1
|
Zahed MA, Movahed E, Khodayari A, Zanganeh S, Badamaki M. Biotechnology for carbon capture and fixation: Critical review and future directions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112830. [PMID: 34051533 DOI: 10.1016/j.jenvman.2021.112830] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
To mitigate the growing threat of climate change and develop novel technologies that can eliminate carbon dioxide, the most abundant greenhouse gas derived from the flue gas stream of the fossil fuel-fired power stations, is momentous. The development of carbon capture and sequestration-based technologies may play a significant role in this regard. Carbon fixation mostly occurs by photosynthesizing plants as well as photo and chemoautotrophic microbes that turn the atmospheric carbon dioxide into organic materials via their enzymes. Biofuel can offer a sustainable solution for carbon mitigation. The pragmatic implementation of biofuel production processes is neither cost-effective nor has been proven safe over the long term. Searching for ways to enhance biofuel generation by the employment of genetic engineering is vital. Carbon biosequestration can help to curb the greenhouse effect. In addition, new genomic approaches, which are able to use gene-splicing biotechnology techniques and recombinant DNA technology to produce genetically modified organisms, can contribute to improvement in sustainable and renewable biofuel and biomaterial production from microorganisms. Biopolymers, Biosurfactants, and Biochars are suggested as sustainable future trends. This study aims to pave the way for implementing biotechnology methods to capture carbon and decrease the demand and consumption of fossil fuels as well as the emissions of greenhouse gases. Having a better image of microorganisms' potential role in carbon capture and storage can be prolific in developing powerful techniques to reduce CO2 emissions.
Collapse
Affiliation(s)
- Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran.
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Arezoo Khodayari
- Department of Civil and Environmental Engineering, California State University, Los Angeles, USA
| | - Saba Zanganeh
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran
| | - Maryam Badamaki
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran
| |
Collapse
|
2
|
Herbst E, Lee A, Tang Y, Snyder SA, Cornish VW. Heterologous Catalysis of the Final Steps of Tetracycline Biosynthesis by Saccharomyces cerevisiae. ACS Chem Biol 2021; 16:1425-1434. [PMID: 34269557 DOI: 10.1021/acschembio.1c00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing treatments for antibiotic resistant bacterial infections is among the highest priority public health challenges worldwide. Tetracyclines, one of the most important classes of antibiotics, have fallen prey to antibiotic resistance, necessitating the generation of new analogs. Many tetracycline analogs have been accessed through both total synthesis and semisynthesis, but key C-ring tetracycline analogs remain inaccessible. New methods are needed to unlock access to these analogs, and heterologous biosynthesis in a tractable host such as Saccharomyces cerevisiae is a candidate method. C-ring analog biosynthesis can mimic nature's biosynthesis of tetracyclines from anhydrotetracyclines, but challenges exist, including the absence of the unique cofactor F420 in common heterologous hosts. Toward this goal, this paper describes the biosynthesis of tetracycline from anhydrotetracycline in S. cerevisiae heterologously expressing three enzymes from three bacterial hosts: the anhydrotetracycline hydroxylase OxyS, the dehydrotetracycline reductase CtcM, and the F420 reductase FNO. This biosynthesis of tetracycline is enabled by OxyS performing just one hydroxylation step in S. cerevisiae despite its previous characterization as a double hydroxylase. This single hydroxylation enabled us to purify and structurally characterize a hypothetical intermediate in oxytetracycline biosynthesis that can explain structural differences between oxytetracycline and chlortetracycline. We show that Fo, a synthetically accessible derivative of cofactor F420, can replace F420 in tetracycline biosynthesis. Critically, the use of S. cerevisiae for the final steps of tetracycline biosynthesis described herein sets the stage to achieve a total biosynthesis of tetracycline as well as novel tetracycline analogs in S. cerevisiae with the potential to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ehud Herbst
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Arden Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Scott A. Snyder
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Virginia W. Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Systems Biology, Columbia University, New York, New York 10032, United States
| |
Collapse
|
3
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
4
|
