1
|
Živković I, Dulic M, Kozulic P, Mocibob M, Gruic-Sovulj I. Kinetic characterization of amino acid activation by aminoacyl-tRNA synthetases using radiolabelled γ-[ 32P]ATP. FEBS Open Bio 2024. [PMID: 39344714 DOI: 10.1002/2211-5463.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs) are fundamental enzymes that pair amino acids and tRNAs for protein synthesis. Aminoacylation occurs in two discrete steps. The amino acid is first activated by ATP, leading to an aminoacyl-adenylate intermediate and pyrophosphate (PPi) formation. In a subsequent step, the aminoacyl moiety is transferred to the tRNA. Kinetic assays were developed to follow each of these steps independently, as well as cumulative two-step aminoacylation. The main advantage of following the activation step over two-step aminoacylation is that most AARSs can activate amino acids in the absence of the tRNA, the production of which is laborious. Hence, the activation step is often tested first in the kinetic analysis, including large screens exploring AARS-targeting inhibitors. Since the 1960s, the activation reaction has been routinely followed by the standard ATP/[32P]PPi exchange assay, which relies on the equilibrium exchange of radiolabel between PPi and ATP using [32P]PPi as a labelled compound. However, this method became much less convenient when [32P]PPi was discontinued in 2022. As a solution, we developed a modified assay that uses easily attainable γ-[32P]ATP as a labelled compound in the equilibrium-based assay. Using this assay, herein named the [32P]ATP/PPi assay, we followed the activation step of several AARSs. The obtained data are in good agreement with the previously published kinetic constants obtained with the standard ATP/[32P]PPi exchange assay.
Collapse
Affiliation(s)
- Igor Živković
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Petra Kozulic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Ju Y, Han L, Chen B, Luo Z, Gu Q, Xu J, Yang XL, Schimmel P, Zhou H. X-shaped structure of bacterial heterotetrameric tRNA synthetase suggests cryptic prokaryote functions and a rationale for synthetase classifications. Nucleic Acids Res 2021; 49:10106-10119. [PMID: 34390350 PMCID: PMC8464048 DOI: 10.1093/nar/gkab707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding β-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and β-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain β-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.
Collapse
Affiliation(s)
- Yingchen Ju
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Han
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bingyi Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiteng Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Itoh M, Dai H, Horike SI, Gonzalez J, Kitami Y, Meguro-Horike M, Kuki I, Shimakawa S, Yoshinaga H, Ota Y, Okazaki T, Maegaki Y, Nabatame S, Okazaki S, Kawawaki H, Ueno N, Goto YI, Kato Y. Biallelic KARS pathogenic variants cause an early-onset progressive leukodystrophy. Brain 2020; 142:560-573. [PMID: 30715177 DOI: 10.1093/brain/awz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
The leukodystrophies cause severe neurodevelopmental defects from birth and follow an incurable and progressive course that often leads to premature death. It has recently been reported that abnormalities in aminoacyl t-RNA synthetase (ARS) genes are linked to various unique leukodystrophies and leukoencephalopathies. Aminoacyl t-RNA synthetase proteins are fundamentally known as the first enzymes of translation, catalysing the conjugation of amino acids to cognate tRNAs for protein synthesis. It is known that certain aminoacyl t-RNA synthetase have multiple non-canonical roles in both transcription and translation, and their disruption results in varied and complicated phenotypes. We clinically and genetically studied seven patients (six male and one female; aged 2 to 12 years) from five unrelated families who all showed the same phenotypes of severe developmental delay or arrest (7/7), hypotonia (6/7), deafness (7/7) and inability to speak (6/7). The subjects further developed intractable epilepsy (7/7) and nystagmus (6/6) with increasing age. They demonstrated characteristic laboratory data, including increased lactate and/or pyruvate levels (7/7), and imaging findings (7/7), including calcification and abnormal signals in the white matter and pathological involvement (2/2) of the corticospinal tracts. Through whole-exome sequencing, we discovered genetic abnormalities in lysyl-tRNA synthetase (KARS). All patients harboured the variant [c.1786C>T, p.Leu596Phe] KARS isoform 1 ([c.1702C>T, p.Leu568Phe] of KARS isoform 2) either in the homozygous state or compound heterozygous state with the following KARS variants, [c.879+1G>A; c.1786C>T, p.Glu252_Glu293del; p.Leu596Phe] ([c.795+1G>A; c.1702C>T, p.Glu224_Glu255del; p.Leu568Phe]) and [c.650G>A; c.1786C>T, p.Gly217Asp; p.Leu596Phe] ([c.566G>A; c.1702C>T, p.Gly189Asp; p.Leu568Phe]). Moreover, similarly disrupted lysyl-tRNA synthetase (LysRS) proteins showed reduced enzymatic activities and abnormal CNSs in Xenopus embryos. Additionally, LysRS acts as a non-canonical inducer of the immune response and has transcriptional activity. We speculated that the complex functions of the abnormal LysRS proteins led to the severe phenotypes in our patients. These KARS pathological variants are novel, including the variant [c.1786C>T; p.Leu596Phe] (c.1702C>T; p.Leu568Phe) shared by all patients in the homozygous or compound-heterozygous state. This common position may play an important role in the development of severe progressive leukodystrophy. Further research is warranted to further elucidate this relationship and to investigate how specific mutated LysRS proteins function to understand the broad spectrum of KARS-related diseases.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hongmei Dai
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - John Gonzalez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yoshikazu Kitami
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | | | - Ichiro Kuki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | | | - Harumi Yoshinaga
- Department of Child Neurology, Okayama University, Okayama, Japan
| | - Yoko Ota
- Department of Pathology and Experimental Medicine, Okayama University, Okayama, Japan
| | - Tetsuya Okazaki
- Department of Child Neurology, University of Tottori, Yonago, Japan
| | | | - Shin Nabatame
- Department of Pediatrics, Osaka University, Osaka, Japan
| | - Shin Okazaki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | - Hisashi Kawawaki
- Department of Pediatric Neurology, Osaka City General Hospital, Osaka, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, Natural Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, the Graduate University of Advanced Studies (SOKENDAI), Hayama, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoichi Kato
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.,Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
4
|
Cain R, Salimraj R, Punekar AS, Bellini D, Fishwick CWG, Czaplewski L, Scott DJ, Harris G, Dowson CG, Lloyd AJ, Roper DI. Structure-Guided Enhancement of Selectivity of Chemical Probe Inhibitors Targeting Bacterial Seryl-tRNA Synthetase. J Med Chem 2019; 62:9703-9717. [PMID: 31626547 DOI: 10.1021/acs.jmedchem.9b01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetases are ubiquitous and essential enzymes for protein synthesis and also a variety of other metabolic processes, especially in bacterial species. Bacterial aminoacyl-tRNA synthetases represent attractive and validated targets for antimicrobial drug discovery if issues of prokaryotic versus eukaryotic selectivity and antibiotic resistance generation can be addressed. We have determined high-resolution X-ray crystal structures of the Escherichia coli and Staphylococcus aureus seryl-tRNA synthetases in complex with aminoacyl adenylate analogues and applied a structure-based drug discovery approach to explore and identify a series of small molecule inhibitors that selectively inhibit bacterial seryl-tRNA synthetases with greater than 2 orders of magnitude compared to their human homologue, demonstrating a route to the selective chemical inhibition of these bacterial targets.
