1
|
Dai Y, Ostendorff D, Li SM. Divergent Metabolism of Cyclo-l-Trp-l-Leu in Streptomyces albofaciens by Hydroxylation and Nucleobase Transfer with Two Cytochrome P450 Enzymes. JOURNAL OF NATURAL PRODUCTS 2024; 87:2716-2723. [PMID: 39653608 DOI: 10.1021/acs.jnatprod.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A three-gene salb cluster from Streptomyces albofaciens was proven to be responsible for the formation of cyclo-l-Trp-l-Leu (cWL) derivatives. An Escherichia coli strain harboring the cyclodipeptide synthase (CDPS) gene salbA produced cWL. Expression of the whole cluster or genes of various combinations in Streptomyces coelicolor revealed different metabolites of cWL by two cytochrome P450 enzymes. Isolation and structure elucidation proved the conversion of cWL to guatrypleumycine A by nucleobase transfer with SalbB and to cyclo(trans-10-hydroxy-l-Trp-l-Leu) by hydroxylation with SalbC. Incubation with 15NH4Cl supported the incorporation of guanine in guatrypleumycine A and an X-ray crystallographic study confirmed the stereospecific hydroxylation at C-10 of the tryptophanyl residue. Cultivation of the salbB or salbC expression strains with different substrates further proved the divergent metabolisms of cWL. To the best of our knowledge, SalbC is the first report of the P450 enzyme from CDPS-associated pathways to catalyze β-hydroxylation at the amino acid side chain.
Collapse
Affiliation(s)
- Yu Dai
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Daniel Ostendorff
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany
| |
Collapse
|
2
|
Dreckmann TM, Fritz L, Kaiser CF, Bouhired SM, Wirtz DA, Rausch M, Müller A, Schneider T, König GM, Crüsemann M. Biosynthesis of the corallorazines, a widespread class of antibiotic cyclic lipodipeptides. RSC Chem Biol 2024:d4cb00157e. [PMID: 39184525 PMCID: PMC11342130 DOI: 10.1039/d4cb00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Corallorazines are cyclic lipodipeptide natural products produced by the myxobacterium Corallococcus coralloides B035. To decipher the basis of corallorazine biosynthesis, the corallorazine nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster crz was identified and analyzed in detail. Here, we present a model of corallorazine biosynthesis, supported by bioinformatic analyses and in vitro investigations on the bimodular NRPS synthesizing the corallorazine core. Corallorazine biosynthesis shows several distinct features, such as the presence of a dehydrating condensation domain, and a unique split adenylation domain on two open reading frames. Using an alternative fatty acyl starter unit, the first steps of corallorazine biosynthesis were characterized in vitro, supporting our biosynthetic model. The dehydrating condensation domain was bioinformatically analyzed in detail and compared to other modifying C domains, revealing unreported specific sequence motives for this domain subfamily. Using global bioinformatics analyses, we show that the crz gene cluster family is widespread among bacteria and encodes notable chemical diversity. Corallorazine A displays moderate antimicrobial activity against selected Gram-positive and Gram-negative bacteria. Mode of action studies comprising whole cell analysis and in vitro test systems revealed that corallorazine A inhibits bacterial transcription by targeting the DNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- Teresa M Dreckmann
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Lisa Fritz
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Christian F Kaiser
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Sarah M Bouhired
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Marvin Rausch
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne Bonn Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| |
Collapse
|
3
|
Zheng C, Wei W, Wen J, Song W, Wu J, Wang R, Yin D, Chen X, Gao C, Liu J, Liu L. Rational Design of the Spatial Effect in a Fe(II)/α-Ketoglutarate-Dependent Dioxygenase Reverses the Regioselectivity of C(sp 3)-H Bond Hydroxylation in Aliphatic Amino Acids. Angew Chem Int Ed Engl 2024; 63:e202406060. [PMID: 38789390 DOI: 10.1002/anie.202406060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
The hydroxylation of remote C(sp3)-H bonds in aliphatic amino acids yields crucial precursors for the synthesis of high-value compounds. However, accurate regulation of the regioselectivity of remote C(sp3)-H bonds hydroxylation in aliphatic amino acids continues to be a common challenge in chemosynthesis and biosynthesis. In this study, the Fe(II)/α-ketoglutarate-dependent dioxygenase from Bacillus subtilis (BlAH) was mined and found to catalyze hydroxylation at the γ and δ sites of aliphatic amino acids. Crystal structure analysis, molecular dynamics simulations, and quantum chemical calculations revealed that regioselectivity was regulated by the spatial effect of BlAH. Based on these results, the spatial effect of BlAH was reconstructed to stabilize the transition state at the δ site of aliphatic amino acids, thereby successfully reversing the γ site regioselectivity to the δ site. For example, the regioselectivity of L-Homoleucine (5 a) was reversed from the γ site (1 : 12) to the δ site (>99 : 1). The present study not only expands the toolbox of biocatalysts for the regioselective functionalization of remote C(sp3)-H bonds, but also provides a theoretical guidance for the precision-driven modification of similarly remote C(sp3)-H bonds in complex molecules.
Collapse
Affiliation(s)
- Chenni Zheng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ran Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dejing Yin
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Song Y, Amaya JA, Murarka VC, Mendez H, Hogan M, Muldoon J, Evans P, Ortin Y, Kelly SL, Lamb DC, Poulos TL, Caffrey P. Biosynthesis of a new skyllamycin in Streptomyces nodosus: a cytochrome P450 forms an epoxide in the cinnamoyl chain. Org Biomol Chem 2024; 22:2835-2843. [PMID: 38511621 DOI: 10.1039/d4ob00178h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Activation of a silent gene cluster in Streptomyces nodosus leads to synthesis of a cinnamoyl-containing non-ribosomal peptide (CCNP) that is related to skyllamycins. This novel CCNP was isolated and its structure was interrogated using mass spectrometry and nuclear magnetic resonance spectroscopy. The isolated compound is an oxidised skyllamycin A in which an additional oxygen atom is incorporated in the cinnamoyl side-chain in the form of an epoxide. The gene for the epoxide-forming cytochrome P450 was identified by targeted disruption. The enzyme was overproduced in Escherichia coli and a 1.43 Å high-resolution crystal structure was determined. This is the first crystal structure for a P450 that forms an epoxide in a substituted cinnamoyl chain of a lipopeptide. These results confirm the proposed functions of P450s encoded by biosynthetic gene clusters for other epoxidized CCNPs and will assist investigation of how epoxide stereochemistry is determined in these natural products.
Collapse
Affiliation(s)
- Yuhao Song
- Centre for Synthesis and Chemical Biology and School of Biomolecular and Biomedical Science, University College Dublin, Ireland.
| | - Jose A Amaya
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA
| | - Vidhi C Murarka
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA
| | - Hugo Mendez
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA
| | - Mark Hogan
- Centre for Synthesis and Chemical Biology and School of Biomolecular and Biomedical Science, University College Dublin, Ireland.
| | - Jimmy Muldoon
- Centre for Synthesis and Chemical Biology and School of Chemistry, University College Dublin, Ireland
| | - Paul Evans
- Centre for Synthesis and Chemical Biology and School of Chemistry, University College Dublin, Ireland
| | - Yannick Ortin
- Centre for Synthesis and Chemical Biology and School of Chemistry, University College Dublin, Ireland
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Science, Institute of Life Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - David C Lamb
- Faculty of Medicine, Health and Life Science, Institute of Life Science, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Thomas L Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences and Chemistry, University of California, Irvine, California, USA
| | - Patrick Caffrey
- Centre for Synthesis and Chemical Biology and School of Biomolecular and Biomedical Science, University College Dublin, Ireland.
| |
Collapse
|
5
|
Wirtz DA, Schneberger N, Klöppel S, Richarz R, Geyer M, König GM, Hagelueken G, Crüsemann M. Adenylation Domain-Guided Recruitment of Trans-Acting Nonheme Monooxygenases in Nonribosomal Peptide Biosynthesis. ACS Chem Biol 2023; 18:1748-1759. [PMID: 37366538 DOI: 10.1021/acschembio.3c00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Nonheme diiron monooxygenases (NHDMs) interact with nonribosomal peptide synthetase (NRPS) assembly lines to install β-hydroxylations at thiolation-domain-bound amino acids during nonribosomal peptide biosynthesis. The high potential of this enzyme family to diversify the products of engineered assembly lines is disproportionate to the currently small knowledge about their structures and mechanisms of substrate recognition. Here, we report the crystal structure of FrsH, the NHDM which catalyzes the β-hydroxylation of l-leucines during biosynthesis of the depsipeptide G protein inhibitor FR900359. Using biophysical approaches, we provide evidence that FrsH interacts with the cognate monomodular NRPS FrsA. By AlphaFold modeling and mutational studies, we detect and examine structural features within the assembly line crucial to recruit FrsH for leucine β-hydroxylation. These are, in contrast to cytochrome-dependent NRPS β-hydroxylases, not located on the thiolation domain, but on the adenylation domain. FrsH can be functionally substituted by homologous enzymes from biosyntheses of the cell-wall-targeting antibiotics lysobactin and hypeptin, indicating that these features are generally applicable to members of the family of trans-acting NHDMs. These insights give important directions for the construction of artificial assembly lines to yield bioactive and chemically complex peptide products.
