1
|
FAS receptor regulates NOTCH activity through ERK-JAG1 axis activation and controls oral cancer stemness ability and pulmonary metastasis. Cell Death Dis 2022; 8:101. [PMID: 35249111 PMCID: PMC8898312 DOI: 10.1038/s41420-022-00899-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
AbstractPulmonary metastasis occurring via the colonization of circulating cancer stem cells is a major cause of oral squamous cell carcinoma (OSCC)-related death. Thus, understanding the mechanism of OSCC pulmonary metastasis may provide a new opportunity for OSCC treatment. FAS, a well-known apoptosis-inducing death receptor, has multiple nonapoptotic, protumorigenic functions. Previously, we found that SAS OSCC cells with FAS receptor knockout did not affect orthotopic tumor growth or cervical lymph node metastasis. However, FAS knockout cells could not colonize in distant organs to form metastases upon intravenous injection, which hinted at the cancer stemness function of the FAS receptor. Immunohistochemistry staining indicated that the FAS receptor serves as a poor prognosis marker in OSCC patients. FAS knockout inhibited in vitro cancer spheroid formation, migration and invasion, and prevented mesenchymal transition in OSCC cells and inhibited OSCC pulmonary metastasis in vivo. To determine the regulatory mechanism by which the FAS receptor exerts its oncogenic function, we utilized cDNA microarrays and phosphoprotein arrays to discover key candidate genes and signaling pathway regulators. JAG1 expression and NOTCH pathway activation were controlled by the FAS receptor through ERK phosphorylation. Both JAG1 and NOTCH1 silencing decreased in vitro cancer spheroid formation. In OSCC cells, FAS ligand or JAG1 protein treatment increased NOTCH pathway activity, which could be abolished by FAS receptor knockout. In FAS knockout cells, restoring the NOTCH1 intracellular domain stimulated cancer spheroid formation. Both JAG1 and NOTCH1 silencing decreased in vivo OSCC growth. In conclusion, we found a novel FAS-ERK-JAG1-NOTCH1 axis that may contribute to OSCC stemness and pulmonary metastasis.
Collapse
|
2
|
Feng J, Zhang X, Shan C, Xia J, Zhang Z, Shi H, Leng K, Wu Y, Ji C, Zhong T. Src family kinases involved in the differentiation of human preadipocytes. Mol Cell Endocrinol 2021; 533:111323. [PMID: 34000351 DOI: 10.1016/j.mce.2021.111323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Obesity is characterized by the excess accumulation of white adipose tissue (WAT). Src family kinases (SFKs) are non-receptor tyrosine kinases consisting of eight members (SRC, FYN, YES1, HCK, LCK, LYN, FGR and BLK) that have been studied extensively in mammalian cells. Although individual members in murine cells provide some clues that are associated with the regulation of adipogenesis, the specific role of this family in adipocyte differentiation has rarely been assessed, especially in human adipocytes. METHODS Herein, we first explored the expression profiles of SFKs during human preadipocyte differentiation. Then, we used the pyrazolo-pyrimidinyl-amine compound PP1, a potent SFK inhibitor, to evaluate the function of SFKs during adipocyte differentiation. Furthermore, we adopted a loss-of-function strategy with siRNAs to determine the role of FGR in adipocyte differentiation. RESULTS Here, we found that SRC, FYN, YES1, LYN and FGR were expressed in human preadipocytes and induced after the initiation of differentiation. Furthermore, the SFK inhibitor PP1 suppressed adipocyte differentiation. We also found that PP1 significantly suppressed the SFK activity in preadipocytes and decreased the expression of adipogenic genes in early and late differentiation. Given that FGR exhibited the most expression enhancement in mature adipocytes, we focused on FGR and found that its knockdown reduced lipid accumulation and adipogenic gene expression. CONCLUSIONS Collectively, these findings suggest that SFKs, especially FGR, are involved in the differentiation of human preadipocytes. Our results lay a foundation for further understanding the role of SFKs in adipocyte differentiation and provide new clues for anti-obesity therapies.
