1
|
Yan N, Liu HY, Kong TT, Kong ZH, Li LY, Ma X, Zeng YL, Wang MJ, Tang LQ, Zhang CM, Liu ZP, Liu C. Design, synthesis and biological evaluation of thieno[3,2-c]pyrazol-urea derivatives as potent glycogen synthase kinase 3β inhibitors based on the DFG-out conformation. Bioorg Med Chem Lett 2024; 112:129932. [PMID: 39182737 DOI: 10.1016/j.bmcl.2024.129932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a potential therapeutic target for the treatment of a variety of human diseases. Here, we report the design and synthesis of a series of thieno[3,2-c]pyrazol-urea derivatives and evaluation of their GSK-3β inhibitory activity. Among these analogues, the compound without substitution on terminal phenyl ring (3a) was found to be the most potent GSK-3β inhibitor with an IC50 of 74.4 nM, while substitution on the terminal phenyl (3b-3p) led to decreased potency, independent of the position, size, or electronic properties of the substituents. Kinase selectivity assay revealed that 3a showed good selectivity over a panel of kinases, but was less selective over CDK1, CDK2 and CDK5. Additionally, the pharmacological properties of the synthesized compounds were investigated computationally by the SwissADME and the results showed that most of the compounds have good ADME profiles.
Collapse
Affiliation(s)
- Ning Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hong-Yan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan 265400, PR China
| | - Ting-Ting Kong
- Department of Pharmacy, Qilu Hospital of Shandong University, Shandong University, Jinan 250012, PR China
| | - Zi-Hao Kong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Ling-Yun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xin Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yan-Li Zeng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Mei-Jun Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Long-Qian Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Cheng-Mei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
2
|
Vandewalle N, De Beule N, De Becker A, De Bruyne E, Menu E, Vanderkerken K, Breckpot K, Devoogdt N, De Veirman K. AXL as immune regulator and therapeutic target in Acute Myeloid Leukemia: from current progress to novel strategies. Exp Hematol Oncol 2024; 13:99. [PMID: 39367387 PMCID: PMC11453060 DOI: 10.1186/s40164-024-00566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, treatment options for patients diagnosed with Acute Myeloid Leukemia (AML) were limited and predominantly relied on various combinations, dosages, or schedules of traditional chemotherapeutic agents. Patients with advanced age, relapsed/refractory disease or comorbidities were often left without effective treatment options. Novel advances in the understanding of leukemogenesis at the molecular and genetic levels, alongside recent progress in drug development, have resulted in the emergence of novel therapeutic agents and strategies for AML patients. Among these innovations, the receptor tyrosine kinase AXL has been established as a promising therapeutic target for AML. AXL is a key regulator of several cellular functions, including epithelial-to-mesenchymal transition in tumor cells, immune regulation, apoptosis, angiogenesis and the development of chemoresistance. Clinical studies of AXL inhibitors, as single agents and in combination therapy, have demonstrated promising efficacy in treating AML. Additionally, novel AXL-targeted therapies, such as AXL-specific antibodies or antibody fragments, present potential solutions to overcome the limitations associated with traditional small-molecule AXL inhibitors or multikinase inhibitors. This review provides a comprehensive overview of the structure and biological functions of AXL under normal physiological conditions, including its role in immune regulation. We also summarize AXL's involvement in cancer, with a specific emphasis on its role in the pathogenesis of AML, its contribution to immune evasion and drug resistance. Moreover, we discuss the AXL inhibitors currently undergoing (pre)clinical evaluation for the treatment of AML.
Collapse
Affiliation(s)
- Niels Vandewalle
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Nathan De Beule
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Ann De Becker
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Team Laboratory of Cellular and Molecular Therapy (LMCT), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Nick Devoogdt
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium.