Collapse
Affiliation(s)
- Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sophie Klöppel
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - René Richarz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
6
|
Zhang S, Zhang L, Greule A, Tailhades J, Marschall E, Prasongpholchai P, Leng DJ, Zhang J, Zhu J, Kaczmarski JA, Schittenhelm RB, Einsle O, Jackson CJ, Alberti F, Bechthold A, Zhang Y, Tosin M, Si T, Cryle MJ. P450-mediated dehydrotyrosine formation during WS9326 biosynthesis proceeds via dehydrogenation of a specific acylated dipeptide substrate. Acta Pharm Sin B 2023; 13:3561-3574. [PMID: 37655329 PMCID: PMC10465960 DOI: 10.1016/j.apsb.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,β-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1'-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1'-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Anja Greule
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| | - Edward Marschall
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| | | | - Daniel J. Leng
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jingfan Zhang
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Joe A. Kaczmarski
- Research School of Chemistry, the Australian National University, Acton 2601, ACT, Australia
| | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton 3800, VIC, Australia
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
- Research School of Chemistry, the Australian National University, Acton 2601, ACT, Australia
| | - Fabrizio Alberti
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Andreas Bechthold
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg 79104, Germany
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Max J. Cryle
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| |
Collapse
|
7
|
Jordan S, Li B, Traore E, Wu Y, Usai R, Liu A, Xie ZR, Wang Y. Structural and spectroscopic characterization of RufO indicates a new biological role in rufomycin biosynthesis. J Biol Chem 2023; 299:105049. [PMID: 37451485 PMCID: PMC10424215 DOI: 10.1016/j.jbc.2023.105049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Rufomycins constitute a class of cyclic heptapeptides isolated from actinomycetes. They are secondary metabolites that show promising treatment against Mycobacterium tuberculosis infections by inhibiting a novel drug target. Several nonproteinogenic amino acids are integrated into rufomycins, including a conserved 3-nitro-tyrosine. RufO, a cytochrome P450 (CYP)-like enzyme, was proposed to catalyze the formation of 3-nitro-tyrosine in the presence of O2 and NO. To define its biological function, the interaction between RufO and the proposed substrate tyrosine is investigated using various spectroscopic methods that are sensitive to the structural change of a heme center. However, a low- to high-spin state transition and a dramatic increase in the redox potential that are commonly found in CYPs upon ligand binding have not been observed. Furthermore, a 1.89-Å crystal structure of RufO shows that the enzyme has flexible surface regions, a wide-open substrate access tunnel, and the heme center is largely exposed to solvent. Comparison with a closely related nitrating CYP reveals a spacious and hydrophobic distal pocket in RufO, which is incapable of stabilizing a free amino acid. Molecular docking validates the experimental data and proposes a possible substrate. Collectively, our results disfavor tyrosine as the substrate of RufO and point to the possibility that the nitration occurs during or after the assembly of the peptides. This study indicates a new function of the unique nitrating enzyme and provides insights into the biosynthesis of nonribosomal peptides.
Collapse
Affiliation(s)
- Stephanie Jordan
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Bingnan Li
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Ephrahime Traore
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Yifei Wu
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Remigio Usai
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
8
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
9
|
Kang S, Han J, Jang SC, An JS, Kang I, Kwon Y, Nam SJ, Shim SH, Cho JC, Lee SK, Oh DC. Epoxinnamide: An Epoxy Cinnamoyl-Containing Nonribosomal Peptide from an Intertidal Mudflat-Derived Streptomyces sp. Mar Drugs 2022; 20:md20070455. [PMID: 35877748 PMCID: PMC9321520 DOI: 10.3390/md20070455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cinnamoyl-containing nonribosomal peptides (CCNPs) form a unique family of actinobacterial secondary metabolites and display various biological activities. A new CCNP named epoxinnamide (1) was discovered from intertidal mudflat-derived Streptomyces sp. OID44. The structure of 1 was determined by the analysis of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) data along with a mass spectrum. The absolute configuration of 1 was assigned by the combination of advanced Marfey’s method, 3JHH and rotating-frame overhauser effect spectroscopy (ROESY) analysis, DP4 calculation, and genomic analysis. The putative biosynthetic pathway of epoxinnamide (1) was identified through the whole-genome sequencing of Streptomyces sp. OID44. In particular, the thioesterase domain in the nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster was proposed as a bifunctional enzyme, which catalyzes both epimerization and macrocyclization. Epoxinnamide (1) induced quinone reductase (QR) activity in murine Hepa-1c1c7 cells by 1.6-fold at 5 μM. It also exhibited effective antiangiogenesis activity in human umbilical vein endothelial cells (IC50 = 13.4 μM).
Collapse
Affiliation(s)
- Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Jaeho Han
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (I.K.); (J.-C.C.)
| | - Yun Kwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea;
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (I.K.); (J.-C.C.)
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
- Correspondence: ; Tel.: +82-880-2491; Fax: +82-762-8322
| |
Collapse
|
10
|
An JS, Kim MS, Han J, Jang SC, Im JH, Cui J, Lee Y, Nam SJ, Shin J, Lee SK, Yoon YJ, Oh DC. Nyuzenamide C, an Antiangiogenic Epoxy Cinnamic Acid-Containing Bicyclic Peptide from a Riverine Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:804-814. [PMID: 35294831 DOI: 10.1021/acs.jnatprod.1c00837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new nonribosomal peptide, nyuzenamide C (1), was discovered from riverine sediment-derived Streptomyces sp. DM14. Comprehensive analysis of the spectroscopic data of nyuzenamide C (1) revealed that 1 has a bicyclic backbone composed of six common amino acid residues (Asn, Leu, Pro, Gly, Val, and Thr) and four nonproteinogenic amino acid units, including hydroxyglycine, β-hydroxyphenylalanine, p-hydroxyphenylglycine, and 3,β-dihydroxytyrosine, along with 1,2-epoxypropyl cinnamic acid. The absolute configuration of 1 was proposed by J-based configuration analysis, the advanced Marfey's method, quantum mechanics-based DP4 calculations, and bioinformatic analysis of its nonribosomal peptide synthetase biosynthetic gene cluster. Nyuzenamide C (1) displayed antiangiogenic activity in human umbilical vein endothelial cells and induced quinone reductase in murine Hepa-1c1c7 cells.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myoun-Su Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Han
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsheng Cui
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Malinga NA, Nzuza N, Padayachee T, Syed PR, Karpoormath R, Gront D, Nelson DR, Syed K. An Unprecedented Number of Cytochrome P450s Are Involved in Secondary Metabolism in Salinispora Species. Microorganisms 2022; 10:microorganisms10050871. [PMID: 35630316 PMCID: PMC9143469 DOI: 10.3390/microorganisms10050871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s) are heme thiolate proteins present in species across the biological kingdoms. By virtue of their broad substrate promiscuity and regio- and stereo-selectivity, these enzymes enhance or attribute diversity to secondary metabolites. Actinomycetes species are well-known producers of secondary metabolites, especially Salinispora species. Despite the importance of P450s, a comprehensive comparative analysis of P450s and their role in secondary metabolism in Salinispora species is not reported. We therefore analyzed P450s in 126 strains from three different species Salinispora arenicola, S. pacifica, and S. tropica. The study revealed the presence of 2643 P450s that can be grouped into 45 families and 103 subfamilies. CYP107 and CYP125 families are conserved, and CYP105 and CYP107 families are bloomed (a P450 family with many members) across Salinispora species. Analysis of P450s that are part of secondary metabolite biosynthetic gene clusters (smBGCs) revealed Salinispora species have an unprecedented number of P450s (1236 P450s-47%) part of smBGCs compared to other bacterial species belonging to the genera Streptomyces (23%) and Mycobacterium (11%), phyla Cyanobacteria (8%) and Firmicutes (18%) and the classes Alphaproteobacteria (2%) and Gammaproteobacteria (18%). A peculiar characteristic of up to six P450s in smBGCs was observed in Salinispora species. Future characterization Salinispora species P450s and their smBGCs have the potential for discovering novel secondary metabolites.