Combining protein and metabolic engineering to construct efficient microbial cell factories. Curr Opin Biotechnol 2020; 66:27-35. [DOI: 10.1016/j.copbio.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022]
|
5
|
Chen X, Shukal S, Zhang C. Integrating Enzyme and Metabolic Engineering Tools for Enhanced α-Ionone Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13451-13459. [PMID: 31079451 DOI: 10.1021/acs.jafc.9b00860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metabolic engineering aims to balance intracellular pathways and increase the precursor supply. However, some heterologous enzymes are not evolved to support high flux. To remove the limitation, the catalytic properties of rate-limiting enzymes must be enhanced. Here, we engineered carotenoid cleavage dioxygenase 1 (CCD1), whose intrinsic promiscuity and low activity limited the production of α-ionone in Escherichia coli. Site-directed mutagenesis was carried out to mutate three structural elements of CCD1: an active site loop, η-helices, and α-helices. Furthermore, mutated CCD1 was fused with lycopene ε-cyclase to facilitate substrate channelling. Collectively, these methods improved the α-ionone concentration by >2.5-fold compared to our previously optimized strain. Lastly, the engineered enzyme was used in conjunction with the metabolic engineering strategy to further boost the α-ionone concentration by another 20%. This work deepens our understanding of CCD1 catalytic properties and proves that integrating enzyme and metabolic engineering can be synergistic for a higher microbial production yield.
Collapse
Affiliation(s)
- Xixian Chen
- Biotransformation Innovation Platform , Agency for Science, Technology and Research (A*STAR) , 61 Biopolis Drive , Singapore 138673 , Singapore
| | - Sudha Shukal
- Biotransformation Innovation Platform , Agency for Science, Technology and Research (A*STAR) , 61 Biopolis Drive , Singapore 138673 , Singapore
| | - Congqiang Zhang
- Biotransformation Innovation Platform , Agency for Science, Technology and Research (A*STAR) , 61 Biopolis Drive , Singapore 138673 , Singapore
| |
Collapse
|
6
|
Peters G, Maertens J, Lammertyn J, De Mey M. Exploring of the feature space of de novo developed post-transcriptional riboregulators. PLoS Comput Biol 2018; 14:e1006170. [PMID: 30118473 PMCID: PMC6114898 DOI: 10.1371/journal.pcbi.1006170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/29/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Metabolic engineering increasingly depends upon RNA technology to customly rewire the metabolism to maximize production. To this end, pure riboregulators allow dynamic gene repression without the need of a potentially burdensome coexpressed protein like typical Hfq binding small RNAs and clustered regularly interspaced short palindromic repeats technology. Despite this clear advantage, no clear general design principles are available to de novo develop repressing riboregulators, limiting the availability and the reliable development of these type of riboregulators. Here, to overcome this lack of knowledge on the functionality of repressing riboregulators, translation inhibiting RNAs are developed from scratch. These de novo developed riboregulators explore features related to thermodynamical and structural factors previously attributed to translation initiation modulation. In total, 12 structural and thermodynamic features were defined of which six features were retained after removing correlations from an in silico generated riboregulator library. From this translation inhibiting RNA library, 18 riboregulators were selected using a experimental design and subsequently constructed and co-expressed with two target untranslated regions to link the translation inhibiting RNA features to functionality. The pure riboregulators in the design of experiments showed repression down to 6% of the original protein expression levels, which could only be partially explained by a ordinary least squares regression model. To allow reliable forward engineering, a partial least squares regression model was constructed and validated to link the properties of translation inhibiting RNA riboregulators to gene repression. In this model both structural and thermodynamic features were important for efficient gene repression by pure riboregulators. This approach enables a more reliable de novo forward engineering of effective pure riboregulators, which further expands the RNA toolbox for gene expression modulation. To allow reliable forward engineering of microbial cell factories, various metabolic engineering efforts rely on RNA-based technology. As such, programmable riboregulators allow dynamic control over gene expression. However, no clear design principles exist for de novo developed repressing riboregulators, which limits their applicability. Here, various engineering principles are identified and computationally explored. Subsequently, various design criteria are used in an experimental design, which were explored in an in vivo study. This resulted in a regression model that enables a more reliable computational design of repression small RNAs.