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium.
| |
Collapse
|
3
|
Zhao Z, Bourne PE. Advances in reversible covalent kinase inhibitors. Med Res Rev 2024. [PMID: 39287197 DOI: 10.1002/med.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including Atypical group of kinases. Currently, three RCKIs are undergoing clinical trials. Here, advances in RCKIs are reviewed to systematically summarize the characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. In so doing, we integrate key insights into privileged electrophiles, the distribution of nucleophiles, and hence effective design strategies for the development of RCKIs. Finally, we provide a further perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Philip E Bourne
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Kumar R, Goel H, Solanki R, Rawat L, Tabasum S, Tanwar P, Pal S, Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. MEDICINE IN DRUG DISCOVERY 2024; 23:100195. [PMID: 39281823 PMCID: PMC11393807 DOI: 10.1016/j.medidd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Bumpers QA, Pipal RW, Benz-Weeden AM, Brewster JT, Cook A, Crooks AL, Cruz C, Dwulet NC, Gaudino JJ, Golec D, Harrison JA, Hartley DP, Hassanien SH, Hicken EJ, Kahn D, Laird ER, Lemieux C, Lewandowski N, McCown J, McDonald MG, McNulty O, Mou TC, Nguyen P, Oko L, Opie LP, Otten J, Peck SC, Polites VC, Randall SD, Rosen RZ, Savechenkov P, Simpson H, Singh A, Sparks D, Wickersham K, Wollenberg L, Wong CE, Wong J, Wu WI, Elsayed MSA, Hinklin RJ, Tang TP. Discovery of Pyrazolopyrazines as Selective, Potent, and Mutant-Active MET Inhibitors with Intracranial Efficacy. J Med Chem 2024; 67:14466-14477. [PMID: 39088797 DOI: 10.1021/acs.jmedchem.4c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Mesenchymal-epithelial transition factor (MET) is a receptor tyrosine kinase that serves a critical function in numerous developmental, morphogenic, and proliferative signaling pathways. If dysregulated, MET has been shown to be involved in the development and survival of several cancers, including non-small cell lung cancer (NSCLC), renal cancer, and other epithelial tumors. Currently, the clinical efficacy of FDA approved MET inhibitors is limited by on-target acquired resistance, dose-limiting toxicities, and less than optimal efficacy against brain metastasis. Therefore, there is still an unmet medical need for the development of MET inhibitors to address these issues. Herein we report the application of structure-based design for the discovery and development of a novel class of brain-penetrant MET inhibitors with enhanced activity against clinically relevant mutations and improved selectivity. Compound 13 with a MET D1228N cell line IC50 value of 23 nM showed good efficacy in an intracranial tumor model and increased the median overall survival of the animals to 100% when dosed orally at 100 mg/kg daily for 21 days.
Collapse
Affiliation(s)
- Quinn A Bumpers
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Robert W Pipal
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Anna M Benz-Weeden
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - James T Brewster
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Adam Cook
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Amy L Crooks
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Cole Cruz
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Natalie C Dwulet
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - John J Gaudino
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Daniel Golec
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Jacqueline A Harrison
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Dylan P Hartley
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Sherif H Hassanien
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Erik J Hicken
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Dean Kahn
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Ellen R Laird
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Christine Lemieux
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Nicholas Lewandowski
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Joseph McCown
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Matthew G McDonald
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Oren McNulty
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Tung-Chung Mou
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Phong Nguyen
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Lauren Oko
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Lisa Pieti Opie
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Jennifer Otten
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Spencer C Peck
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Viktor C Polites
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Samuel D Randall
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Rachel Z Rosen
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Pavel Savechenkov
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Helen Simpson
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Anurag Singh
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Drew Sparks
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Kyle Wickersham
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Lance Wollenberg
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Christina E Wong
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Jim Wong
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Wen-I Wu
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Mohamed S A Elsayed
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Ronald J Hinklin
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Tony P Tang