Collapse
Affiliation(s)
- Nsikelelo Allison Malinga
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (P.R.S.); (R.K.)
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (P.R.S.); (R.K.)
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.); Tel.: +19-014-488-303 (D.R.N.); +27-035-902-6857 (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.A.M.); (N.N.); (T.P.)
- Correspondence: (D.R.N.); (K.S.); Tel.: +19-014-488-303 (D.R.N.); +27-035-902-6857 (K.S.)
| |
Collapse
|
12
|
Greule A, Izoré T, Machell D, Hansen MH, Schoppet M, De Voss JJ, Charkoudian LK, Schittenhelm RB, Harmer JR, Cryle MJ. The Cytochrome P450 OxyA from the Kistamicin Biosynthesis Cyclization Cascade is Highly Sensitive to Oxidative Damage. Front Chem 2022; 10:868240. [PMID: 35464232 PMCID: PMC9023744 DOI: 10.3389/fchem.2022.868240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are a superfamily of monooxygenases that utilize a cysteine thiolate–ligated heme moiety to perform a wide range of demanding oxidative transformations. Given the oxidative power of the active intermediate formed within P450s during their active cycle, it is remarkable that these enzymes can avoid auto-oxidation and retain the axial cysteine ligand in the deprotonated—and thus highly acidic—thiolate form. While little is known about the process of heme incorporation during P450 folding, there is an overwhelming preference for one heme orientation within the P450 active site. Indeed, very few structures to date contain an alternate heme orientation, of which two are OxyA homologs from glycopeptide antibiotic (GPA) biosynthesis. Given the apparent preference for the unusual heme orientation shown by OxyA enzymes, we investigated the OxyA homolog from kistamicin biosynthesis (OxyAkis), which is an atypical GPA. We determined that OxyAkis is highly sensitive to oxidative damage by peroxide, with both UV and EPR measurements showing rapid bleaching of the heme signal. We determined the structure of OxyAkis and found a mixed population of heme orientations present in this enzyme. Our analysis further revealed the possible modification of the heme moiety, which was only present in samples where the alternate heme orientation was present in the protein. These results suggest that the typical heme orientation in cytochrome P450s can help prevent potential damage to the heme—and hence deactivation of the enzyme—during P450 catalysis. It also suggests that some P450 enzymes involved in GPA biosynthesis may be especially prone to oxidative damage due to the heme orientation found in their active sites.
Collapse
Affiliation(s)
- Anja Greule
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- EMBL Australia, Monash University, Clayton, VIC, Australia
| | - Thierry Izoré
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- EMBL Australia, Monash University, Clayton, VIC, Australia
| | - Daniel Machell
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- EMBL Australia, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC, Australia
| | - Mathias H. Hansen
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- EMBL Australia, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC, Australia
| | - Melanie Schoppet
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- EMBL Australia, Monash University, Clayton, VIC, Australia
| | - James J. De Voss
- Department of Chemistry, The University of Queensland, St Lucia, QLD, Australia
| | | | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC, Australia
| | - Jeffrey R. Harmer
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - Max J. Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- EMBL Australia, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton, VIC, Australia
- *Correspondence: Max J. Cryle,
| |
Collapse
|
13
|
Cui Z, Nguyen H, Bhardwaj M, Wang X, Büschleb M, Lemke A, Schütz C, Rohrbacher C, Junghanns P, Koppermann S, Ducho C, Thorson JS, Van Lanen SG. Enzymatic C β-H Functionalization of l-Arg and l-Leu in Nonribosomally Derived Peptidyl Natural Products: A Tale of Two Oxidoreductases. J Am Chem Soc 2021; 143:19425-19437. [PMID: 34767710 DOI: 10.1021/jacs.1c08177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muraymycins are peptidyl nucleoside antibiotics that contain two Cβ-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-β-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cβ-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cβ hydroxylation of the Leu residue to generate (2S,3S)-β-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cβ-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Han Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Minakshi Bhardwaj
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Martin Büschleb
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University, GöTammannstr. 2, 37077 Göttingen, Germany
| | - Anke Lemke
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Schütz
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Pierre Junghanns
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
14
|
Bracegirdle J, Hou P, Nowak VV, Ackerley DF, Keyzers RA, Owen JG. Skyllamycins D and E, Non-Ribosomal Cyclic Depsipeptides from Lichen-Sourced Streptomyces anulatus. JOURNAL OF NATURAL PRODUCTS 2021; 84:2536-2543. [PMID: 34490774 DOI: 10.1021/acs.jnatprod.1c00547] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The skyllamycins are a class of heavily modified, non-ribosomal peptides, first isolated from Streptomyces sp. KY11784. A Streptomyces strain with potent antibiotic activity against Bacillus subtilis was isolated from a sample of the New Zealand lichen Pseudocyphellaria dissimilis. Whole genome sequencing and biosynthetic gene cluster genetic analysis coupled with GNPS LCMS/MS molecular networking revealed that this strain had the capacity to produce skyllamycins, including previously undescribed congeners, and that these were likely the source of the observed biological activity. Guided by the results of the molecular networking, we isolated the previously reported skyllamycins A-C (1-3), along with two new congeners, skyllamycins D (4) and E (5). The structures of these compounds were elucidated using comprehensive 1D and 2D NMR analyses, along with HRESIMS fragmentation experiments. Antibacterial assays revealed that skyllamycin D possessed improved activity against B. subtilis E168 compared to previously reported congeners.
Collapse
|
15
|
Yu J, Song J, Chi C, Liu T, Geng T, Cai Z, Dong W, Shi C, Ma X, Zhang Z, Ma X, Xing B, Jin H, Zhang L, Dong S, Yang D, Ma M. Functional Characterization and Crystal Structure of the Bifunctional Thioesterase Catalyzing Epimerization and Cyclization in Skyllamycin Biosynthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiahui Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Juan Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Changbiao Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tongtong Geng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zonghui Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Weidong Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xueyang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhongyi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaojie Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
16
|
Shi X, Huang L, Song K, Zhao G, Liu Y, Lv L, Du Y. Enzymatic Tailoring in Luzopeptin Biosynthesis Involves Cytochrome P450‐Mediated Carbon–Nitrogen Bond Desaturation for Hydrazone Formation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xinjie Shi
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital Zhejiang University 310003 Hangzhou China
| | - Liming Huang
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
| | - Kaihui Song
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
| | - Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
| | - Yu Liu
- College of Life Sciences Zhejiang University 310058 Hangzhou China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital Zhejiang University 310003 Hangzhou China
| | - Yi‐Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital Zhejiang University School of Medicine 310058 Hangzhou China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital Zhejiang University 310003 Hangzhou China
| |
Collapse
|
17
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
18
|
Shi X, Huang L, Song K, Zhao G, Liu Y, Lv L, Du YL. Enzymatic Tailoring in Luzopeptin Biosynthesis Involves Cytochrome P450-Mediated Carbon-Nitrogen Bond Desaturation for Hydrazone Formation. Angew Chem Int Ed Engl 2021; 60:19821-19828. [PMID: 34180113 DOI: 10.1002/anie.202105312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Indexed: 01/15/2023]
Abstract
Luzopeptins and related decadepsipeptides are bisintercalator nonribosomal peptides featuring rare acyl-substituted tetrahydropyridazine-3-carboxylic acid (Thp) subunits that are critical to their biological activities. Herein, we reconstitute the biosynthetic tailoring pathway in luzopeptin A biosynthesis through in vivo genetic and in vitro biochemical approaches. Significantly, we revealed a multitasking cytochrome P450 enzyme that catalyzes four consecutive oxidations including the highly unusual carbon-nitrogen bond desaturation, forming the hydrazone-bearing 4-OH-Thp residues. Moreover, we identified a membrane-bound acyltransferase that likely mediates the subsequent O-acetylation extracellularly, as a potential self-protective strategy for the producer strain. Further genome mining of novel decadepsipeptides and an associated P450 enzyme have provided mechanistic insights into the P450-mediated carbon-nitrogen bond desaturation. Our results not only reveal the molecular basis of pharmacophore formation in bisintercalator decadepsipeptides, but also expand the catalytic versatility of P450 family enzymes.