Collapse
Affiliation(s)
- Gert Peters
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
| | | | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
7
|
Liu Q, Yu T, Campbell K, Nielsen J, Chen Y. Modular Pathway Rewiring of Yeast for Amino Acid Production. Methods Enzymol 2018; 608:417-439. [PMID: 30173772 DOI: 10.1016/bs.mie.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amino acids find various applications in biotechnology in view of their importance in the food, feed, pharmaceutical, and personal care industries as nutrients, additives, and drugs, respectively. For the large-scale production of amino acids, microbial cell factories are widely used and the development of amino acid-producing strains has mainly focused on prokaryotes Corynebacterium glutamicum and Escherichia coli. However, the eukaryote Saccharomyces cerevisiae is becoming an even more appealing microbial host for production of amino acids and derivatives because of its superior molecular and physiological features, such as amenable to genetic engineering and high tolerance to harsh conditions. To transform S. cerevisiae into an industrial amino acid production platform, the highly coordinated and multiple layers regulation in its amino acid metabolism should be relieved and reconstituted to optimize the metabolic flux toward synthesis of target products. This chapter describes principles, strategies, and applications of modular pathway rewiring in yeast using the engineering of l-ornithine metabolism as a paradigm. Additionally, detailed protocols for in vitro module construction and CRISPR/Cas-mediated pathway assembly are provided.
Collapse
Affiliation(s)
- Quanli Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Tao Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Kate Campbell
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
8
|
Peters G, De Paepe B, De Wannemaeker L, Duchi D, Maertens J, Lammertyn J, De Mey M. Development ofN-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gert Peters
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| | | | - Dries Duchi
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| | - Jo Maertens
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| | | | - Marjan De Mey
- Centre for Synthetic Biology; Ghent University; Ghent Belgium
| |
Collapse
|
9
|
Ghodasara A, Voigt CA. Balancing gene expression without library construction via a reusable sRNA pool. Nucleic Acids Res 2017; 45:8116-8127. [PMID: 28609783 PMCID: PMC5737548 DOI: 10.1093/nar/gkx530] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
Balancing protein expression is critical when optimizing genetic systems. Typically, this requires library construction to vary the genetic parts controlling each gene, which can be expensive and time-consuming. Here, we develop sRNAs corresponding to 15nt ‘target’ sequences that can be inserted upstream of a gene. The targeted gene can be repressed from 1.6- to 87-fold by controlling sRNA expression using promoters of different strength. A pool is built where six sRNAs are placed under the control of 16 promoters that span a ∼103-fold range of strengths, yielding ∼107 combinations. This pool can simultaneously optimize up to six genes in a system. This requires building only a single system-specific construct by placing a target sequence upstream of each gene and transforming it with the pre-built sRNA pool. The resulting library is screened and the top clone is sequenced to determine the promoter controlling each sRNA, from which the fold-repression of the genes can be inferred. The system is then rebuilt by rationally selecting parts that implement the optimal expression of each gene. We demonstrate the versatility of this approach by using the same pool to optimize a metabolic pathway (β-carotene) and genetic circuit (XNOR logic gate).
Collapse
Affiliation(s)
- Amar Ghodasara
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
10
|
Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid. Nat Commun 2017. [PMID: 28631755 PMCID: PMC5481828 DOI: 10.1038/ncomms15828] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
2,4-Dihydroxybutyric acid (DHB) is a molecule with considerable potential as a versatile chemical synthon. Notably, it may serve as a precursor for chemical synthesis of the methionine analogue 2-hydroxy-4-(methylthio)butyrate, thus, targeting a considerable market in animal nutrition. However, no natural metabolic pathway exists for the biosynthesis of DHB. Here we have therefore conceived a three-step metabolic pathway for the synthesis of DHB starting from the natural metabolite malate. The pathway employs previously unreported malate kinase, malate semialdehyde dehydrogenase and malate semialdehyde reductase activities. The kinase and semialdehyde dehydrogenase activities were obtained by rational design based on structural and mechanistic knowledge of candidate enzymes acting on sterically cognate substrates. Malate semialdehyde reductase activity was identified from an initial screening of several natural enzymes, and was further improved by rational design. The pathway was expressed in a minimally engineered Escherichia coli strain and produces 1.8 g l-1 DHB with a molar yield of 0.15.