Collapse
Affiliation(s)
- Jie Feng
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China; Jiangsu Health Development Research Center, Nanjing, Jiangsu 210036, China
| | - Xiaoxiao Zhang
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Chunjian Shan
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Jiaai Xia
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Zhenxing Zhang
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guang Zhou Road, Nanjing, Jiangsu 210029, China
| | - Hui Shi
- Jiangsu Health Development Research Center, Nanjing, Jiangsu 210036, China
| | - Kai Leng
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, No. 300 Guang Zhou Road, Nanjing, Jiangsu 210029, China; Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yangyang Wu
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China.
| | - Tianying Zhong
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China.
| |
Collapse
|
3
|
Perdomo D, Bubis J. Purification of a Src family tyrosine protein kinase from bovine retinas. ACTA ACUST UNITED AC 2021; 76:273-283. [PMID: 33125342 DOI: 10.1515/znc-2020-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 11/15/2022]
Abstract
Since tyrosine phosphorylation appears to play important functions in photoreceptor cells, we searched here for retinal nonreceptor tyrosine kinases of the Src family. We demonstrated that Src family tyrosine kinases were present in the cytosolic fraction of extracted bovine retinas. A Src family tyrosine kinase with an apparent molecular mass of about 62 kDa was purified to homogeneity from the soluble fraction of dark-adapted bovine retinas after three consecutive purification steps: ω-aminooctyl-agarose hydrophobic chromatography, Cibacron blue 3GA-agarose pseudo-affinity chromatography, and α-casein-agarose affinity chromatography. The purified protein was subjected to N-terminal amino acid sequencing and the sequence Gly-Ile-Ile-Lys-Ser-Glu-Glu was obtained, which displayed homology with the first seven residues of the Src family tyrosine kinase c-Yes from Bos taurus (Gly-Cys-Ile-Lys-Ser-Lys-Glu). Although the cytosolic fraction from dark-adapted retinas contained tyrosine kinases of the Src family capable of phosphorylating the α-subunit of transducin, which is the heterotrimeric G protein involved in phototransduction, the purified tyrosine kinase was not capable of using transducin as a substrate. The cellular role of this retinal Src family member remains to be found.
Collapse
Affiliation(s)
- Deisy Perdomo
- Departamento de Biología Celular, Universidad Simón Bolívar, Valle de Sartenejas, Baruta, Caracas, Venezuela
| | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Valle de Sartenejas, Baruta, Caracas, Venezuela
| |
Collapse
|
4
|
Luo J, Zou H, Li P. Src-Yap1 signaling axis controls the trophectoderm and epiblast lineage differentiation in mouse embryonic stem cells. Stem Cell Res 2021; 54:102413. [PMID: 34082184 DOI: 10.1016/j.scr.2021.102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The tyrosine kinase Src is highly expressed in embryonic stem cells (ESCs) and ESC-differentiated cells, however, its functional role remains obscured. Here, we constitutivelyexpressed Src in mouse ESCs and found these cells retained comparable levels of the core pluripotent factors, such as Oct4 and Sox2, while promoted the expression of epiblast lineage markers and restrained trophoblast lineage markers compared to the control ESCs. Knockdown of Src in mouse ESCs showed the opposite effect. Directly differentiation of these ESCs to epiblast and trophoblast lineage cells revealed that Src activation dramatically accelerated the production of epiblast-like cells and inhibited the induction of trophoblast-like cells in vitro. Mechanistically, we found Src activation enhanced the Yap1-Tead interaction and their transcriptional output in mouse ESCs through specially upregulating Yap1 tyrosine phosphorylation. Subsequently, we found that overexpression of Yap1 in mouse ESCs phenocopied the differentiation patterns of Src overexpressing cells in vitro. Moreover, inhibition of Src kinase activity by Dasatinib or Yap1/Tead-mediated transcription with Verteporfin reversed the differentiation patterns of Src overexpressing ESCs. Taken together, our results unravel a novel Src-Yap1 regulatory axis during mouse ESC differentiation to trophectoderm and epiblast lineage cells in vitro.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