Collapse
Affiliation(s)
- Xinjie Shi
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| | - Liming Huang
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Kaihui Song
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Guiyun Zhao
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology and The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, 310003, Hangzhou, China
| |
Collapse
|
19
|
Zhang C, Seyedsayamdost MR. Discovery of a Cryptic Depsipeptide from
Streptomyces ghanaensis
via MALDI‐MS‐Guided High‐Throughput Elicitor Screening. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chen Zhang
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry Princeton University Princeton NJ 08544 USA
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| |
Collapse
|
20
|
Zhang C, Seyedsayamdost MR. Discovery of a Cryptic Depsipeptide from Streptomyces ghanaensis via MALDI-MS-Guided High-Throughput Elicitor Screening. Angew Chem Int Ed Engl 2020; 59:23005-23009. [PMID: 32790054 DOI: 10.1002/anie.202009611] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 11/06/2022]
Abstract
Microbial genomes harbor an abundance of biosynthetic gene clusters, but most are expressed at low levels and need to be activated for characterization of their cognate natural products. In this work, we report the combination of high-throughput elicitor screening (HiTES) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid identification of cryptic peptide natural products. Application to Streptomyces ghanaensis identified amygdalin as an elicitor of a novel non-ribosomal peptide, which we term cinnapeptin. Complete structural elucidation revealed cinnapeptin as a cyclic depsipeptide with an unusual 2-methyl-cinnamoyl group. Insights into its biosynthesis were provided by whole genome sequencing and gene deletion studies, while bioactivity assays showed antimicrobial activity against Gram-positive bacteria and fission yeast. MALDI-HiTES is a broadly applicable tool for the discovery of cryptic peptides encoded in microbial genomes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
21
|
Alonzo DA, Schmeing TM. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Protein Sci 2020; 29:2316-2347. [PMID: 33073901 DOI: 10.1002/pro.3979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Depsipeptides are compounds that contain both ester bonds and amide bonds. Important natural product depsipeptides include the piscicide antimycin, the K+ ionophores cereulide and valinomycin, the anticancer agent cryptophycin, and the antimicrobial kutzneride. Furthermore, database searches return hundreds of uncharacterized systems likely to produce novel depsipeptides. These compounds are made by specialized nonribosomal peptide synthetases (NRPSs). NRPSs are biosynthetic megaenzymes that use a module architecture and multi-step catalytic cycle to assemble monomer substrates into peptides, or in the case of specialized depsipeptide synthetases, depsipeptides. Two NRPS domains, the condensation domain and the thioesterase domain, catalyze ester bond formation, and ester bonds are introduced into depsipeptides in several different ways. The two most common occur during cyclization, in a reaction between a hydroxy-containing side chain and the C-terminal amino acid residue in a peptide intermediate, and during incorporation into the growing peptide chain of an α-hydroxy acyl moiety, recruited either by direct selection of an α-hydroxy acid substrate or by selection of an α-keto acid substrate that is reduced in situ. In this article, we discuss how and when these esters are introduced during depsipeptide synthesis, survey notable depsipeptide synthetases, and review insight into bacterial depsipeptide synthetases recently gained from structural studies.
Collapse
Affiliation(s)
- Diego A Alonzo
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
22
|
Morgan GL, Li B. In Vitro Reconstitution Reveals a Central Role for the N-Oxygenase PvfB in (Dihydro)pyrazine-N-oxide and Valdiazen Biosynthesis. Angew Chem Int Ed Engl 2020; 59:21387-21391. [PMID: 32662921 DOI: 10.1002/anie.202005554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Indexed: 12/22/2022]
Abstract
The Pseudomonas virulence factor (pvf) operon is essential for the biosynthesis of two very different natural product scaffolds: the (dihydro)pyrazine-N-oxides and the diazeniumdiolate, valdiazen. PvfB is a member of the non-heme diiron N-oxygenase enzyme family that commonly convert anilines to their nitroaromatic counterparts. In contrast, we show that PvfB catalyzes N-oxygenation of the α-amine of valine, first to the hydroxylamine and then the nitroso, while linked to the carrier protein of PvfC. PvfB modification of PvfC-tethered valine was observed directly by protein NMR spectroscopy, establishing the intermediacy of the hydroxylamine. This work reveals a central role for PvfB in the biosynthesis of (dihydro)pyrazine-N-oxides and valdiazen.
Collapse
Affiliation(s)
- Gina L Morgan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
23
|
Morgan GL, Li B. In Vitro Reconstitution Reveals a Central Role for the N‐Oxygenase PvfB in (Dihydro)pyrazine‐
N
‐oxide and Valdiazen Biosynthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Gina L. Morgan
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Bo Li
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
24
|
Covas C, Almeida B, Esteves AC, Lourenço J, Domingues P, Caetano T, Mendo S. Peptone from casein, an antagonist of nonribosomal peptide synthesis: a case study of pedopeptins produced by Pedobacter lusitanus NL19. N Biotechnol 2020; 60:62-71. [PMID: 32891869 DOI: 10.1016/j.nbt.2020.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 01/30/2023]
Abstract
Novel natural products are urgently needed to address the worldwide incidence of bacterial resistance to antibiotics. Extreme environments are a major source of novel compounds with unusual chemical structures. Pedobacter lusitanus NL19 is a new bacterial species that was isolated from one such environment and which produces compounds with potent activity against relevant microorganisms in the clinical, food, veterinary and aquaculture areas. The production of antimicrobials by P. lusitanus NL19 was identified in tryptic soy agar (TSA), but not in its equivalent broth (TSB). It was observed that in TSB medium a high concentration of casein peptone (PC) repressed the production of antibacterial compounds. HPLC, MS and MS/MS spectra with de novo sequencing revealed that the bioactivity of P. lusitanus NL19 was due to the production of pedopeptins. Hence, biosynthesis of pedopeptins is inhibited by high concentrations of PC in the broth medium. Furthermore, a nonribosomal peptide synthetase (NRPS) gene cluster was identified in the genome of NL19 encoding the biosynthesis of the peptides. qPCR analysis confirmed that the transcription of these genes is repressed in cells cultivated in high concentrations of PC. It is shown that pedopeptins are nonribosomal peptides with a broad-spectrum activity, including against Gram-positive and Gram-negative bacteria and yeasts.
Collapse
Affiliation(s)
- Cláudia Covas
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Beatriz Almeida
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Cristina Esteves
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Portugal
| | - Joana Lourenço
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre and LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Tânia Caetano
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sónia Mendo
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
Zhao Y, Ho YTC, Tailhades J, Cryle M. Understanding the Glycopeptide Antibiotic Crosslinking Cascade: In Vitro Approaches Reveal the Details of a Complex Biosynthesis Pathway. Chembiochem 2020; 22:43-51. [PMID: 32696500 DOI: 10.1002/cbic.202000309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Indexed: 11/06/2022]
Abstract
The glycopeptide antibiotics (GPAs) are a fascinating example of complex natural product biosynthesis, with the nonribosomal synthesis of the peptide core coupled to a cytochrome P450-mediated cyclisation cascade that crosslinks aromatic side chains within this peptide. Given that the challenges associated with the synthesis of GPAs stems from their highly crosslinked structure, there is great interest in understanding how biosynthesis accomplishes this challenging set of transformations. In this regard, the use of in vitro experiments has delivered important insights into this process, including the identification of the unique role of the X-domain as a platform for P450 recruitment. In this minireview, we present an analysis of the results of in vitro studies into the GPA cyclisation cascade that have demonstrated both the tolerances and limitations of this process for modified substrates, and in turn developed rules for the future reengineering of this important antibiotic class.
