matching healthy controls (Cohort 2). For Cohort 1, the prevalence of M. bovis was lower in cattle at entry compared to when the same individuals were sampled ≥60 days later (P < 0.05). For Cohort 2, the prevalence of M. bovis was greater in both nasopharyngeal and tracheal samples from cattle diagnosed with BRD, compared to controls (P < 0.05). In both Cohorts, almost all isolates were resistant to tilmicosin. Compared to M. bovis from Cohort 1, isolates of Cohort 2 exhibited increased resistance to clindamycin, enrofloxacin, florfenicol, tylosin, and tulathromycin, with the latter showing resistance levels >90 %. These data suggest that antimicrobials used to prevent and treat BRD selected for resistance in M. bovis over the 8-year period. For macrolides, cross-resistance occurred and M. bovis can retain resistance even when antimicrobial selection pressure is removed. Within 9 years of commercial availability of tulathromycin, the majority of M. bovis displayed resistance. Therefore, longitudinal evaluation of resistance in respiratory pathogens is important to ensure efficacious treatment of BRD.
Collapse
Affiliation(s)
- Razia Sultana
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada; Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Roniele P Cordeiro
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Edouard Timsit
- Department of Pharma Innovation, Ceva Santé Animale, Libourne, France
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada.
| |
Collapse
|
3
|
Dai P, Qin Y, Li L, Li H, Lv L, Xu D, Song Y, Huang T, Lin S, Deng Z, Tao M. Enhancing tylosin production by combinatorial overexpression of efflux, SAM biosynthesis, and regulatory genes in hyperproducing Streptomyces xinghaiensis strain. Synth Syst Biotechnol 2023; 8:486-497. [PMID: 37519989 PMCID: PMC10372049 DOI: 10.1016/j.synbio.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Tylosin is a 16-membered macrolide antibiotic widely used in veterinary medicine to control infections caused by Gram-positive pathogens and mycoplasmas. To improve the fermentation titer of tylosin in the hyperproducing Streptomyces xinghaiensis strain TL01, we sequenced its whole genome and identified the biosynthetic gene cluster therein. Overexpression of the tylosin efflux gene tlrC, the cluster-situated S-adenosyl methionine (SAM) synthetase gene metKcs, the SAM biosynthetic genes adoKcs-metFcs, or the pathway-specific activator gene tylR enhanced tylosin production by 18%, 12%, 11%, and 11% in the respective engineered strains TLPH08-2, TLPH09, TLPH10, and TLPH12. Co-overexpression of metKcs and adoKcs-metFcs as two transcripts increased tylosin production by 22% in the resultant strain TLPH11 compared to that in TL01. Furthermore, combinational overexpression of tlrC, metKcs, adoKcs-metFcs, and tylR as four transcripts increased tylosin production by 23% (10.93g/L) in the resultant strain TLPH17 compared to that in TL01. However, a negligible additive effect was displayed upon combinational overexpression in TLPH17 as suggested by the limited increment of fermentation titer compared to that in TLPH08-2. Transcription analyses indicated that the expression of tlrC and three SAM biosynthetic genes in TLPH17 was considerably lower than that of TLPH08-2 and TLPH11. Based on this observation, the five genes were rearranged into one or two operons to coordinate their overexpression, yielding two engineered strains TLPH23 and TLPH24, and leading to further enhancement of tylosin production over TLPH17. In particular, the production of TLPH23 reached 11.35 g/L. These findings indicated that the combinatorial strategy is a promising approach for enhancing tylosin production in high-yielding industrial strains.