5
|
Singh D, Bassi M, Balzano D, Lucci G, Emirova A, Anna Nandeuil M, Jellema G, Afolabi EK, Leaker B, Kornmann O, Michael Beeh K, Watz H, Govoni M. COPD patients with chronic bronchitis and higher sputum eosinophil counts show increased type-2 and PDE4 gene expression in sputum. J Cell Mol Med 2020; 25:905-918. [PMID: 33295083 PMCID: PMC7812250 DOI: 10.1111/jcmm.16146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients with higher eosinophil counts are associated with increased clinical response to phosphodiesterase‐4‐inhibitors (PDE4i). However, the underlying inflammatory mechanisms associated with this increased response is not yet elucidated. This post hoc analysis focused on sputum gene expression in patients with chronic bronchitis who underwent 32‐day treatment with two doses of the inhaled PDE4i CHF6001 (tanimilast) or placebo on top of triple therapy. Biological characterization and treatment effects were assessed between patients with different sputum eosinophil levels (eosinophilhigh ≥ 3%; eosinophillow < 3%) at baseline (primary samples) or at the end of the treatment of the placebo arm (validation samples). Forty‐one genes were differentially expressed in primary samples (p‐adjusted for false discovery rate < 0.05); all up‐regulated in eosinophilhigh patients and functionally enriched for type‐2 and PDE4 inflammatory processes. Eleven out of nineteen genes having immune system biological processes annotations including IL5RA, ALOX15, IL1RL1, CLC, GATA1 and PDE4D were replicated using validation samples. The expression of a number of these inflammatory mediators was reduced by tanimilast treatment, with greater effects observed in eosinophilhigh patients. These findings suggest that type‐2 and PDE4 overexpression in COPD patients with higher sputum eosinophil counts contribute to the differential clinical response to PDE4i observed in previous clinical trials.
Collapse
Affiliation(s)
- Dave Singh
- Medicines Evaluation Unit, The University of Manchester, Manchester University NHS Foundation Hospital Trust, Manchester, UK
| | | | | | | | - Aida Emirova
- Global Clinical Development, Chiesi, Parma, Italy
| | | | | | | | | | - Oliver Kornmann
- IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany
| | | | - Henrik Watz
- Pulmonary Research Institute at Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Mirco Govoni
- Global Clinical Development, Chiesi, Parma, Italy
| |
Collapse
|
6
|
QEX: target-specific druglikeness filter enhances ligand-based virtual screening. Mol Divers 2018; 23:11-18. [PMID: 29971617 PMCID: PMC6394530 DOI: 10.1007/s11030-018-9842-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/12/2018] [Indexed: 11/22/2022]
Abstract
Druglikeness is a useful concept for screening drug candidate compounds. We developed QEX, which is a new druglikeness index specific to individual targets. QEX is an improvement of the quantitative estimate of druglikeness (QED) method, which is a popular quantitative evaluation method of druglikeness proposed by Bickerton et al. QEX models the physicochemical properties of compounds that act on each target protein based on the concept of QED modeling physicochemical properties from information on US Food and Drug Administration-approved drugs. The result of the evaluation of PubChem assay data revealed that QEX showed better performance than the original QED did (the area under the curve value of the receiver operating characteristic curve improved by 0.069-0.236). We also present the c-Src inhibitor filtering results of the QEX constructed using Src family kinase inhibitors as a case study. QEX distinguished the inhibitors and non-inhibitors better than QED did. QEX works efficiently even when datasets of inactive compounds are unavailable. If both active and inactive compounds are present, QEX can be used as an initial filter to enhance the screening ability of conventional ligand-based virtual screenings.