Collapse
Affiliation(s)
- Yongwei Zhao
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| | - Y T Candace Ho
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| | - Julien Tailhades
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| | - Max Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,EMBL Australia, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
26
|
Xu ZF, Bo ST, Wang MJ, Shi J, Jiao RH, Sun Y, Xu Q, Tan RX, Ge HM. Discovery and biosynthesis of bosamycins from Streptomyces sp. 120454. Chem Sci 2020; 11:9237-9245. [PMID: 34094195 PMCID: PMC8161544 DOI: 10.1039/d0sc03469j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nonribosomal peptides (NRPs) that are synthesized by modular megaenzymes known as nonribosomal peptide synthetases (NRPSs) are a rich source for drug discovery. By targeting an unusual NRPS architecture, we discovered an unusual biosynthetic gene cluster (bsm) from Streptomyces sp. 120454 and identified that it was responsible for the biosynthesis of a series of novel linear peptides, bosamycins. The bsm gene cluster contains a unique monomodular NRPS, BsmF, that contains a cytochrome P450 domain at the N-terminal. BsmF (P450 + A + T) can selectively activate tyrosine with its adenylation (A) domain, load it onto the thiolation (T) domain, and then hydroxylate tyrosine to form 5-OH tyrosine with the P450 domain. We demonstrated a NRPS assembly line for the formation of bosamycins by genetic and biochemical analysis and heterologous expression. Our work reveals a genome mining strategy targeting a unique NRPS domain for the discovery of novel NRPs.
Collapse
Affiliation(s)
- Zi Fei Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Sheng Tao Bo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Mei Jing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine Nanjing 210023 P. R. China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University 210023 P. R. China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
27
|
Mnguni FC, Padayachee T, Chen W, Gront D, Yu JH, Nelson DR, Syed K. More P450s Are Involved in Secondary Metabolite Biosynthesis in Streptomyces Compared to Bacillus, Cyanobacteria, and Mycobacterium. Int J Mol Sci 2020; 21:ijms21134814. [PMID: 32646068 PMCID: PMC7369989 DOI: 10.3390/ijms21134814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Unraveling the role of cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins present in living and non-living entities, in secondary metabolite synthesis is gaining momentum. In this direction, in this study, we analyzed the genomes of 203 Streptomyces species for P450s and unraveled their association with secondary metabolism. Our analyses revealed the presence of 5460 P450s, grouped into 253 families and 698 subfamilies. The CYP107 family was found to be conserved and highly populated in Streptomyces and Bacillus species, indicating its key role in the synthesis of secondary metabolites. Streptomyces species had a higher number of P450s than Bacillus and cyanobacterial species. The average number of secondary metabolite biosynthetic gene clusters (BGCs) and the number of P450s located in BGCs were higher in Streptomyces species than in Bacillus, mycobacterial, and cyanobacterial species, corroborating the superior capacity of Streptomyces species for generating diverse secondary metabolites. Functional analysis via data mining confirmed that many Streptomyces P450s are involved in the biosynthesis of secondary metabolites. This study was the first of its kind to conduct a comparative analysis of P450s in such a large number (203) of Streptomyces species, revealing the P450s’ association with secondary metabolite synthesis in Streptomyces species. Future studies should include the selection of Streptomyces species with a higher number of P450s and BGCs and explore the biotechnological value of secondary metabolites they produce.
Collapse
Affiliation(s)
- Fanele Cabangile Mnguni
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, 3155 MSB, 1550 Linden Drive, Madison, WI 53706, USA;
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: (D.R.N.); (K.S.)
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (F.C.M.); (T.P.)
- Correspondence: (D.R.N.); (K.S.)
| |
Collapse
|
28
|
Kaniusaite M, Goode RJA, Schittenhelm RB, Makris TM, Cryle MJ. The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of β-Hydroxylation during Glycopeptide Antibiotic Biosynthesis. ACS Chem Biol 2019; 14:2932-2941. [PMID: 31774267 PMCID: PMC6929969 DOI: 10.1021/acschembio.9b00862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
β-Hydroxylation plays an important role in the nonribosomal peptide biosynthesis of many important natural products, including bleomycin, chloramphenicol, and the glycopeptide antibiotics (GPAs). Various oxidative enzymes have been implicated in such a process, with the mechanism of incorporation varying from installation of hydroxyl groups in amino acid precursors prior to adenylation to direct amino acid oxidation during peptide assembly. In this work, we demonstrate the in vitro utility and scope of the unusual nonheme diiron monooxygenase CmlA from chloramphenicol biosynthesis for the β-hydroxylation of a diverse range of carrier protein bound substrates by adapting this enzyme as a non-native trans-acting enzyme within NRPS-mediated GPA biosynthesis. The results from our study show that CmlA has a broad substrate specificity for modified phenylalanine/tyrosine residues as substrates and can be used in a practical strategy to functionally cross complement compatible NRPS biosynthesis pathways in vitro.
Collapse
Affiliation(s)
- Milda Kaniusaite
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL
Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Robert J. A. Goode
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash
Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B. Schittenhelm
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash
Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas M. Makris
- Department
of Chemistry and Biochemistry, University
of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Max J. Cryle
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL
Australia, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Characterization of the Ohmyungsamycin Biosynthetic Pathway and Generation of Derivatives with Improved Antituberculosis Activity. Biomolecules 2019; 9:biom9110672. [PMID: 31671649 PMCID: PMC6920865 DOI: 10.3390/biom9110672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/24/2023] Open
Abstract
The cyclic depsipeptides ohmyungsamycin (OMS) A (1) and B (2), isolated from the marine-derived Streptomyces sp. SNJ042, contain two non-proteinogenic amino acid residues, β-hydroxy-l-phenylalanine (β-hydroxy-l-Phe) and 4-methoxy-l-tryptophan (4-methoxy-l-Trp). Draft genome sequencing of Streptomyces sp. SNJ042 revealed the OMS biosynthetic gene cluster consisting of a nonribosomal peptide synthetase (NRPS) gene and three genes for amino acid modification. By gene inactivation and analysis of the accumulated products, we found that OhmL, encoding a P450 gene, is an l-Phe β-hydroxylase. Furthermore, OhmK, encoding a Trp 2,3-dioxygenase homolog, and OhmJ, encoding an O-methyltransferase, are suggested to be involved in hydroxylation and O-methylation reactions, respectively, in the biosynthesis of 4-methoxy-l-Trp. In addition, the antiproliferative and antituberculosis activities of the OMS derivatives dehydroxy-OMS A (4) and demethoxy-OMS A (6) obtained from the mutant strains were evaluated in vitro. Interestingly, dehydroxy-OMS A (4) displayed significantly improved antituberculosis activity and decreased cytotoxicity compared to wild-type OMS A.
Collapse
|
30
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Brown AS, Calcott MJ, Owen JG, Ackerley DF. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep 2019; 35:1210-1228. [PMID: 30069573 DOI: 10.1039/c8np00036k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to May 2018 Non-ribosomal peptide synthetases (NRPSs) are mega-enzymes that form modular templates to assemble specific peptide products, independent of the ribosome. The autonomous nature of the modules in the template offers prospects for re-engineering NRPS enzymes to generate modified peptide products. Although this has clearly been a primary mechanism of natural product diversification throughout evolution, equivalent strategies have proven challenging to implement in the laboratory. In this review we examine key examples of successful and less-successful re-engineering of NRPS templates to generate novel peptides, with the aim of extracting practical guidelines to inform future efforts. We emphasise the importance of maintaining effective protein-protein interactions in recombinant NRPS templates, and identify strengths and limitations of diverse strategies for achieving different engineering outcomes.