Collapse
Affiliation(s)
- Penghui Dai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuyao Qin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Luyuan Li
- Zhejiang Apeloa Biotechnology Co., Ltd., Jinhua, 322109, China
| | - Haidi Li
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Lihuo Lv
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Danying Xu
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Yuqing Song
- Zhejiang Apeloa Jiayuan Pharmaceutical Co., Ltd., Jinhua, 322118, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
4
|
Fan J, Yao Z, Yan C, Hao M, Dai J, Zou W, Ni M, Li T, Li L, Li S, Liu J, Huang Q, Zhou R. Discovery of a highly efficient TylF methyltransferase via random mutagenesis for improving tylosin production. Comput Struct Biotechnol J 2023; 21:2759-2766. [PMID: 37181661 PMCID: PMC10172623 DOI: 10.1016/j.csbj.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Macrolides are currently a class of extensively used antibiotics in human and animal medicine. Tylosin is not only one of the most important veterinary macrolides but also an indispensable material for the bio- and chemo-synthesis of new generations of macrolide antibiotics. Thus, improving its production yield is of great value. As the key rate-limiting enzyme catalyzing the terminal step of tylosin biosynthesis in Streptomyces fradiae (S. fradiae), TylF methyltransferase's catalytic activity directly affects tylosin yield. In this study, a tylF mutant library of S. fradiae SF-3 was constructed based on error-prone PCR technology. After two steps of screening in 24-well plates and conical flask fermentation and enzyme activity assay, a mutant strain was identified with higher TylF activity and tylosin yield. The mutation of tyrosine to phenylalanine is localized at the 139th amino acid residue on TylF (TylFY139F), and protein structure simulations demonstrated that this mutation changed the protein structure of TylF. Compared with wild-type protein TylF, TylFY139F exhibited higher enzymatic activity and thermostability. More importantly, the Y139 residue in TylF is a previously unidentified position required for TylF activity and tylosin production in S. fradiae, indicating the further potential to engineer the enzyme. These findings provide helpful information for the directed molecular evolution of this important enzyme and the genetic modification of tylosin-producing bacteria.
Collapse
Affiliation(s)
- Jingyan Fan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiming Yao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoyue Yan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Meilin Hao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng 432400, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
| | - Wenjin Zou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Minghui Ni
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science and Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
| | - Shuo Li
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng 432400, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
| | - Jie Liu
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng 432400, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science and Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- Correspondence to: College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease (Ministry of Science and Technology of China), Wuhan 430070, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- The HZAU-HVSEN Research Institute, Wuhan 430042, China
- Correspondence to: College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Gharbi M, Kamoun S, Hkimi C, Ghedira K, Béjaoui A, Maaroufi A. Relationships between Virulence Genes and Antibiotic Resistance Phenotypes/Genotypes in Campylobacter spp. Isolated from Layer Hens and Eggs in the North of Tunisia: Statistical and Computational Insights. Foods 2022; 11:foods11223554. [PMID: 36429146 PMCID: PMC9689815 DOI: 10.3390/foods11223554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Globally, Campylobacter is a significant contributor to gastroenteritis. Efficient pathogens are qualified by their virulence power, resistance to antibiotics and epidemic spread. However, the correlation between antimicrobial resistance (AR) and the pathogenicity power of pathogens is complex and poorly understood. In this study, we aimed to investigate genes encoding virulence and AR mechanisms in 177 Campylobacter isolates collected from layer hens and eggs in Tunisia and to assess associations between AR and virulence characteristics. Virulotyping was determined by searching 13 virulence genes and AR-encoding genes were investigated by PCR and MAMA-PCR. The following genes were detected in C. jejuni and C. coli isolates: tet(O) (100%/100%), blaOXA-61 (18.82%/6.25%), and cmeB (100%/100%). All quinolone-resistant isolates harbored the Thr-86-Ile substitution in GyrA. Both the A2074C and A2075G mutations in 23S rRNA were found in all erythromycin-resistant isolates; however, the erm(B) gene was detected in 48.38% and 64.15% of the C. jejuni and C. coli isolates, respectively. The machine learning algorithm Random Forest was used to determine the association of virulence genes with AR phenotypes. This analysis showed that C. jejuni virulotypes with gene clusters encompassing the racR, ceuE, virB11, and pldA genes were strongly associated with the majority of phenotypic resistance. Our findings showed high rates of AR and virulence genes among poultry Campylobacter, which is a cause of concern to human health. In addition, the correlations of specific virulence genes with AR phenotypes were established by statistical analysis.