Collapse
|
11
|
Liu C, Ding Y, Xian M, Liu M, Liu H, Ma Q, Zhao G. Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis. Crit Rev Biotechnol 2017; 37:933-941. [PMID: 28078904 DOI: 10.1080/07388551.2016.1272093] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Hydroxypropionate (3HP) is an attractive platform chemical, serving as a precursor to a variety of commodity chemicals like acrylate and acrylamide, as well as a monomer of a biodegradable plastic. To establish a sustainable way to produce these commercially important chemicals and materials, fermentative production of 3HP is widely investigated in recent years. It is reported that 3HP can be produced from several intermediates, such as glycerol, malonyl-CoA, and β-alanine. Among all these biosynthetic routes, the malonyl-CoA pathway has some distinct advantages, including a broad feedstock spectrum, thermodynamic feasibility, and redox neutrality. To date, this pathway has been successfully constructed in various species including Escherichia coli, yeast and cyanobacteria, and optimized through carbon flux redirection, enzyme screening and engineering, and an increasing supply of energy and cofactors, resulting in significantly enhanced 3HP titer up to 40 g/L. These results show the feasibility of commercial manufacturing of 3HP and its derivatives in the future.
Collapse
Affiliation(s)
- Changshui Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Yamei Ding
- b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Mo Xian
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Min Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Huizhou Liu
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Qingjun Ma
- b Institute of Oceanology , Chinese Academy of Sciences , Qingdao , China
| | - Guang Zhao
- a CAS Key Lab of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| |
Collapse
|
12
|
Chen Z, Zeng AP. Protein engineering approaches to chemical biotechnology. Curr Opin Biotechnol 2016; 42:198-205. [DOI: 10.1016/j.copbio.2016.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/10/2016] [Accepted: 07/30/2016] [Indexed: 01/09/2023]
|
13
|
Cam Y, Alkim C, Trichez D, Trebosc V, Vax A, Bartolo F, Besse P, François JM, Walther T. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals. ACS Synth Biol 2016; 5:607-18. [PMID: 26186096 DOI: 10.1021/acssynbio.5b00103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.
Collapse
Affiliation(s)
- Yvan Cam
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Ceren Alkim
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Debora Trichez
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Vincent Trebosc
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Amélie Vax
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - François Bartolo
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- Département Génie Mathématiques et Modélisation (GMM), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Philippe Besse
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- Département Génie Mathématiques et Modélisation (GMM), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Jean Marie François
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| | - Thomas Walther
- INSA, UPS, INP, LISBP, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés (LISBP),, 31077 Toulouse, France
- UMR5504, CNRS, 31077 Toulouse, France
- TWB, 3 rue des Satellites, Canal Biotech Building 2, 31400 Toulouse, France
| |
Collapse
|
14
|
Reetz MT. What are the Limitations of Enzymes in Synthetic Organic Chemistry? CHEM REC 2016; 16:2449-2459. [DOI: 10.1002/tcr.201600040] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Manfred T. Reetz
- Fachbereich Chemie (15) Philipps-Universität Marburg Hans-Meerwein Straße; 35032 Marburg Germany
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
15
|
Peters G, Coussement P, Maertens J, Lammertyn J, De Mey M. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnol Adv 2015; 33:1829-44. [PMID: 26514597 DOI: 10.1016/j.biotechadv.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
Collapse
Affiliation(s)
- Gert Peters
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Coussement
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Louvain, Belgium
| | - Marjan De Mey
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
16
|
Schmidt S, Büchsenschütz HC, Scherkus C, Liese A, Gröger H, Bornscheuer UT. Biocatalytic Access to Chiral Polyesters by an Artificial Enzyme Cascade Synthesis. ChemCatChem 2015. [DOI: 10.1002/cctc.201500823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandy Schmidt
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Hanna C. Büchsenschütz
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christian Scherkus
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Harald Gröger
- Organic Chemistry I, Faculty of Chemistry; Bielefeld University; P.O. Box 100131 33501 Bielefeld Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry; Dept. of Biotechnology & Enzyme Catalysis; University of Greifswald; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
17
|
van Vliet LD, Colin PY, Hollfelder F. Bioinspired genotype-phenotype linkages: mimicking cellular compartmentalization for the engineering of functional proteins. Interface Focus 2015; 5:20150035. [PMID: 26464791 PMCID: PMC4590426 DOI: 10.1098/rsfs.2015.0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The idea of compartmentalization of genotype and phenotype in cells is key for enabling Darwinian evolution. This contribution describes bioinspired systems that use in vitro compartments-water-in-oil droplets and gel-shell beads-for the directed evolution of functional proteins. Technologies based on these principles promise to provide easier access to protein-based therapeutics, reagents for processes involving enzyme catalysis, parts for synthetic biology and materials with biological components.