Collapse
Affiliation(s)
- Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | |
Collapse
|
32
|
Izoré T, Cryle MJ. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat Prod Rep 2019; 35:1120-1139. [PMID: 30207358 DOI: 10.1039/c8np00038g] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to July 2018 Non-ribosomal peptide synthetase (NRPS) machineries are complex, multi-domain proteins that are responsible for the biosynthesis of many important, peptide-derived compounds. By decoupling peptide synthesis from the ribosome, NRPS assembly lines are able to access a significant pool of amino acid monomers for peptide synthesis. This is combined with a modular protein architecture that allows for great variation in stereochemistry, peptide length, cyclisation state and further modifications. The architecture of NRPS assembly lines relies upon a repetitive set of catalytic domains, which are organised into modules responsible for amino acid incorporation. Central to NRPS-mediated biosynthesis is the carrier protein (CP) domain, to which all intermediates following initial monomer activation are bound during peptide synthesis up until the final handover to the thioesterase domain that cleaves the mature peptide from the NRPS. This mechanism makes understanding the protein-protein interactions that occur between different NRPS domains during peptide biosynthesis of crucial importance to understanding overall NRPS function. This endeavour is also highly challenging due to the inherent flexibility and dynamics of NRPS systems. In this review, we present the current state of understanding of the protein-protein interactions that govern NRPS-mediated biosynthesis, with a focus on insights gained from structural studies relating to CP domain interactions within these impressive peptide assembly lines.
Collapse
Affiliation(s)
- Thierry Izoré
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
33
|
Santa Maria KC, Chan AN, O'Neill EM, Li B. Targeted Rediscovery and Biosynthesis of the Farnesyl-Transferase Inhibitor Pepticinnamin E. Chembiochem 2019; 20:1387-1393. [PMID: 30694017 PMCID: PMC6750724 DOI: 10.1002/cbic.201900025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 11/08/2022]
Abstract
The natural product pepticinnamin E potently inhibits protein farnesyl transferases and has potential applications in treating cancer and malaria. Pepticinnamin E contains a rare N-terminal cinnamoyl moiety as well as several nonproteinogenic amino acids, including the unusual 2-chloro-3-hydroxy-4-methoxy-N-methyl-L-phenylalanine. The biosynthesis of pepticinnamin E has remained uncharacterized because its original producing strain is no longer available. Here we identified a gene cluster (pcm) for this natural product in a new producer, Actinobacteria bacterium OK006, by means of a targeted rediscovery strategy. We demonstrated that the pcm cluster is responsible for the biosynthesis of pepticinnamin E, a nonribosomal peptide/polyketide hybrid. We also characterized a key O-methyltransferase that modifies 3,4-dihydroxy-l-phenylalanine. Our work has identified the gene cluster for pepticinnamins for the first time and sets the stage for elucidating the unique chemistry required for biosynthesis.
Collapse
Affiliation(s)
- Kevin C Santa Maria
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Andrew N Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Erinn M O'Neill
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, CB#3290, Chapel Hill, NC, 27514, USA
| |
Collapse
|
34
|
Jiang G, Zhang Y, Powell MM, Hylton SM, Hiller NW, Loria R, Ding Y. A Promiscuous Cytochrome P450 Hydroxylates Aliphatic and Aromatic C-H Bonds of Aromatic 2,5-Diketopiperazines. Chembiochem 2019; 20:1068-1077. [PMID: 30604585 PMCID: PMC8162728 DOI: 10.1002/cbic.201800736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/06/2022]
Abstract
Cytochrome P450 enzymes generally functionalize inert C-H bonds, and thus, they are important biocatalysts for chemical synthesis. However, enzymes that catalyze both aliphatic and aromatic hydroxylation in the same biotransformation process have rarely been reported. A recent biochemical study demonstrated the P450 TxtC for the biosynthesis of herbicidal thaxtomins as the first example of this unique type of enzyme. Herein, the detailed characterization of substrate requirements and biocatalytic applications of TxtC are reported. The results reveal the importance of N-methylation of the thaxtomin diketopiperazine (DKP) core on enzyme reactions and demonstrate the tolerance of the enzyme to modifications on the indole and phenyl moieties of its substrates. Furthermore, hydroxylated, methylated, aromatic DKPs are synthesized through a biocatalytic route comprising TxtC and the promiscuous N-methyltransferase Amir_4628; thus providing a basis for the broad application of this unique P450.
Collapse
Affiliation(s)
- Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Yi Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Magan M Powell
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Sarah M Hylton
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas W Hiller
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Rosemary Loria
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
35
|
Sun C, Yang Z, Zhang C, Liu Z, He J, Liu Q, Zhang T, Ju J, Ma J. Genome Mining of Streptomyces atratus SCSIO ZH16: Discovery of Atratumycin and Identification of Its Biosynthetic Gene Cluster. Org Lett 2019; 21:1453-1457. [DOI: 10.1021/acs.orglett.9b00208] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhijie Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhiyong Liu
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jianqiao He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qing Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tianyu Zhang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
36
|
Greule A, Charkoudian LK, Cryle MJ. Studying trans-acting enzymes that target carrier protein-bound amino acids during nonribosomal peptide synthesis. Methods Enzymol 2019; 617:113-154. [PMID: 30784400 DOI: 10.1016/bs.mie.2018.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Nonribosomal peptide biosynthesis is a complex enzymatic assembly responsible for producing a great diversity of bioactive peptide natural products. Due to the recurring arrangement of catalytic domains within these machineries, great interest has been shown in reengineering these pathways to produce novel, designer peptide products. However, in order to realize such ambitions, it is first necessary to develop a comprehensive understanding of the selectivity, mechanisms, and structure of these complex enzymes, which in turn requires significant in vitro experiments. Within nonribosomal biosynthesis, some modifications are performed by enzymatic domains that are not linked to the main nonribosomal peptide synthetase but rather act in trans: these systems offer great potential for redesign, but in turn require detailed study. In this chapter, we present an overview of in vitro experiments that can be used to characterize examples of such trans-interacting enzymes from nonribosomal peptide biosynthesis: Cytochrome P450 monooxygenases and flavin-dependent halogenases.
Collapse
Affiliation(s)
- Anja Greule
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia
| | | | - Max J Cryle
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; EMBL Australia, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
37
|
Thapa HR, Robbins JM, Moore BS, Agarwal V. Insights into Thiotemplated Pyrrole Biosynthesis Gained from the Crystal Structure of Flavin-Dependent Oxidase in Complex with Carrier Protein. Biochemistry 2019; 58:918-929. [PMID: 30620182 DOI: 10.1021/acs.biochem.8b01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequential enzymatic reactions on substrates tethered to carrier proteins (CPs) generate thiotemplated building blocks that are then delivered to nonribosomal peptide synthetases (NRPSs) to generate peptidic natural products. The underlying diversity of these thiotemplated building blocks is the principal driver of the chemical diversity of NRPS-derived natural products. Structural insights into recognition of CPs by tailoring enzymes that generate these building blocks are sparse. Here we present the crystal structure of a flavin-dependent prolyl oxidase that furnishes thiotemplated pyrrole as the product, in complex with its cognate CP in the holo and product-bound states. The thiotemplated pyrrole is an intermediate that is well-represented in natural product biosynthetic pathways. Our results delineate the interactions between the CP and the oxidase while also providing insights into the stereospecificity of the enzymatic oxidation of the prolyl heterocycle to the aromatic pyrrole. Biochemical validation of the interaction between the CP and the oxidase demonstrates that NRPSs recognize and bind to their CPs using interactions quite different from those of fatty acid and polyketide biosynthetic enzymes. Our results posit that structural diversity in natural product biosynthesis can be, and is, derived from subtle modifications of primary metabolic enzymes.