Collapse
Affiliation(s)
- Manel Gharbi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
- Correspondence: ; Tel.: +216-27310041
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Awatef Béjaoui
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
6
|
Xia X, Yang L, Ling Y, Yu J, Ding H. Emergence and Mechanism of Resistance of Tulathromycin Against Mycoplasma hyopneumoniae in a PK/PD Model and the Fitness Costs of 23S rRNA Mutants. Front Vet Sci 2022; 9:801800. [PMID: 35224081 PMCID: PMC8873822 DOI: 10.3389/fvets.2022.801800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Macrolides are widely used in diseases caused by Mycoplasma spp. The new semi-synthetic macrolide antibiotic tulathromycin is currently in wide use for the treatment of respiratory diseases of livestock. The objective of this study was to evaluate the antibacterial effect of tulathromycin against Mycoplasma hyopneumoniae using an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model to reveal mechanisms of antibiotic resistance and to evaluate the fitness of drug-resistant strains. In this study, high performance liquid chromatography-tandem mass spectrometry was used to determine drug concentrations for the in vitro model after dosing. The peak concentrations were in the range 0.3125–20 μg/mL (1 × MIC-64 × MIC). The ratio of the area under the concentration-time curve (AUC) over 72 h divided by the MIC (AUC72h/MIC) had the highest correlation with the antibacterial effect of tulathromycin against M. hyopneumoniae. Tulathromycin also showed concentration-dependent antimicrobial effects and promoted the emergence of drug-resistant bacteria after being cultured for 168 h and most were mutations in 23S rRNA at site A2058G (E.coli numbering) and only a single isolate was an A2058T (E.coli numbering) mutant. In the presence of reserpine, we determined the MIC of tulathromycin, tilmicosin, tiamulin and tylosin against these drug-resistant bacteria and the strains with efflux pump mechanisms were found among the strains resistant to tilmicosin. Gene expression analysis indicated that the ABC and MATE transporter efflux pump genes RS01935, RS02670, RS01115, RS01970, RS02395 and RS03540 (MATE family efflux transporter) were up-regulated in the three strains (P < 0.05 or P < 0.01). These investigations provide guidance for clinical administration of tulathromycin and elucidate the mechanism and fitness cost of drug resistance in M. hyopneumoniae.
Collapse
|
7
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
8
|
Bringhenti L, Pallu M, Silva J, Tomazi T, Tomazi AC, Rodrigues MX, Duarte LM, Bilby TR, Bicalho RC. Effect of metaphylactic administration of tildipirosin on the incidence of pneumonia and otitis and on the upper respiratory tract and fecal microbiome of preweaning Holstein calves. J Dairy Sci 2021; 104:6020-6038. [PMID: 33685693 DOI: 10.3168/jds.2020-19572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to evaluate the effect of the metaphylactic use of a semi-synthetic long-acting macrolide (tildipirosin) on the prevention of pneumonia and otitis in preweaning Holstein calves, as well as its effects on the microbiome of their upper respiratory tract (URT) and feces. Newborn healthy Holstein heifers, collectively housed, were randomly allocated to 1 of 2 treatment groups: treatment (TRT; n = 932) or control (CTR; n = 927). Calves in the TRT group received a single subcutaneous injection of 4 mg/kg tildipirosin (Zuprevo, Merck Animal Health) at 7 ± 7 d of life. Calves in the CTR group received no drug injection. All enrolled calves were evaluated from 1 to 63 ± 3 d of life (weaning age) and monitored daily for any adverse health events during this period. Daily physical examination was performed to diagnose pneumonia and otitis, and body weight was measured weekly in all animals. From a randomly selected subset of 217 calves, blood samples for biochemical variables analysis and swabs were collected weekly from the URT and rectum for analysis of the nasal and fecal microbiome, respectively, via next-generation sequencing of the 16S rRNA gene. Total bacterial load was evaluated using quantitative PCR. In addition, another subset of 26 calves was randomly selected and fecal swabs were collected in a more intensive sampling to investigate the short-term effect of tildipirosin administration on the fecal microbiome. We performed general mixed linear models and logistic regression to analyze continuous and binary outcomes, respectively. Tildipirosin metaphylaxis reduced the incidence of otitis (CTR = 47.03%; TRT = 37.55%) and tended to reduce the incidence of pneumonia (CTR = 20.71%; TRT = 17.38%) and the overall mortality risk (CTR = 6.69%; TRT = 4.94%). We observed no significant differences between groups for mortality due to pneumonia (CTR = 0.86%; TRT = 0.97%) or mortality due to otitis (CTR = 2.05%; TRT = 1.39%). Calves in the TRT group had a higher average daily gain than calves in the CTR group. Furthermore, metaphylaxis had no significant effects on the total bacterial load, genus, or phylum analysis of the fecal microbiome from the 2 subset groups. However, for the URT microbiota, we observed a significant decrease in total bacterial load for the TRT group compared to the CTR group 1 week after metaphylactic injection. Tildipirosin metaphylaxis decreased the mean relative abundance of the genera Mannheimia, Moraxella, and Pasteurella but significantly increased the mean relative abundance of Mycoplasma. Although tildipirosin had no positive effect on Mycoplasma, it reduced the mean relative abundance of important pathogenic bacteria in the URT and had positive effects for the control of otitis. The metaphylactic use of tildipirosin can be a suitable strategy for the control of otitis on farms with a high prevalence of this disease.