Collapse
Affiliation(s)
| | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
18
|
Sévin DC, Kuehne A, Zamboni N, Sauer U. Biological insights through nontargeted metabolomics. Curr Opin Biotechnol 2014; 34:1-8. [PMID: 25461505 DOI: 10.1016/j.copbio.2014.10.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 01/10/2023]
Abstract
Metabolomics is increasingly employed to investigate metabolism and its reciprocal crosstalk with cellular signaling and regulation. In recent years, several nontargeted metabolomics methods providing substantial metabolome coverage have been developed. Here, we review and compare the contributions of traditional targeted and nontargeted metabolomics in advancing different research areas ranging from biotechnology to human health. Although some studies demonstrated the power of nontargeted profiling in generating unexpected and yet highly important insights, we found that most mechanistic links were still revealed by hypothesis-driven targeted methods. Novel computational approaches for formal interpretation of complex metabolic patterns and integration of complementary molecular layers are required to tap the full potential of nontargeted metabolomics for data-driven, discovery-oriented research and rapidly nucleating novel biological insights.
Collapse
Affiliation(s)
- Daniel C Sévin
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland; PhD Program on Systems Biology, Life Science Zurich, Switzerland
| | - Andreas Kuehne
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland; PhD Program on Systems Biology, Life Science Zurich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland.
| |
Collapse
|
19
|
Fischlechner M, Schaerli Y, Mohamed MF, Patil S, Abell C, Hollfelder F. Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat Chem 2014; 6:791-6. [DOI: 10.1038/nchem.1996] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022]
|
20
|
Multivariate modular metabolic engineering for pathway and strain optimization. Curr Opin Biotechnol 2014; 29:156-62. [PMID: 24927371 DOI: 10.1016/j.copbio.2014.05.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022]
Abstract
Despite the potential in utilizing microbial fermentation for chemical production, the field of industrial biotechnology still lacks a standard, universally applicable principle for strain optimization. A key challenge has been in finding and applying effective ways to address metabolic flux imbalances. Strategies based on rational design require significant a priori knowledge and often fail to take a holistic view of cellular metabolism. Combinatorial approaches enable more global searches but require a high-throughput screen. Here, we present the recent advances and promises of a novel approach to metabolic pathway and strain optimization called multivariate modular metabolic engineering (MMME). In this technique, key enzymes are organized into distinct modules and simultaneously varied based on expression to balance flux through a pathway. Because of its simplicity and broad applicability, MMME has the potential to systematize and revolutionize the field of metabolic engineering and industrial biotechnology.
Collapse
|
21
|
Agudo R, Reetz MT. Designer cells for stereocomplementary de novo enzymatic cascade reactions based on laboratory evolution. Chem Commun (Camb) 2014; 49:10914-6. [PMID: 24135920 DOI: 10.1039/c3cc46229c] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Designer cells for a synthetic cascade reaction harnessing selective redox reactions were devised, featuring two successive regioselective P450-catalyzed CH-activating oxidations of 1-cyclohexene carboxylic acid methyl ester followed by stereoselective olefin-reduction catalysed by (R)- or (S)-selective mutants of an enoate reductase.