Collapse
Affiliation(s)
- Hem R Thapa
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - John M Robbins
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Krone Engineered Biosystems Building , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Bradley S Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093 , United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
38
|
Brieke C, Tarnawski M, Greule A, Cryle MJ. Investigating Cytochrome P450 specificity during glycopeptide antibiotic biosynthesis through a homologue hybridization approach. J Inorg Biochem 2018; 185:43-51. [DOI: 10.1016/j.jinorgbio.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
|
39
|
Giltrap AM, Haeckl FPJ, Kurita KL, Linington RG, Payne RJ. Synthetic Studies Toward the Skyllamycins: Total Synthesis and Generation of Simplified Analogues. J Org Chem 2018; 83:7250-7270. [PMID: 29798664 DOI: 10.1021/acs.joc.8b00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report our synthetic studies toward the skyllamycins, a highly modified class of nonribosomal peptide natural products which contain a number of interesting structural features, including the extremely rare α-OH-glycine residue. Before embarking on the synthesis of the natural products, we prepared four structurally simpler analogues. Access to both the analogues and the natural products first required the synthesis of a number of nonproteinogenic amino acids, including three β-OH amino acids that were accessed from the convenient chiral precursor Garner's aldehyde. Following the preparation of the suitably protected nonproteinogenic amino acids, the skyllamycin analogues were assembled using a solid-phase synthetic route followed by a final stage solution-phase cyclization reaction. To access the natural products (skyllamycins A-C) the synthetic route used for the analogues was modified. Specifically, linear peptide precursors containing a C-terminal amide were synthesized via solid-phase peptide synthesis. After cleavage from the resin the N-terminal serine residue was oxidatively cleaved to a glyoxyamide moiety. The target natural products, skyllamycins A-C, were successfully prepared via a final step cyclization with concomitant formation of the unusual α-OH-glycine residue. Purification and spectroscopic comparison to the authentic isolated material confirmed the identity of the synthetic natural products.
Collapse
Affiliation(s)
- Andrew M Giltrap
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - F P Jake Haeckl
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia BC V5A 1S6 , Canada
| | - Kenji L Kurita
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia BC V5A 1S6 , Canada
| | - Roger G Linington
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia BC V5A 1S6 , Canada
| | - Richard J Payne
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
40
|
Semsary S, Crnovčić I, Driller R, Vater J, Loll B, Keller U. Ketonization of Proline Residues in the Peptide Chains of Actinomycins by a 4-Oxoproline Synthase. Chembiochem 2018; 19:706-715. [PMID: 29327817 DOI: 10.1002/cbic.201700666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 11/10/2022]
Abstract
X-type actinomycins (Acms) contain 4-hydroxyproline (Acm X0 ) or 4-oxoproline (Acm X2 ) in their β-pentapeptide lactone rings, whereas their α ring contains proline. We demonstrate that these Acms are formed through asymmetric condensation of Acm half molecules (Acm halves) containing proline with 4-hydroxyproline- or 4-oxoproline-containing Acm halves. In turn, we show-using an artificial Acm half analogue (PPL 1) with proline in its peptide chain-their conversion into the 4-hydroxyproline- and 4-oxoproline-containing Acm halves, PPL 0 and PPL 2, in mycelial suspensions of Streptomyces antibioticus. Two responsible genes of the Acm X biosynthetic gene cluster of S. antibioticus, saacmM and saacmN, encoding a cytochrome P450 monooxygenase (Cyp) and a ferredoxin were identified. After coexpression in Escherichia coli, their gene products converted PPL 1 into PPL 0 and PPL 2 in vivo as well as in situ in permeabilized cell of the transformed E. coli strain in conjunction with the host-encoded ferredoxin reductase in a NADH (NADPH)-dependent manner. saAcmM has high sequence similarity to the Cyp107Z (Ema) family of Cyps, which can convert avermectin B1 into its keto derivative, 4''-oxoavermectin B1. Determination of the structure of saAcmM reveals high similarity to the Ema structure but with significant differences in residues decorating their active sites, which defines saAcmM and its orthologues as a distinct new family of peptidylprolineketonizing Cyp.
Collapse
Affiliation(s)
- Siamak Semsary
- Institut für Chemie, Biologische Chemie, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623, Berlin, Germany
| | - Ivana Crnovčić
- Institut für Chemie, Biologische Chemie, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623, Berlin, Germany.,Present address: The Scripps Research Institute, Department of Chemistry, Jupiter, FL, 33458, USA
| | - Ronja Driller
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| | - Joachim Vater
- Institut für Chemie, Biologische Chemie, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623, Berlin, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195, Berlin, Germany
| | - Ullrich Keller
- Institut für Chemie, Biologische Chemie, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623, Berlin, Germany
| |
Collapse
|
41
|
Zhang S, Zhu J, Zechel DL, Jessen-Trefzer C, Eastman RT, Paululat T, Bechthold A. New WS9326A Derivatives and One New Annimycin Derivative with Antimalarial Activity are Produced by Streptomyces asterosporus DSM 41452 and Its Mutant. Chembiochem 2017; 19:272-279. [PMID: 29148157 DOI: 10.1002/cbic.201700428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 11/10/2022]
Abstract
In this study, we report that Streptomyces asterosporus DSM 41452 is a producer of new molecules related to the nonribosomal cyclodepsipeptide WS9326A and the polyketide annimycin. S. asterosporus DSM 41452 is shown to produce six cyclodepsipeptides and peptides, WS9326A to G. Notably, the compounds WS9326F and WS9326G have not been described before. The genome of S. asterosporus DSM 41452 was sequenced, and a putative WS9326A gene cluster was identified. Gene-deletion experiments confirmed that this cluster was responsible for the biosynthesis of WS9326A to G. Additionally, a gene-deletion experiment demonstrated that sas16 encoding a cytochrome P450 monooxygenase was involved in the synthesis of the novel (E)-2,3-dehydrotyrosine residue found in WS9326A and its derivatives. An insertion mutation within the putative annimycin gene cluster led to the production of a new annimycin derivative, annimycin B, which exhibited modest inhibitory activity against Plasmodium falciparum.
Collapse
Affiliation(s)
- Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strasse 19 VF, 79104, Freiburg im Breisgau, Germany
| | - Jing Zhu
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strasse 19 VF, 79104, Freiburg im Breisgau, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strasse 19 VF, 79104, Freiburg im Breisgau, Germany
| | - Richard T Eastman
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences/NIH, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Thomas Paululat
- Department of Chemistry and Biology, Universität Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strasse 19 VF, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
42
|
Cookmeyer DL, Winesett ES, Kokona B, Huff AR, Aliev S, Bloch NB, Bulos JA, Evans IL, Fagre CR, Godbe KN, Khromava M, Konstantinovsky DM, Lafrance AE, Lamacki AJ, Parry RC, Quinn JM, Thurston AM, Tsai KJS, Mollo A, Cryle MJ, Fairman R, Charkoudian LK. Uncovering protein-protein interactions through a team-based undergraduate biochemistry course. PLoS Biol 2017; 15:e2003145. [PMID: 29091712 PMCID: PMC5683658 DOI: 10.1371/journal.pbio.2003145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/13/2017] [Indexed: 11/30/2022] Open
Abstract
How can we provide fertile ground for students to simultaneously explore a breadth of foundational knowledge, develop cross-disciplinary problem-solving skills, gain resiliency, and learn to work as a member of a team? One way is to integrate original research in the context of an undergraduate biochemistry course. In this Community Page, we discuss the development and execution of an interdisciplinary and cross-departmental undergraduate biochemistry laboratory course. We present a template for how a similar course can be replicated at other institutions and provide pedagogical and research results from a sample module in which we challenged our students to study the binding interface between 2 important biosynthetic proteins. Finally, we address the community and invite others to join us in making a larger impact on undergraduate education and the field of biochemistry by coordinating efforts to integrate research and teaching across campuses.
Collapse
Affiliation(s)
- David L. Cookmeyer
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Emily S. Winesett
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Adam R. Huff
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Sabina Aliev
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Noah B. Bloch
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Joshua A. Bulos
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Irene L. Evans
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Christian R. Fagre
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Kerilyn N. Godbe
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Maryna Khromava
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | | | - Alexander E. Lafrance
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Alexandra J. Lamacki
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Robert C. Parry
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Jeanne M. Quinn
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
| | - Alana M. Thurston
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Kathleen J. S. Tsai
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Aurelio Mollo
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Max J. Cryle
- The Monash Biomedical Discovery Institute, EMBL Australia, Monash University, Clayton, Victoria, Australia
- The Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania, United States of America
- * E-mail: (LKC); (RF)
| | - Louise K. Charkoudian
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
- * E-mail: (LKC); (RF)
| |
Collapse
|
43
|
Giltrap AM, Haeckl FPJ, Kurita KL, Linington RG, Payne RJ. Total Synthesis of Skyllamycins A-C. Chemistry 2017; 23:15046-15049. [PMID: 28906041 DOI: 10.1002/chem.201704277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 12/31/2022]
Abstract
The skyllamycins are a family of highly functionalized non-ribosomal cyclic depsipeptide natural products which contain the extremely rare α-OH-glycine functionality. Herein the first total synthesis of skyllamycins A-C is reported, together with the biofilm inhibitory activity of the natural products. Linear peptide precursors for each natural product were prepared through an efficient solid-phase route incorporating a number of synthetic modified amino acids. A novel macrocyclization step between a C-terminal amide and an N-terminal glyoxylamide moiety served as a key transformation to install the unique α-OH-glycine unit and generate the natural products in the final step of the synthesis.