Collapse
|
7
|
Ramakrishnan C, Mary Thangakani A, Velmurugan D, Anantha Krishnan D, Sekijima M, Akiyama Y, Gromiha MM. Identification of type I and type II inhibitors of c-Yes kinase using in silico and experimental techniques. J Biomol Struct Dyn 2017; 36:1566-1576. [DOI: 10.1080/07391102.2017.1329098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600036, Tamilnadu, India
| | - Anthony Mary Thangakani
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Dhanabalan Anantha Krishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Masakazu Sekijima
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yutaka Akiyama
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
8
|
Protein Kinases in Pluripotency—Beyond the Usual Suspects. J Mol Biol 2017; 429:1504-1520. [DOI: 10.1016/j.jmb.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
|
9
|
Tapia-Limonchi R, Cahuana GM, Caballano-Infantes E, Salguero-Aranda C, Beltran-Povea A, Hitos AB, Hmadcha A, Martin F, Soria B, Bedoya FJ, Tejedo JR. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation. J Cell Biochem 2016; 117:2078-88. [PMID: 26853909 DOI: 10.1002/jcb.25513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2016] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain
| | - Gladys M Cahuana
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carmen Salguero-Aranda
- Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Amparo Beltran-Povea
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain
| | - Ana B Hitos
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Abdelkrim Hmadcha
- RED-TERCEL, Seville, Spain.,Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Franz Martin
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Bernat Soria
- RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Francisco J Bedoya
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan R Tejedo
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Chiba S, Ikeda K, Ishida T, Gromiha MM, Taguchi YH, Iwadate M, Umeyama H, Hsin KY, Kitano H, Yamamoto K, Sugaya N, Kato K, Okuno T, Chikenji G, Mochizuki M, Yasuo N, Yoshino R, Yanagisawa K, Ban T, Teramoto R, Ramakrishnan C, Thangakani AM, Velmurugan D, Prathipati P, Ito J, Tsuchiya Y, Mizuguchi K, Honma T, Hirokawa T, Akiyama Y, Sekijima M. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target. Sci Rep 2015; 5:17209. [PMID: 26607293 PMCID: PMC4660442 DOI: 10.1038/srep17209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022] Open
Abstract
A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.
Collapse
Affiliation(s)
- Shuntaro Chiba
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501 Japan
| | - Kazuyoshi Ikeda
- Level Five Co. Ltd., Shiodome Shibarikyu Bldg., 1-2-3 Kaigan, Minato-ku, Tokyo 105-0022, Japan
| | - Takashi Ishida
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501 Japan.,Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - Y-H Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Mitsuo Iwadate
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hideaki Umeyama
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kun-Yi Hsin
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495 Japan
| | - Hiroaki Kitano
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495 Japan.,The Systems Biology Research Institute, Falcon Building 5F, 5-6-9 Shirokanedai, Minato-ku, Tokyo 108-0071 Japan.,Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Kazuki Yamamoto
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| | - Nobuyoshi Sugaya
- PharmaDesign Inc., 2-19-8, Hatchobori, Chuo-ku, Tokyo 104-0032 Japan
| | - Koya Kato
- Department of Computational Science and Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan
| | - Tatsuya Okuno
- Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - George Chikenji
- Department of Computational Science and Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan
| | - Masahiro Mochizuki
- Information and Mathematical Science and Bioinformatics Co., Ltd., Level 6 OWL TOWER, 4-21-1 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013 Japan
| | - Nobuaki Yasuo
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501 Japan.,Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Ryunosuke Yoshino
- Global Scientific Information and Computing Center, Tokyo Institute of Technology 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan.,Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Nunkyo-ku, Tokyo, 113-8657
| | - Keisuke Yanagisawa
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501 Japan.,Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Tomohiro Ban
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501 Japan.,Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Reiji Teramoto
- Forerunner Pharma Research, Co., Ltd., Yokohama Bio Industry Center, 1-6 Shuehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India
| | - A Mary Thangakani