Collapse
Affiliation(s)
- Ricky Cain
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Ramya Salimraj
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Avinash S Punekar
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Dom Bellini
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Colin W G Fishwick
- School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Lloyd Czaplewski
- Chemical Biology Ventures Limited , Abingdon OX14 1XD , United Kingdom
| | - David J Scott
- School of Biosciences , University of Nottingham , Nottingham LE12 5RD , United Kingdom.,ISIS Spallation Neutron and Muon Source and the Research Complex at Harwell , Rutherford Appleton Laboratory , Oxfordshire OX11 0FA , United Kingdom
| | - Gemma Harris
- ISIS Spallation Neutron and Muon Source and the Research Complex at Harwell , Rutherford Appleton Laboratory , Oxfordshire OX11 0FA , United Kingdom
| | - Christopher G Dowson
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - Adrian J Lloyd
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| | - David I Roper
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , United Kingdom
| |
Collapse
|
5
|
Hong Z, Bolard A, Giraud C, Prévost S, Genta‐Jouve G, Deregnaucourt C, Häussler S, Jeannot K, Li Y. Azetidine‐Containing Alkaloids Produced by a Quorum‐Sensing Regulated Nonribosomal Peptide Synthetase Pathway in
Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhilai Hong
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM)Muséum National d'Histoire Naturelle (MNHN)Centre National de la Recherche Scientifique (CNRS), CP 54 57 rue Cuvier 75005 Paris France
| | - Arnaud Bolard
- Laboratoire de BactériologieCentre National de Référence (CNR) de la Résistance aux Antibiotiques, Centre Hospitalier Régional Universitaire (CHRU) de Besançon, UMR4269 “Chrono-Environnement” Boulevard Fleming 25030 Besançon France
| | - Caroline Giraud
- U2RM Stress/VirulenceNormandy University, UNICAEN 14000 Caen France
| | - Sébastien Prévost
- Laboratoire de Synthèse Organique, UMR 7652CNRS, Ecole PolytechniqueENSTA ParisTechUniversité Paris-Saclay 828 Bd des Maréchaux 91128 Palaiseau France
| | - Grégory Genta‐Jouve
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM)Muséum National d'Histoire Naturelle (MNHN)Centre National de la Recherche Scientifique (CNRS), CP 54 57 rue Cuvier 75005 Paris France
- C-TAC, UMR 8638, CNRSFaculté de Pharmacie de ParisUniversité Paris Descartes, Sorbonne Paris Cité 4 Avenue de l'Observatoire 75006 Paris France
| | - Christiane Deregnaucourt
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM)Muséum National d'Histoire Naturelle (MNHN)Centre National de la Recherche Scientifique (CNRS), CP 54 57 rue Cuvier 75005 Paris France
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORECentre for Experimental and Clinical Infection Research Hannover Germany
- Department of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
| | - Katy Jeannot
- Laboratoire de BactériologieCentre National de Référence (CNR) de la Résistance aux Antibiotiques, Centre Hospitalier Régional Universitaire (CHRU) de Besançon, UMR4269 “Chrono-Environnement” Boulevard Fleming 25030 Besançon France
| | - Yanyan Li
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM)Muséum National d'Histoire Naturelle (MNHN)Centre National de la Recherche Scientifique (CNRS), CP 54 57 rue Cuvier 75005 Paris France
| |
Collapse
|
6
|
Hong Z, Bolard A, Giraud C, Prévost S, Genta-Jouve G, Deregnaucourt C, Häussler S, Jeannot K, Li Y. Azetidine-Containing Alkaloids Produced by a Quorum-Sensing Regulated Nonribosomal Peptide Synthetase Pathway in Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2019; 58:3178-3182. [PMID: 30548135 DOI: 10.1002/anie.201809981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Indexed: 12/26/2022]
Abstract
Pseudomonas aeruginosa displays an impressive metabolic versatility, which ensures its survival in diverse environments. Reported herein is the identification of rare azetidine-containing alkaloids from P. aeruginosa PAO1, termed azetidomonamides, which are derived from a conserved, quorum-sensing regulated nonribosomal peptide synthetase (NRPS) pathway. Biosynthesis of the azetidine motif has been elucidated by gene inactivation, feeding experiments, and biochemical characterization in vitro, which involves a new S-adenosylmethionine-dependent enzyme to produce azetidine 2-carboxylic acid as an unusual building block of NRPS. The mutants of P. aeruginosa unable to produce azetidomonamides had an advantage in growth at high cell density in vitro and displayed rapid virulence in Galleria mellonella model, inferring functional roles of azetidomonamides in the host adaptation. This work opens the avenue to study the biological functions of azetidomonamides and related compounds in pathogenic and environmental bacteria.