Collapse
Affiliation(s)
- Andrew M Giltrap
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - F P Jake Haeckl
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kenji L Kurita
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
44
|
Kittilä T, Kittel C, Tailhades J, Butz D, Schoppet M, Büttner A, Goode RJA, Schittenhelm RB, van Pee KH, Süssmuth RD, Wohlleben W, Cryle MJ, Stegmann E. Halogenation of glycopeptide antibiotics occurs at the amino acid level during non-ribosomal peptide synthesis. Chem Sci 2017; 8:5992-6004. [PMID: 28989629 PMCID: PMC5620994 DOI: 10.1039/c7sc00460e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Halogenation plays a significant role in the activity of the glycopeptide antibiotics (GPAs), although up until now the timing and therefore exact substrate involved was unclear. Here, we present results combined from in vivo and in vitro studies that reveal the substrates for the halogenase enzymes from GPA biosynthesis as amino acid residues bound to peptidyl carrier protein (PCP)-domains from the non-ribosomal peptide synthetase machinery: no activity was detected upon either free amino acids or PCP-bound peptides. Furthermore, we show that the selectivity of GPA halogenase enzymes depends upon both the structure of the bound amino acid and the PCP domain, rather than being driven solely via the PCP domain. These studies provide the first detailed understanding of how halogenation is performed during GPA biosynthesis and highlight the importance and versatility of trans-acting enzymes that operate during peptide assembly by non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Tiia Kittilä
- Department of Biomolecular Mechanisms , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
| | - Claudia Kittel
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen , Microbiology/Biotechnology , University of Tuebingen , Auf der Morgenstelle 28 , 72076 Tuebingen , Germany .
| | - Julien Tailhades
- EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia .
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia
| | - Diane Butz
- Institut für Chemie , Technische Universität Berlin , 10623 Berlin , Germany
| | - Melanie Schoppet
- Department of Biomolecular Mechanisms , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
- EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia .
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia
| | - Anita Büttner
- Allgemeine Biochemie , TU Dresden , 01062 Dresden , Germany
| | - Rob J A Goode
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia
- Monash Biomedical Proteomics Facility , Monash University , Clayton , Victoria 3800 , Australia
| | - Ralf B Schittenhelm
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia
- Monash Biomedical Proteomics Facility , Monash University , Clayton , Victoria 3800 , Australia
| | - Karl-Heinz van Pee
- Institut für Chemie , Technische Universität Berlin , 10623 Berlin , Germany
| | | | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen , Microbiology/Biotechnology , University of Tuebingen , Auf der Morgenstelle 28 , 72076 Tuebingen , Germany .
- German Centre for Infection Research (DZIF) , Partner Site Tuebingen , Tuebingen , Germany
| | - Max J Cryle
- Department of Biomolecular Mechanisms , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
- EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia .
- The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia
- ARC Centre of Excellence in Advanced Molecular Imaging , Monash University , Clayton , Victoria 3800 , Australia
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen , Microbiology/Biotechnology , University of Tuebingen , Auf der Morgenstelle 28 , 72076 Tuebingen , Germany .
- German Centre for Infection Research (DZIF) , Partner Site Tuebingen , Tuebingen , Germany
| |
Collapse
|
45
|
Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function. Nat Prod Rep 2017; 34:1141-1172. [PMID: 28758170 PMCID: PMC5585785 DOI: 10.1039/c7np00034k] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and <0.4% of streptomycete P450s have been functionally and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
46
|
Baldeweg F, Kage H, Schieferdecker S, Allen C, Hoffmeister D, Nett M. Structure of Ralsolamycin, the Interkingdom Morphogen from the Crop Plant Pathogen Ralstonia solanacearum. Org Lett 2017; 19:4868-4871. [PMID: 28846435 DOI: 10.1021/acs.orglett.7b02329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ralsolamycin, an inducer of chlamydospore formation in fungi, was recently reported from the plant pathogenic bacterium Ralstonia solanacearum. Although interpretation of tandem mass data and bioinformatics enabled a preliminary chemical characterization, the full structure of ralsolamycin was not resolved. We now report the recovery of this secondary metabolite from an engineered R. solanacearum strain. The structure of ralsolamycin was elucidated by extensive spectroscopic analyses. Chemical derivatization as well as bioinformatics were used to assign the absolute stereochemistry. Our results identified an erroneous genome sequence, thereby emphasizing the value of chemical methods to complement bioinformatics-based procedures in natural product research.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-University Jena , Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Hirokazu Kage
- Department of Biochemical and Chemical Engineering, Technical University Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Sebastian Schieferdecker
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison , 1630 Linden Drive, Madison, Wisconsin 53706, United States
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-University Jena , Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Technical University Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
47
|
Payne JAE, Schoppet M, Hansen MH, Cryle MJ. Diversity of nature's assembly lines - recent discoveries in non-ribosomal peptide synthesis. MOLECULAR BIOSYSTEMS 2017; 13:9-22. [PMID: 27853778 DOI: 10.1039/c6mb00675b] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The biosynthesis of complex natural products by non-ribosomal peptide synthetases (NRPSs) and the related polyketide synthases (PKSs) represents a major source of important bioactive compounds. These large, multi-domain machineries are able to produce a fascinating range of molecules due to the nature of their modular architectures, which allows natural products to be assembled and tailored in a modular, step-wise fashion. In recent years there has been significant progress in characterising the important domains and underlying mechanisms of non-ribosomal peptide synthesis. More significantly, several studies have uncovered important examples of novel activity in many NRPS domains. These discoveries not only greatly increase the structural diversity of the possible products of NRPS machineries but - possibly more importantly - they improve our understanding of what is a highly important, yet complex, biosynthetic apparatus. In this review, several recent examples of novel NRPS function will be introduced, which highlight the range of previously uncharacterised activities that have now been detected in the biosynthesis of important natural products by these mega-enzyme synthetases.
Collapse
Affiliation(s)
- Jennifer A E Payne
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | - Melanie Schoppet
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | | - Max J Cryle
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
48
|
Wise CE, Makris TM. Recruitment and Regulation of the Non-ribosomal Peptide Synthetase Modifying Cytochrome P450 Involved in Nikkomycin Biosynthesis. ACS Chem Biol 2017; 12:1316-1326. [PMID: 28300390 DOI: 10.1021/acschembio.7b00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The β-hydroxylation of l-histidine is the first step in the biosynthesis of the imidazolone base of the antifungal drug nikkomycin. The cytochrome P450 (NikQ) hydroxylates the amino acid while it is appended via a phosphopantetheine linker to the non-ribosomal peptide synthetase (NRPS) NikP1. The latter enzyme is comprised of an MbtH and single adenylation and thiolation domains, a minimal composition that allows for detailed binding and kinetics studies using an intact and homogeneous NRPS substrate. Electron paramagnetic resonance studies confirm that a stable complex is formed with NikQ and NikP1 when the amino acid is tethered. Size exclusion chromatography is used to further refine the principal components that are required for this interaction. NikQ binds NikP1 in the fully charged state, but binding also occurs when NikP1 is lacking both the phosphopantetheine arm and appended amino acid. This demonstrates that the interaction is mainly guided by presentation of the thiolation domain interface, rather than the attached amino acid. Electrochemistry and transient kinetics have been used to probe the influence of l-His-NikP1 binding on catalysis by NikQ. Unlike many P450s, the binding of substrate fails to induce significant changes on the redox potential and autoxidation properties of NikQ and slows down the binding of dioxygen to the ferrous enzyme to initiate catalysis. Collectively, these studies demonstrate a complex interplay between the NRPS maturation process and the recruitment and regulation of an auxiliary tailoring enzyme required for natural product biosynthesis.
Collapse
Affiliation(s)
- Courtney E. Wise
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Thomas M. Makris
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
49
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 582] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
50
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|