- Centre of Advanced Study in Crystallography and Biophysics and Bioinformatics Infrastructure Facility (DBT Funded), University of Madras, Chennai 600025, Tamilnadu, India
| | - D Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics and Bioinformatics Infrastructure Facility (DBT Funded), University of Madras, Chennai 600025, Tamilnadu, India
| | - Philip Prathipati
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 Japan
| | - Junichi Ito
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 Japan
| | - Yuko Tsuchiya
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 Japan
| | - Teruki Honma
- Center for Life Science Technologies, RIKEN, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe-shi, Hyogo 650-0047 Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Initiative for Parallel Bioinformatics, Level 14 Hibiya Central Building, 1-2-9 Nishi-Shimbashi Minato-Ku, Tokyo 105-0003 Japan
| | - Yutaka Akiyama
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501 Japan.,Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan.,Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Initiative for Parallel Bioinformatics, Level 14 Hibiya Central Building, 1-2-9 Nishi-Shimbashi Minato-Ku, Tokyo 105-0003 Japan
| | - Masakazu Sekijima
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501 Japan.,Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan.,Global Scientific Information and Computing Center, Tokyo Institute of Technology 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan.,Initiative for Parallel Bioinformatics, Level 14 Hibiya Central Building, 1-2-9 Nishi-Shimbashi Minato-Ku, Tokyo 105-0003 Japan
| |
Collapse
|
11
|
Kwarcinski FE, Steffey ME, Fox CC, Soellner MB. Discovery of Bivalent Kinase Inhibitors via Enzyme-Templated Fragment Elaboration. ACS Med Chem Lett 2015; 6:898-901. [PMID: 26286460 DOI: 10.1021/acsmedchemlett.5b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022] Open
Abstract
We have employed novel fragment-based screening methodology to discover bivalent kinase inhibitors with improved selectivity. Starting from a low molecular weight promiscuous kinase inhibitor, we appended a thiol for subsequent reaction with a library of acrylamide electrophiles. Enzyme-templated screening was performed to identify acrylamides that assemble into bivalent inhibitors of c-Src kinase. Upon identification of acrylamide fragments that improve the binding affinity of our lead thiol, we characterized the resulting bivalent inhibitors and identified a series of kinase inhibitors with improved potency and selectivity compared to the thiol-containing precursor. Provided that protein can be prepared free of endogenous reactive cysteines, our methodology is general and could be applied to nearly any enzyme of interest.
Collapse
Affiliation(s)
- Frank E. Kwarcinski
- Departments of †Medicinal Chemistry and ‡Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Michael E. Steffey
- Departments of †Medicinal Chemistry and ‡Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christel C. Fox
- Departments of †Medicinal Chemistry and ‡Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthew B. Soellner
- Departments of †Medicinal Chemistry and ‡Chemistry, University of Michigan, 930 North
University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
13
|
Pijuan-Galitó S, Tamm C, Annerén C. Serum Inter-α-inhibitor activates the Yes tyrosine kinase and YAP/TEAD transcriptional complex in mouse embryonic stem cells. J Biol Chem 2014; 289:33492-502. [PMID: 25301940 DOI: 10.1074/jbc.m114.580076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously demonstrated that the Src family kinase Yes, the Yes-associated protein (YAP) and TEA domain TEAD2 transcription factor pathway are activated by leukemia inhibitory factor (LIF) and contribute to mouse embryonic stem (mES) cell maintenance of pluripotency and self-renewal. In addition, we have shown that fetal bovine serum (FBS) induces Yes auto-phosphorylation and activation. In the present study we confirm that serum also activates TEAD-dependent transcription in a time- and dose-dependent manner and we identify Inter-α-inhibitor (IαI) as a component in serum capable of activating the Yes/YAP/TEAD pathway by inducing Yes auto-phosphorylation, YAP nuclear localization and TEAD-dependent transcription. The cleaved heavy chain 2 (HC2) sub-component of IαI, is demonstrated to be responsible for this effect. Moreover, IαI is also shown to efficiently increase expression of TEAD-downstream target genes including well-known stem cell factors Nanog and Oct 3/4. IαI is not produced by the ES cells per se but is added to the cells via the cell culture medium containing serum or serum-derived components such as bovine serum albumin (BSA). In conclusion, we describe a novel function of IαI in activating key pluripotency pathways associated with ES cell maintenance and self-renewal.