Collapse
Affiliation(s)
- Rubén Agudo
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Str., 35032 Marburg, Germany
| | | |
Collapse
|
22
|
Maervoet VET, De Maeseneire SL, Avci FG, Beauprez J, Soetaert WK, De Mey M. 1,3-propanediol production with Citrobacter werkmanii DSM17579: effect of a dhaD knock-out. Microb Cell Fact 2014; 13:70. [PMID: 24885849 PMCID: PMC4031495 DOI: 10.1186/1475-2859-13-70] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background 1,3-propanediol (PDO) is a substantially industrial metabolite used in the polymer industry. Although several natural PDO production hosts exist, e.g. Klebsiella sp., Citrobacter sp. and Clostridium sp., the PDO yield on glycerol is insufficient for an economically viable bio-process. Enhancing this yield via strain improvement can be achieved by disconnecting the production and growth pathways. In the case of PDO formation, this approach results in a microorganism metabolizing glycerol strictly for PDO production, while catabolizing a co-substrate for growth and maintenance. We applied this strategy to improve the PDO production with Citrobacter werkmanii DSM17579. Results Genetic tools were developed and used to create Citrobacter werkmanii DSM17579 ∆dhaD in which dhaD, encoding for glycerol dehydrogenase, was deleted. Since this strain was unable to grow on glycerol anaerobically, both pathways were disconnected. The knock-out strain was perturbed with 13 different co-substrates for growth and maintenance. Glucose was the most promising, although a competition between NADH-consuming enzymes and 1,3-propanediol dehydrogenase emerged. Conclusion Due to the deletion of dhaD in Citrobacter werkmanii DSM17579, the PDO production and growth pathway were split. As a consequence, the PDO yield on glycerol was improved 1,5 times, strengthening the idea that Citrobacter werkmanii DSM17579 could become an industrially interesting host for PDO production.
Collapse
Affiliation(s)
- Veerle E T Maervoet
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Classen T, Korpak M, Schölzel M, Pietruszka J. Stereoselective Enzyme Cascades: An Efficient Synthesis of Chiral γ-Butyrolactones. ACS Catal 2014. [DOI: 10.1021/cs5000262] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Classen
- Institut
für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Margarete Korpak
- Institut
für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
| | - Melanie Schölzel
- Institut
für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
| | - Jörg Pietruszka
- Institut
für Bio- und Geowissenschaften (IBG-1: Biotechnologie), Forschungszentrum Jülich, D-52425 Jülich, Germany
- Institut
für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Stetternicher Forst, Geb. 15.8, D-52426 Jülich, Germany
| |
Collapse
|
24
|
Gao N, Sun H, Dong K, Ren J, Duan T, Xu C, Qu X. Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer's disease. Nat Commun 2014; 5:3422. [PMID: 24595206 DOI: 10.1038/ncomms4422] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 02/10/2014] [Indexed: 12/31/2022] Open
Abstract
Inhibitions of amyloid β (Aβ) aggregation and Aβ-haem peroxidase-like activity have received much attention because these two symptoms can be the primary targets of therapeutic strategies for Alzheimer's disease (AD). Recently, our group found that polyoxometalate (POM) with a Wells-Dawson structure can efficiently inhibit Aβ aggregation. However, the interaction between POMs and Aβ is robust, but still needs to improve Aβ binding affinity. More importantly, it is unclear whether POMs can cross the blood-brain barrier and decrease Aβ-haem peroxidase-like activity. Here we show that our designed series of transition metal-functionalized POM derivatives with a defined histidine-chelated binding site have much better Aβ inhibition and peroxidase-like activity inhibition effects than the parent POM. More intriguingly, we show that these compounds can cross the blood-brain barrier and are metabolized after 48 h. Our work provides insights into the design, synthesis and screening of inorganic metal compounds as multifunctional therapeutic agents against AD.
Collapse
Affiliation(s)
- Nan Gao
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hanjun Sun
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Kai Dong
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinsong Ren
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Taicheng Duan
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Can Xu
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaogang Qu
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
25
|
Coussement P, Maertens J, Beauprez J, Van Bellegem W, De Mey M. One step DNA assembly for combinatorial metabolic engineering. Metab Eng 2014; 23:70-7. [PMID: 24594279 DOI: 10.1016/j.ymben.2014.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/28/2014] [Accepted: 02/24/2014] [Indexed: 11/19/2022]
Abstract
The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity.