- Pfizer Research & Development 3200 Walnut Street, Boulder, Colorado 80301, United States
| |
Collapse
|
6
|
Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, Tuli HS, Gupta M. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol 2024; 15:342. [PMID: 39127974 PMCID: PMC11317456 DOI: 10.1007/s12672-024-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Anurag Sharma
- Invertis Institute of Pharmacy, Invertis University Bareilly Uttar Pradesh, Bareilly, India
| | - Sonima Prasad
- Chandigarh University, Ludhiana-Chandigarh State Highway, Gharuan, Mohali, Punjab, 140413, India
| | - Karishma Singh
- Institute of Pharmaceutical Sciences, Faculty of Engineering and Technology, University of Lucknow, Lucknow, India
| | - Mayank Kumar
- Himalayan Institute of Pharmacy, Road, Near Suketi Fossil Park, Kala Amb, Hamidpur, Himachal Pradesh, India
| | - Kajal Sherawat
- Meerut Institute of Technology, Meerut, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
7
|
Herrington NB, Li YC, Stein D, Pandey G, Schlessinger A. A comprehensive exploration of the druggable conformational space of protein kinases using AI-predicted structures. PLoS Comput Biol 2024; 20:e1012302. [PMID: 39046952 PMCID: PMC11268620 DOI: 10.1371/journal.pcbi.1012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Protein kinase function and interactions with drugs are controlled in part by the movement of the DFG and ɑC-Helix motifs that are related to the catalytic activity of the kinase. Small molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that often depend on the active or inactive kinase conformation(s) they bind. Modern AI-based structural modeling methods have the potential to expand upon the limited availability of experimentally determined kinase structures in inactive states. Here, we first explored the conformational space of kinases in the PDB and models generated by AlphaFold2 (AF2) and ESMFold, two prominent AI-based protein structure prediction methods. Our investigation of AF2's ability to explore the conformational diversity of the kinome at various multiple sequence alignment (MSA) depths showed a bias within the predicted structures of kinases in DFG-in conformations, particularly those controlled by the DFG motif, based on their overabundance in the PDB. We demonstrate that predicting kinase structures using AF2 at lower MSA depths explored these alternative conformations more extensively, including identifying previously unobserved conformations for 398 kinases. Ligand enrichment analyses for 23 kinases showed that, on average, docked models distinguished between active molecules and decoys better than random (average AUC (avgAUC) of 64.58), but select models perform well (e.g., avgAUCs for PTK2 and JAK2 were 79.28 and 80.16, respectively). Further analysis explained the ligand enrichment discrepancy between low- and high-performing kinase models as binding site occlusions that would preclude docking. The overall results of our analyses suggested that, although AF2 explored previously uncharted regions of the kinase conformational space and select models exhibited enrichment scores suitable for rational drug discovery, rigorous refinement of AF2 models is likely still necessary for drug discovery campaigns.
Collapse
Affiliation(s)
- Noah B. Herrington
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yan Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David Stein
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
8
|
Wang X, DeFilippis RA, Yan W, Shah NP, Li HY. Overcoming Secondary Mutations of Type II Kinase Inhibitors. J Med Chem 2024; 67:9776-9788. [PMID: 38837951 DOI: 10.1021/acs.jmedchem.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Type II kinase inhibitors bind in the "DFG-out" kinase conformation and are generally considered to be more potent and selective than type I inhibitors, which target a DFG-in conformation. Nine type II inhibitors are currently clinically approved, with more undergoing clinical development. Resistance-conferring secondary mutations emerged with the first series of type II inhibitors, most commonly at residues within the kinase activation loop and at the "gatekeeper" position. Recently, new inhibitors have been developed to overcome such mutations; however, mutations activating other pathways (and/or other targets) have subsequently emerged on occasion. Here, we systematically summarize the secondary mutations that confer resistance to type II inhibitors, the structural basis for resistance, newer inhibitors designed to overcome resistance, as well as the challenges and opportunities for the development of new inhibitors to overcome secondary kinase domain mutations.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
9
|
Tamatam R, Mohammed A. Small molecule anticancer drugs approved during 2021-2022: Synthesis and clinical applications. Eur J Med Chem 2024; 272:116441. [PMID: 38759455 DOI: 10.1016/j.ejmech.2024.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Drugs have structural homology across similar biological targets. Small molecule drugs have the efficacy to target specific molecular targets within the cancer cells with enhanced cell membrane permeability, oral administration, selectivity, and specific affinity. The objective of this review is to highlight the clinical importance and synthetic routes of new small molecule oncology drugs approved by the FDA during the period 2021-2022. These marketed drugs are listed based on the month and year of approval in chronological order. We believed that an in-depth insight into the synthetic approaches for the construction of these chemical entities would enhance the ability to develop new drugs more efficiently.