Collapse
Affiliation(s)
- Leonardo Bringhenti
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Mariana Pallu
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Josiane Silva
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Tiago Tomazi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Ana C Tomazi
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Marjory X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | - Livia M Duarte
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401
| | | | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
9
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
10
|
Tang M, Zhou Q, Zhang X, Zhou S, Zhang J, Tang X, Lu J, Gao Y. Antibiotic Resistance Profiles and Molecular Mechanisms of Campylobacter From Chicken and Pig in China. Front Microbiol 2020; 11:592496. [PMID: 33193261 PMCID: PMC7652819 DOI: 10.3389/fmicb.2020.592496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 01/22/2023] Open
Abstract
The purpose of this research was to characterize the antibiotic resistance profiles of Campylobacter spp. derived from chicken and pig feces collected from farms in Jiangsu Province, China, and to analyze the relevant resistance mechanisms among antimicrobial-resistant Campylobacter spp. isolates. Antibiotic susceptibility to nine antibiotic agents was tested with the microdilution method in 93 Campylobacter spp. (45 C. jejuni and 25 C. coli from chickens; 23 C. coli from pigs). High rates of resistance were observed to nalidixic acid (79.6%), erythromycin (75.3%), tetracycline (68.8%), azithromycin (66.7%), ciprofloxacin (64.5%), and gentamicin (35.5%), with a lower resistance rate to florfenicol (8.6%). The prevalence of the tested antibiotic resistance in C. coli was higher than in C. jejuni from chickens. The rate of antimicrobial resistance to ciprofloxacin in C. coli isolates from chickens was 100.0%, and the C. coli isolates from pigs were all resistant to erythromycin (100%). Most of C. jejuni (64.4%) and C. coli (64.5%) isolates displayed multi-drug resistance. All the Campylobacter spp. isolates resistant to fluoroquinolones had the C257T mutation in the gyrA gene. All 64 tetracycline-resistant Campylobacter spp. isolates were positive for the tetO gene. The tetA gene was also amplified in 6.5% of Campylobacter spp. isolates, whereas tetB was not detected among the isolates. The A2075G point mutation in the 23S rRNA gene occurred in 86.1% (62/72) of the macrolides-resistant Campylobacter spp. isolates, and the ermB gene was identified in 49 Campylobacter spp. isolates (30 C. jejuni and 19 C. coli). Amino acid insertions or mutations in the L4 and L22 ribosomal proteins were not linked to macrolide resistance. These results highlight the high prevalence of resistance to multiple antibiotics, particular macrolides, among Campylobacter spp. from chickens and pigs in Jiangsu Province, China, which is probably attributable to the overuse of antimicrobials in chicken and pig production. These findings recommend the more cautious use of critical antimicrobial agents in swine and poultry production. Stringent and continuous surveillance is required to reduce the drug-resistant campylobacteriosis in food animals and humans.
Collapse
Affiliation(s)
- Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Qian Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Xiaoyan Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Sheng Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Jing Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Xiujun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Junxian Lu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Yushi Gao
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| |
Collapse
|
11
|
Maes D, Boyen F, Haesebrouck F, Gautier-Bouchardon AV. Antimicrobial treatment of Mycoplasma hyopneumoniae infections. Vet J 2020; 259-260:105474. [PMID: 32553237 DOI: 10.1016/j.tvjl.2020.105474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Mycoplasma hyopneumoniae (M. hyopneumoniae) is the primary agent of enzootic pneumonia, a chronic and economically important respiratory disease of pigs. Control and prevention of M. hyopneumoniae infections can be accomplished by optimization of management and housing conditions, and by vaccination. The present paper summarizes the current knowledge on the main characteristics and efficacy of antimicrobials used for the treatment of clinical M. hyopneumoniae infections, the in vitro and in vivo activities of these antimicrobials and the reported resistance mechanisms against some. Potentially active antimicrobials against M. hyopneumoniae include tetracyclines, macrolides, lincosamides, pleuromutilins, amphenicols, aminoglycosides, aminocyclitols and fluoroquinolones. Antimicrobial treatment can be administered either orally or parenterally. Based on the overall results of efficacy studies performed under experimental and/or field conditions, the majority of agents belonging to these antimicrobial classes improved clinical parameters (clinical signs, lung lesions) and reduced performance losses due to M. hyopneumoniae infection. Antimicrobials may, however, not be able to prevent infection or to eradicate the bacterium from the respiratory tract. The decision to medicate should, therefore, be considered carefully. M. hyopneumoniae shows an intrinsic resistance against β-lactam antibiotics, sulfonamides and trimethoprim. A few reports have shown acquired antimicrobial resistance against some antibiotics, along with associated resistance mechanisms. The results of antimicrobial susceptibility testing are difficult to interpret in terms of treatment outcome, as no clinical breakpoints have been defined for M. hyopneumoniae.