Collapse
Affiliation(s)
- Zhilai Hong
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Arnaud Bolard
- Laboratoire de Bactériologie, Centre National de Référence (CNR) de la Résistance aux Antibiotiques, Centre Hospitalier Régional Universitaire (CHRU) de Besançon, UMR4269 "Chrono-Environnement", Boulevard Fleming, 25030, Besançon, France
| | - Caroline Giraud
- U2RM Stress/Virulence, Normandy University, UNICAEN, 14000, Caen, France
| | - Sébastien Prévost
- Laboratoire de Synthèse Organique, UMR 7652, CNRS, Ecole Polytechnique, ENSTA ParisTech, Université Paris-Saclay, 828 Bd des Maréchaux, 91128, Palaiseau, France
| | - Grégory Genta-Jouve
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, 57 rue Cuvier, 75005, Paris, France.,C-TAC, UMR 8638, CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Christiane Deregnaucourt
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katy Jeannot
- Laboratoire de Bactériologie, Centre National de Référence (CNR) de la Résistance aux Antibiotiques, Centre Hospitalier Régional Universitaire (CHRU) de Besançon, UMR4269 "Chrono-Environnement", Boulevard Fleming, 25030, Besançon, France
| | - Yanyan Li
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), CP 54, 57 rue Cuvier, 75005, Paris, France
| |
Collapse
|
7
|
Targeting Multiple Aminoacyl-tRNA Synthetases Overcomes the Resistance Liabilities Associated with Antibacterial Inhibitors Acting on a Single Such Enzyme. Antimicrob Agents Chemother 2016; 60:6359-61. [PMID: 27431224 DOI: 10.1128/aac.00674-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/12/2016] [Indexed: 01/28/2023] Open
Abstract
Bacterial aminoacyl-tRNA synthetases (aaRSs) represent promising antibacterial drug targets. Unfortunately, the aaRS inhibitors that have to date reached clinical trials are subject to rapid resistance development through mutation, a phenomenon that limits their potential clinical utility. Here, we confirm the intuitively correct idea that simultaneous targeting of two different aaRS enzymes prevents the emergence of spontaneous bacterial resistance at high frequency, a finding that supports the development of multitargeted anti-aaRS therapies.
Collapse
|
8
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
9
|
Gurcha SS, Usha V, Cox JAG, Fütterer K, Abrahams KA, Bhatt A, Alderwick LJ, Reynolds RC, Loman NJ, Nataraj V, Alemparte C, Barros D, Lloyd AJ, Ballell L, Hobrath JV, Besra GS. Biochemical and structural characterization of mycobacterial aspartyl-tRNA synthetase AspS, a promising TB drug target. PLoS One 2014; 9:e113568. [PMID: 25409504 PMCID: PMC4237437 DOI: 10.1371/journal.pone.0113568] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10× the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at 535GAC>535AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Å.
Collapse
Affiliation(s)
- Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Jonathan A. G. Cox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Klaus Fütterer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Katherine A. Abrahams
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Luke J. Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Robert C. Reynolds
- Department of Chemistry, University of Alabama at Birmingham, College of Arts and Sciences, 1530 3rd Avenue South, Birmingham, Alabama, 35294-1240, United States of America
| | - Nicholas J. Loman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - VijayaShankar Nataraj
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carlos Alemparte
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - David Barros
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Adrian J. Lloyd
- Department of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28760, Tres Cantos, Madrid, Spain
| | - Judith V. Hobrath
- Organic Chemistry Department, Southern Research Institute, Birmingham, Alabama, 35205, United States of America
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- * E-mail:
| |
Collapse
|