Collapse
Affiliation(s)
- Sara Pijuan-Galitó
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and
| | - Christoffer Tamm
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and
| | - Cecilia Annerén
- From the Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75 123 Uppsala, Sweden and GE Healthcare Bio-Sciences AB, SE-751 84 Uppsala, Sweden
| |
Collapse
|
14
|
Zhang X, Simerly C, Hartnett C, Schatten G, Smithgall TE. Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells. Stem Cell Res 2014; 13:379-89. [PMID: 25305536 DOI: 10.1016/j.scr.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022] Open
Abstract
Embryonic stem (ES) cells are characterized by pluripotency, defined as the developmental potential to generate cell lineages derived from all three primary germ layers. In the past decade, great progress has been made on the cell culture conditions, transcription factor programs and intracellular signaling pathways that control both murine and human ES cell fates. ES cells of mouse vs. human origin have distinct culture conditions, responding to some tyrosine kinase signaling pathways in opposite ways. Previous work has implicated the Src family of non-receptor protein-tyrosine kinases in mouse ES cell self-renewal and differentiation. Seven members of the Src kinase family are expressed in mouse ES cells, and individual family members appear to play distinct roles in regulating their developmental fate. Both Hck and c-Yes are important in self-renewal, while c-Src activity alone is sufficient to induce differentiation. While these findings implicate Src-family kinase signaling in mouse ES cell renewal and differentiation, the role of this kinase family in human ES cells is largely unknown. Here, we explored Src-family kinase expression patterns and signaling in human ES cells during self-renewal and differentiation. Of the eleven Src-related kinases in the human genome, Fyn, c-Yes, c-Src, Lyn, Lck and Hck were expressed in H1, H7 and H9 hES cells, while Fgr, Blk, Srm, Brk, and Frk transcripts were not detected. Of these, c-Yes, Lyn, and Hck transcript levels remained constant in self-renewing human ES cells vs. differentiated EBs, while c-Src and Fyn showed a modest increase in expression as a function of differentiation. In contrast, Lck expression levels dropped dramatically as a function of EB differentiation. To assess the role of overall Src-family kinase activity in human ES cell differentiation, cultures were treated with inhibitors specific for the Src kinase family. Remarkably, human ES cells maintained in the presence of the potent Src-family kinase inhibitor A-419259 retained the morphology of domed, pluripotent colonies and continued to express the self-renewal marker TRA-1-60 despite culture under differentiation conditions. Taken together, these observations support a role for Src-family kinase signaling in the regulation of human ES cell fate, and suggest that the activities of individual Src-family members are required for the initiation of the differentiation program.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Calvin Simerly
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh School of Medicine, Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, PA, USA
| | - Carrie Hartnett
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh School of Medicine, Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, PA, USA
| | - Gerald Schatten
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh School of Medicine, Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, PA, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Moroco JA, Craigo JK, Iacob RE, Wales TE, Engen JR, Smithgall TE. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement. PLoS One 2014; 9:e105629. [PMID: 25144189 PMCID: PMC4140816 DOI: 10.1371/journal.pone.0105629] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.
Collapse
Affiliation(s)
- Jamie A. Moroco
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jodi K. Craigo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roxana E. Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
|