Collapse
Affiliation(s)
- Dominiek Maes
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Filip Boyen
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Anne V Gautier-Bouchardon
- Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (Anses), France
| |
Collapse
|
12
|
Jelinski M, Kinnear A, Gesy K, Andrés-Lasheras S, Zaheer R, Weese S, McAllister TA. Antimicrobial Sensitivity Testing of Mycoplasma bovis Isolates Derived from Western Canadian Feedlot Cattle. Microorganisms 2020; 8:microorganisms8010124. [PMID: 31963269 PMCID: PMC7022776 DOI: 10.3390/microorganisms8010124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
Mycoplasma bovis is particularly adept at evading the immune system, resulting in chronic infections of the lungs and joints of feedlot cattle. The chronicity of the lesions results in prolonged antimicrobial therapy, possibly exacerbating antimicrobial resistance. This cross-sectional study generated in vitro antimicrobial susceptibility testing (AST) data on 211 M. bovis isolates recovered from 159 healthy, diseased, and dead cattle, spanning the period of 2006-2018. Nine antimicrobials commonly administered to western Canadian feedlot cattle were assessed. The data were analyzed with non-parametric statistical tests with a level of significance of p < 0.05 (two-tailed). Minimum inhibitory concentration (MIC) values tended to increase between the isolates from healthy versus dead cattle and over time (2006-2018). Isolates from dead versus healthy cattle were more likely to be resistant to tulathromycin, gamithromycin, tylosin and enrofloxacin. There was no difference in the distributions of the MICs generated from the isolates recovered from the lungs and joints (p ≥ 0.124) and the lungs and deep nasal passages (p ≥ 0.157) of the same animals.
Collapse
Affiliation(s)
- Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (A.K.); (K.G.)
- Correspondence: ; Tel.: +1-306-966-7166
| | - Andrea Kinnear
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (A.K.); (K.G.)
| | - Karen Gesy
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (A.K.); (K.G.)
| | - Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.); (T.A.M.)
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.); (T.A.M.)
| | - Scott Weese
- Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.); (T.A.M.)
| |
Collapse
|
13
|
Liu D, Liu W, Lv Z, Xia J, Li X, Hao Y, Zhou Y, Yao H, Liu Z, Wang Y, Shen J, Ke Y, Shen Z. Emerging erm(B)-Mediated Macrolide Resistance Associated with Novel Multidrug Resistance Genomic Islands in Campylobacter. Antimicrob Agents Chemother 2019; 63:e00153-19. [PMID: 31085517 PMCID: PMC6591595 DOI: 10.1128/aac.00153-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/24/2019] [Indexed: 01/24/2023] Open
Abstract
The rapid dissemination of the macrolide resistance gene erm(B) will likely compromise the efficacy of macrolides as the treatment of choice for campylobacteriosis. More importantly, erm(B) is always associated with several multidrug resistance genomic islands (MDRGIs), which confer resistance to multiple other antimicrobials. Continuous monitoring of the emergence of erm(B) and analysis of its associated genetic environments are crucial for our understanding of macrolide resistance in Campylobacter In this study, 290 Campylobacter isolates (216 Campylobacter coli isolates and 74 Campylobacter jejuni isolates) were obtained from 1,039 fecal samples collected in 2016 from pigs and chickens from three regions of China (344 samples from Guangdong, 335 samples from Shanghai, and 360 samples from Shandong). Overall, 74 isolates (72 C. coli isolates and 2 C. jejuni isolates) were PCR positive for erm(B). Combined with data from previous years, we observed a trend of increasing prevalence of erm(B) in C. coli Pulsed-field gel electrophoresis analyses suggested that both clonal expansion and horizontal transmission were involved in the dissemination of erm(B) in C. coli, and three novel types of erm(B)-associated MDRGIs were identified among the isolates. Furthermore, 2 erm(B)-harboring C. jejuni isolates also contained an aminoglycoside resistance genomic island and a multidrug-resistance-enhancing efflux pump, encoded by RE-cmeABC Antimicrobial susceptibility testing showed that most of the isolates were resistant to all clinically important antimicrobial agents used for the treatment of campylobacteriosis. These findings suggest that the increasing prevalence of erm(B)-associated MDRGIs might further limit treatment options for campylobacteriosis.