Collapse
Affiliation(s)
- Rekha Tamatam
- Department of Agriculture Science, Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia.
| |
Collapse
|
10
|
Bakri SJ, Lynch J, Howard-Sparks M, Saint-Juste S, Saim S. Vorolanib, sunitinib, and axitinib: A comparative study of vascular endothelial growth factor receptor inhibitors and their anti-angiogenic effects. PLoS One 2024; 19:e0304782. [PMID: 38833447 PMCID: PMC11149885 DOI: 10.1371/journal.pone.0304782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
PURPOSE Pathological angiogenesis and vascular instability are observed in diabetic retinopathy (DR), diabetic macular edema (DME), and wet age-related macular degeneration (wAMD). Many receptor tyrosine kinases (RTKs) including vascular endothelial growth factor receptors (VEGFRs) contribute to angiogenesis, whereas the RTK TIE2 is important for vascular stability. Pan-VEGFR tyrosine kinase inhibitors (TKIs) such as vorolanib, sunitinib, and axitinib are of therapeutic interest over current antibody treatments that target only one or two ligands. This study compared the anti-angiogenic potential of these TKIs. METHODS A kinase HotSpot™ assay was conducted to identify TKIs inhibiting RTKs associated with angiogenesis and vascular stability. Half-maximal inhibitory concentration (IC50) for VEGFRs and TIE2 was determined for each TKI. In vitro angiogenesis inhibition was investigated using a human umbilical vein endothelial cell sprouting assay, and in vivo angiogenesis was studied using the chorioallantoic membrane assay. Melanin binding was assessed using a melanin-binding assay. Computer modeling was conducted to understand the TIE2-axitinib complex as well as interactions between vorolanib and VEGFRs. RESULTS Vorolanib, sunitinib, and axitinib inhibited RTKs of interest in angiogenesis and exhibited pan-VEGFR inhibition. HotSpot™ assay and TIE2 IC50 values showed that only axitinib potently inhibited TIE2 (up to 89%). All three TKIs effectively inhibited angiogenesis in vitro. In vivo, TKIs were more effective at inhibiting VEGF-induced angiogenesis than the anti-VEGF antibody bevacizumab. Of the three TKIs, only sunitinib bound melanin. TKIs differ in their classification and binding to VEGFRs, which is important because type II inhibitors have greater selectivity than type I TKIs. CONCLUSIONS Vorolanib, sunitinib, and axitinib exhibited pan-VEGFR inhibition and inhibited RTKs associated with pathological angiogenesis. Of the three TKIs, only axitinib potently inhibited TIE2 which is an undesired trait as TIE2 is essential for vascular stability. The findings support the use of vorolanib for therapeutic inhibition of angiogenesis observed in DR, DME, and wAMD.