Collapse
Affiliation(s)
- Pieter Coussement
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Jo Maertens
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Joeri Beauprez
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Wouter Van Bellegem
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Marjan De Mey
- Centre of Expertise - Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
26
|
Xu P, Wang W, Li L, Bhan N, Zhang F, Koffas MAG. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol 2014; 9:451-8. [PMID: 24191643 DOI: 10.1021/cb400623m] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Malonyl-CoA is the rate-limiting precursor involved in the chain elongation reaction of a range of value-added pharmaceuticals and biofuels. Development of malonyl-CoA responsive sensors holds great promise in overcoming critical pathway limitations and optimizing production titers and yields. By incorporating the Bacillus subtilis trans-regulatory protein FapR and the cis-regulatory element fapO, we constructed a hybrid promoter-regulatory system that responds to a broad range of intracellular malonyl-CoA concentrations (from 0.1 to 1.1 nmol/mgDW) in Escherichia coli. Elimination of regulatory protein and nonspecific DNA cross-communication leads to a sensor construct that exhibits malonyl-CoA-dependent linear phase kinetics with increased dynamic response range. The sensors reported in this study could potentially control and optimize carbon flux leading to robust biosynthetic pathways for the production of malonyl-CoA-derived compounds.
Collapse
Affiliation(s)
- Peng Xu
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wenya Wang
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lingyun Li
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department
of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Namita Bhan
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Fuming Zhang
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mattheos A. G. Koffas
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department
of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
27
|
Peters C, Kölzsch R, Kadow M, Skalden L, Rudroff F, Mihovilovic MD, Bornscheuer UT. Identification, Characterization, and Application of Three Enoate Reductases fromPseudomonas putidain In Vitro Enzyme Cascade Reactions. ChemCatChem 2014. [DOI: 10.1002/cctc.201300957] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Philippe RN, De Mey M, Anderson J, Ajikumar PK. Biotechnological production of natural zero-calorie sweeteners. Curr Opin Biotechnol 2014; 26:155-61. [PMID: 24503452 DOI: 10.1016/j.copbio.2014.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/04/2014] [Indexed: 11/25/2022]
Abstract
The increasing public awareness of adverse health impacts from excessive sugar consumption has created increasing interest in plant-derived, natural low-calorie or zero-calorie sweeteners. Two plant species which contain natural sweeteners, Stevia rebaudiana and Siraitia grosvenorii, have been extensively profiled to identify molecules with high intensity sweetening properties. However, sweetening ability does not necessarily make a product viable for commercial applications. Some criteria for product success are proposed to identify which targets are likely to be accepted by consumers. Limitations of plant-based production are discussed, and a case is put forward for the necessity of biotechnological production methods such as plant cell culture or microbial fermentation to meet needs for commercial-scale production of natural sweeteners.
Collapse
Affiliation(s)
- Ryan N Philippe
- Manus Biosynthesis, 790 Memorial Drive, Suite 102, Cambridge, MA 02139, USA
| | - Marjan De Mey
- Manus Biosynthesis, 790 Memorial Drive, Suite 102, Cambridge, MA 02139, USA; Centre for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000, Belgium
| | - Jeff Anderson
- Manus Biosynthesis, 790 Memorial Drive, Suite 102, Cambridge, MA 02139, USA
| | | |
Collapse
|
29
|
Grimaldi J, Collins CH, Belfort G. Toward cell-free biofuel production: Stable immobilization of oligomeric enzymes. Biotechnol Prog 2014; 30:324-31. [DOI: 10.1002/btpr.1876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 01/14/2014] [Indexed: 11/12/2022]
Affiliation(s)
- J. Grimaldi
- Howard P. Isermann Dept. of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, RPI; Troy NY 12180-3590
| | - C. H. Collins
- Howard P. Isermann Dept. of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, RPI; Troy NY 12180-3590
| | - G. Belfort
- Howard P. Isermann Dept. of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, RPI; Troy NY 12180-3590
| |
Collapse
|
30
|
Abstract
The genomic revolution promises great advances in the search for useful biocatalysts. Function-based metagenomic approaches have identified several enzymes with properties that make them useful candidates for a variety of bioprocesses. As DNA sequencing costs continue to decline, the volume of genomic data, along with their corresponding predicted protein sequences, will continue to increase dramatically, necessitating new approaches to leverage this information for gene-based bioprospecting efforts. Additionally, as new functions are discovered and correlated with this sequence information, the knowledge of the often complex relationship between a protein's sequence and function will improve. This in turn will lead to better gene-based bioprospecting approaches and facilitate the tailoring of desired properties through protein engineering projects. In this chapter, we discuss a number of recent advances in bioprospecting within the context of the genomic age.