Collapse
Affiliation(s)
- Dejun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- State Key Laboratory of Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Weiwen Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ziquan Lv
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Junjie Xia
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xing Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuxin Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hong Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihai Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Abstract
Mycoplasmas are intrinsically resistant to antimicrobials targeting the cell wall (fosfomycin, glycopeptides, or β-lactam antibiotics) and to sulfonamides, first-generation quinolones, trimethoprim, polymixins, and rifampicin. The antibiotics most frequently used to control mycoplasmal infections in animals are macrolides and tetracyclines. Lincosamides, fluoroquinolones, pleuromutilins, phenicols, and aminoglycosides can also be active. Standardization of methods used for determination of susceptibility levels is difficult since no quality control strains are available and because of species-specific growth requirements. Reduced susceptibility levels or resistances to several families of antimicrobials have been reported in field isolates of pathogenic Mycoplasma species of major veterinary interest: M. gallisepticum and M. synoviae in poultry; M. hyopneumoniae, M. hyorhinis, and M. hyosynoviae in swine; M. bovis in cattle; and M. agalactiae in small ruminants. The highest resistances are observed for macrolides, followed by tetracyclines. Most strains remain susceptible to fluoroquinolones. Pleuromutilins are the most effective antibiotics in vitro. Resistance frequencies vary according to the Mycoplasma species but also according to the countries or groups of animals from which the samples were taken. Point mutations in the target genes of different antimicrobials have been identified in resistant field isolates, in vitro-selected mutants, or strains reisolated after an experimental infection followed by one or several treatments: DNA-gyrase and topoisomerase IV for fluoroquinolones; 23S rRNA for macrolides, lincosamides, pleuromutilins, and amphenicols; 16S rRNAs for tetracyclines and aminoglycosides. Further work should be carried out to determine and harmonize specific breakpoints for animal mycoplasmas so that in vitro information can be used to provide advice on selection of in vivo treatments.
Collapse
|
15
|
Lei Z, Liu Q, Qi Y, Yang B, Khaliq H, Xiong J, Moku GK, Ahmed S, Li K, Zhang H, Zhang W, Cao J, He Q. Optimal Regimens and Cutoff Evaluation of Tildipirosin Against Pasteurella multocida. Front Pharmacol 2018; 9:765. [PMID: 30093860 PMCID: PMC6071545 DOI: 10.3389/fphar.2018.00765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023] Open
Abstract
Pasteurella multocida (PM) can invade the upper respiratory tract of the body and cause death and high morbidity. Tildipirosin, a new 16-membered-ring macrolide antimicrobial, has been recommended for the treatment of respiratory diseases. The objective of this research was to improve the dose regimes of tildipirosin to PM for reducing the macrolides resistance development with the pharmacokinetic/pharmacodynamic (PK/PD) modeling approach and to establish an alternate cutoff for tildipirosin against PM. A single dose (4 mg/kg body weight) of tildipirosin was administered via intramuscular (i.m.) and intravenous (i.v.) injection to the pigs. The minimum inhibitory concentration (MIC) values of clinical isolates (112) were measured in the range of 0.0625–32 μg/ml, and the MIC50 and MIC90 values were 0.5 and 2 μg/ml, respectively. The MIC of the selected PM04 was 2 and 0.5 μg/ml in the tryptic soy broth (TSB) and serum, respectively. The main pharmacokinetic (PK) parameters including the area under the curve at 24 h (AUC24 h), AUC, terminal half-life (T1/2), the time to peak concentration (Tmax), peak concentration (Cmax), relative total systemic clearance (CLb), and the last mean residence time (MRTlast) were calculated to be 7.10, 7.94 μg∗h/ml, 24.02, NA h, NA μg/ml, 0.46 L/h∗kg, 8.06 h and 3.94, 6.79 μg∗h/ml, 44.04, 0.25 h, 0.98 μg/ml, 0.43 L/h∗kg, 22.85 h after i.v. and i.m. induction, respectively. Moreover, the bioavailability of i.m. route was 85.5%, and the unbinding of tildipirosin to serum protein was 78%. The parameters AUC24 h/MIC in serum for bacteriostatic, bactericidal, and elimination activities were calculated as 18.91, 29.13, and 34.03 h based on the inhibitory sigmoid Emax modeling. According to the Monte Carlo simulation, the optimum doses for bacteriostatic, bactericidal, and elimination activities were 6.10, 9.41, and 10.96 mg/kg for 50% target and 7.86, 12.17, and 14.57 mg/kg for 90% target, respectively. The epidemiological cutoff value (ECV) was calculated to be 4 μg/ml which could cover 95% wild-type clinical isolates distribution. The PK-PD cutoff (COPD) was analyzed to be 0.25 μg/ml in vitro for tildipirosin against PM based on the Monte Carlo simulation. Compared with these two cutoff values, the finial susceptible breakpoint was defined as 4 μg/ml. The data presented now provides the optimal regimens (12.17 mg/kg) and susceptible breakpoint (4 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.