Collapse
Affiliation(s)
- Michael A Hicks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Synthetic Biology Engineering Research Center (SynBERC), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
31
|
Park OJ. Recent Developments and Prospects in the Enzymatic Acylations. KOREAN CHEMICAL ENGINEERING RESEARCH 2013. [DOI: 10.9713/kcer.2013.51.6.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Reetz MT. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 2013; 135:12480-96. [PMID: 23930719 DOI: 10.1021/ja405051f] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enzymes as catalysts in synthetic organic chemistry gained importance in the latter half of the 20th century, but nevertheless suffered from two major limitations. First, many enzymes were not accessible in large enough quantities for practical applications. The advent of recombinant DNA technology changed this dramatically in the late 1970s. Second, many enzymes showed a narrow substrate scope, often poor stereo- and/or regioselectivity and/or insufficient stability under operating conditions. With the development of directed evolution beginning in the 1990s and continuing to the present day, all of these problems can be addressed and generally solved. The present Perspective focuses on these and other developments which have popularized enzymes as part of the toolkit of synthetic organic chemists and biotechnologists. Included is a discussion of the scope and limitation of cascade reactions using enzyme mixtures in vitro and of metabolic engineering of pathways in cells as factories for the production of simple compounds such as biofuels and complex natural products. Future trends and problems are also highlighted, as is the discussion concerning biocatalysis versus nonbiological catalysis in synthetic organic chemistry. This Perspective does not constitute a comprehensive review, and therefore the author apologizes to those researchers whose work is not specifically treated here.
Collapse
Affiliation(s)
- Manfred T Reetz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg, Germany.
| |
Collapse
|
33
|
Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 2013; 97:7195-204. [PMID: 23771780 DOI: 10.1007/s00253-013-5020-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
Two bioactive O-methylflavonoids, sakuranetin (7-O-methylnaringenin) and ponciretin (7-O-methylnaringenin), were synthesized in Escherichia coli. Sakuranetin inhibits germination of Magnaporthe grisea, and ponciretin is a potential inhibitor of Helicobacter pylori. To achieve this, we reconstructed the naringenin biosynthesis pathway in E. coli. First, the shikimic acid pathway, which leads to the biosynthesis of tyrosine, was engineered in E. coli to increase the amount of available tyrosine. Second, several genes for the biosynthesis of ponciretin and sakuranetin such as tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), chalcone synthase (CHS), and O-methyltransferase (OMT) were overexpressed. In order to increase the supply the Coenzyme A (CoA), one gene (icdA, isocitrate dehydrogenase) was deleted. Using these strategies, we synthesized ponciretin and sakuranetin from glucose in E. coli at the concentration of 42.5 mg/L and 40.1 mg/L, respectively.
Collapse
|
34
|
Carlsen S, Ajikumar PK, Formenti LR, Zhou K, Phon TH, Nielsen ML, Lantz AE, Kielland-Brandt MC, Stephanopoulos G. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2013; 97:5753-69. [PMID: 23636690 DOI: 10.1007/s00253-013-4877-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe-4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U-¹³C₆ glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron-sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron-sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron-sulfur cluster proteins in its cytosol.
Collapse
Affiliation(s)
- Simon Carlsen
- Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|