Collapse
Affiliation(s)
- Zhixin Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Qianying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yi Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jincheng Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gopi Krishna Moku
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Saeed Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenqiu Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Beker M, Rose S, Lykkebo CA, Douthwaite S. Integrative and Conjugative Elements (ICEs) in Pasteurellaceae Species and Their Detection by Multiplex PCR. Front Microbiol 2018; 9:1329. [PMID: 29997583 PMCID: PMC6028734 DOI: 10.3389/fmicb.2018.01329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Strains of the Pasteurellaceae bacteria Pasteurella multocida and Mannheimia haemolytica are major etiological agents of bovine respiratory disease (BRD). Treatment of BRD with antimicrobials is becoming more challenging due to the increasing occurrence of resistance in infecting strains. In Pasteurellaceae strains exhibiting resistance to multiple antimicrobials including aminoglycosides, beta-lactams, macrolides and sulfonamides, the resistance determinants are often chromosomally encoded within integrative and conjugative elements (ICEs). To gain a more comprehensive picture of ICE structures, we sequenced the genomes of six strains of P. multocida and four strains of M. haemolytica; all strains were independent isolates and eight of them were multiple-resistant. ICE sequences varied in size from 49 to 79 kb, and were comprised of an array of conserved genes within a core region and varieties of resistance genes within accessory regions. These latter regions mainly account for the variation in the overall ICE sizes. From the sequence data, we developed a multiplex PCR assay targeting four conserved core genes required for integration and maintenance of ICE structures. Application of this assay on 75 isolates of P. multocida and M. haemolytica reveals how the presence and structures of ICEs are related to their antibiotic resistance phenotypes. The assay is also applicable to other members of the Pasteurellaceae family including Histophilus somni and indicates how clustering and dissemination of the resistance genes came about.
Collapse
Affiliation(s)
- Michal Beker
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Claus A Lykkebo
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Khalil D, Becker CA, Tardy F. Monitoring the Decrease in Susceptibility to Ribosomal RNAs Targeting Antimicrobials and Its Molecular Basis in Clinical Mycoplasma bovis Isolates over Time. Microb Drug Resist 2017; 23:799-811. [DOI: 10.1089/mdr.2016.0268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dima Khalil
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
| | - Claire A.M. Becker
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
| | - Florence Tardy
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
| |
Collapse
|
18
|
Cheng J, Ye Q, Yang Z, Yang W, Zhou J, Cen K. Microstructure and antioxidative capacity of the microalgae mutant Chlorella PY-ZU1 during tilmicosin removal from wastewater under 15% CO 2. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:414-419. [PMID: 27829514 DOI: 10.1016/j.jhazmat.2016.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
The response mechanisms of microalgal mutant Chlorella PY-ZU1 cells were investigated in their removal of antibiotic tilmicosin from wastewater under 15% CO2. Low concentrations (0.01-2mgL-1) of tilmicosin in wastewater stimulated the growth of microalgal cells, whereas high concentrations (5-50mgL-1) of tilmicosin significantly inhibited cell growth. When initial tilmicosin concentration increased from 0 to 50mgL-1, fractal dimension of microalgal cells monotonically increased from 1.36 to 1.62 and cell size monotonically decreased from 4.86 to 3.75μm. In parallel, malondialdehyde content, which represented the degree of cellular oxidative damage, monotonically increased from 1.92×10-7 to 7.07×10-7 nmol cell-1. Superoxide dismutase activity that represented cellular antioxidant capacity first increased from 2.59×10-4 to the peak of 6.60×10-4U cell-1, then gradually decreased to 2.39×10-4U cell-1. The maximum tilmicosin removal efficiency of 99.8% by Chlorella PY-ZU1 was obtained at the initial tilmicosin concentration of 50mgL-1.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Qing Ye
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Zongbo Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
19
|
|
20
|
Rose M, Pridmore A, Shaw A, Wilhelm C, Menge M, Kilp S, Röpke R, Nürnberger M. A microbiological assay to estimate the antimicrobial activity of parenteral tildipirosin against foodborne pathogens and commensals in the colon of beef cattle and pigs. J Vet Pharmacol Ther 2015; 39:277-86. [DOI: 10.1111/jvp.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 09/26/2015] [Indexed: 11/29/2022]
Affiliation(s)
- M. Rose
- MSD Animal Health Innovation GmbH; A Member of the MSD Animal Health Group; Schwabenheim Germany
| | - A. Pridmore
- Don Whitley Scientific Limited (DWS); Shipley UK
| | - A. Shaw
- Don Whitley Scientific Limited (DWS); Shipley UK
| | - C. Wilhelm
- MSD Animal Health Innovation GmbH; A Member of the MSD Animal Health Group; Schwabenheim Germany
| | - M. Menge
- MSD Animal Health Innovation GmbH; A Member of the MSD Animal Health Group; Schwabenheim Germany
| | - S. Kilp
- MSD Animal Health Innovation GmbH; A Member of the MSD Animal Health Group; Schwabenheim Germany
| | - R. Röpke
- MSD Animal Health Innovation GmbH; A Member of the MSD Animal Health Group; Schwabenheim Germany
| | | |
Collapse
|
21
|
Lerner U, Amram E, Ayling RD, Mikula I, Gerchman I, Harrus S, Teff D, Yogev D, Lysnyansky I. Acquired resistance to the 16-membered macrolides tylosin and tilmicosin by Mycoplasma bovis. Vet Microbiol 2014; 168:365-71. [DOI: 10.1016/j.vetmic.2013.11.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
|
22
|
Shishkina A, Makarov G, Tereshchenkov A, Korshunova G, Sumbatyan N, Golovin A, Svetlov M, Bogdanov A. Conjugates of amino acids and peptides with 5-o-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel. Bioconjug Chem 2013; 24:1861-9. [PMID: 24090034 DOI: 10.1021/bc400236n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During protein synthesis the nascent polypeptide chain (NC) extends through the ribosomal exit tunnel (NPET). Also, the large group of macrolide antibiotics binds in the nascent peptide exit tunnel. In some cases interaction of NC with NPET leads to the ribosome stalling, a significant event in regulation of translation. In other cases NC-ribosome interactions lead to pauses in translation that play an important role in cotranslational folding of polypeptides emerging from the ribosome. The precise mechanism of NC recognition in NPET as well as factors that determine NC conformation in the ribosomal tunnel are unknown. A number of derivatives of the macrolide antibiotic 5-O-mycaminosyltylonolide (OMT) containing N-acylated amino acid or peptide residues were synthesized in order to study potential sites of NC-NPET interactions. The target compounds were prepared by conjugation of protected amino acids and peptides with the C23 hydroxyl group of the macrolide. These OMT derivatives showed high although varying abilities to inhibit the firefly luciferase synthesis in vitro. Three glycil-containing derivatives appeared to be strong inhibitors of translation, more potent than parental OMT. Molecular dynamics (MD) simulation of complexes of tylosin, OMT, and some of OMT derivatives with the large ribosomal subunit of E. coli illuminated a plausible reason for the high inhibitory activity of Boc-Gly-OMT. In addition, the MD study detected a new putative site of interaction of the nascent polypeptide chain with the NPET walls.
Collapse
Affiliation(s)
- Anna Shishkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory, 1, bldg 40, 119992 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Inhibition of protein synthesis on the ribosome by tildipirosin compared with other veterinary macrolides. Antimicrob Agents Chemother 2012; 56:6033-6. [PMID: 22926570 DOI: 10.1128/aac.01250-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tildipirosin is a 16-membered-ring macrolide developed to treat bacterial pathogens, including Mannheimia haemolytica and Pasteurella multocida, that cause respiratory tract infections in cattle and swine. Here we evaluated the efficacy of tildipirosin at inhibiting protein synthesis on the ribosome (50% inhibitory concentration [IC(50)], 0.23 ± 0.01 μM) and compared it with the established veterinary macrolides tylosin, tilmicosin, and tulathromycin. Mutation and methylation at key rRNA nucleotides revealed differences in the interactions of these macrolides within their common ribosomal binding site.
Collapse
|