Collapse
Affiliation(s)
- Sophie J. Bakri
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jeff Lynch
- EyePoint Pharmaceuticals, Inc., Watertown, Massachusetts, United States of America
| | | | - Stephan Saint-Juste
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Said Saim
- EyePoint Pharmaceuticals, Inc., Watertown, Massachusetts, United States of America
| |
Collapse
|
11
|
Eissa IH, G Yousef R, Elkady H, Alsfouk AA, Husein DZ, Ibrahim IM, El-Deeb N, Kenawy AM, Eldehna WM, Elkaeed EB, Metwaly AM. New apoptotic anti-triple-negative breast cancer theobromine derivative inhibiting EGFRWT and EGFR T790M: in silico and in vitro evaluation. Mol Divers 2024; 28:1153-1173. [PMID: 37162644 DOI: 10.1007/s11030-023-10644-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/29/2023] [Indexed: 05/11/2023]
Abstract
A new theobromine-derived EGFR inhibitor (2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-N-(2,6-dimethylphenyl)acetamide) has been developed that has the essential structural characteristics to interact with EGFR's pocket. The designed compound is 2,6-di ortho methylphenyl)acetamide derivative of the well-known alkaloid, theobromine, (T-1-DOMPA). Firstly, deep DFT studies have been conducted to study the optimized chemical structure, molecular orbital and chemical reactivity analysis of T-1-DOMPA. Then, T-1-DOMPA's anticancer potentialities were estimated first through a structure-based computational approach. Utilizing molecular docking, molecular dynamics, MD, simulations over 100 ns, MM-PBSA and PLIP studies, T-1-DOMPA bonded to and inhibited the EGFR protein effectively. Subsequently, the ADMET profiles of T-1-DOMPA were computed before preparation, and its drug-likeness was anticipated. Therefore, T-1-DOMPA was prepared for the purposes of scrutinizing both the design and the results obtained in silico. The in vitro potential of T-1-DOMPA against triple-negative breast cancer cell lines, MDA- MB-231, was very promising with an IC50 value of1.8 µM, comparable to the reference drug (0.9 µM), and a much higher selectivity index of 2.6. Interestingly, T-1-DOMPA inhibited three other cancer cell lines (CaCO-2, HepG-2, and A549) with IC50 values of 1.98, 2.53, and 2.39 µM exhibiting selectivity index values of 2,4, 1.9, and 2, respectively. Additionally, T-1-DOMPA prevented effectively the MDA-MB-231cell line's healing and migration abilities. Also, T-1-DOMPA's abilities to induce apoptosis were confirmed by acridine orange/ethidium bromide (AO/EB) staining assay. Finally, T-1-DOMPA caused an up-regulation of the gene expression of the apoptotic gene, Caspase-3, in the treated MDA-MB-231cell.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Nehal El-Deeb
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Ahmed M Kenawy
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Ahmed M Metwaly
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt.
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| |
Collapse
|
12
|
Fadaly WAA, Nemr MTM, Kahk NM. Discovery of novel pyrazole based Urea/Thiourea derivatives as multiple targeting VEGFR-2, EGFR WT, EGFR T790M tyrosine kinases and COX-2 Inhibitors, with anti-cancer and anti-inflammatory activities. Bioorg Chem 2024; 147:107403. [PMID: 38691909 DOI: 10.1016/j.bioorg.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt.
| | - Nesma M Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
13
|
Loukas AT, Papadourakis M, Panagiotopoulos V, Zarmpala A, Chontzopoulou E, Christodoulou S, Katsila T, Zoumpoulakis P, Matsoukas MT. Natural Compounds for Bone Remodeling: A Computational and Experimental Approach Targeting Bone Metabolism-Related Proteins. Int J Mol Sci 2024; 25:5047. [PMID: 38732267 PMCID: PMC11084538 DOI: 10.3390/ijms25095047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoporosis, characterized by reduced bone density and increased fracture risk, affects over 200 million people worldwide, predominantly older adults and postmenopausal women. The disruption of the balance between bone-forming osteoblasts and bone-resorbing osteoclasts underlies osteoporosis pathophysiology. Standard treatment includes lifestyle modifications, calcium and vitamin D supplementation and specific drugs that either inhibit osteoclasts or stimulate osteoblasts. However, these treatments have limitations, including side effects and compliance issues. Natural products have emerged as potential osteoporosis therapeutics, but their mechanisms of action remain poorly understood. In this study, we investigate the efficacy of natural compounds in modulating molecular targets relevant to osteoporosis, focusing on the Mitogen-Activated Protein Kinase (MAPK) pathway and the gut microbiome's influence on bone homeostasis. Using an in silico and in vitro methodology, we have identified quercetin as a promising candidate in modulating MAPK activity, offering a potential therapeutic perspective for osteoporosis treatment.
Collapse
Affiliation(s)
- Alexandros-Timotheos Loukas
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (A.-T.L.); (P.Z.)
- Cloudpharm Private Company, Kifissias Avenue 44, 15125 Marousi, Greece; (V.P.); (A.Z.); (E.C.); (S.C.)
| | - Michail Papadourakis
- Cloudpharm Private Company, Kifissias Avenue 44, 15125 Marousi, Greece; (V.P.); (A.Z.); (E.C.); (S.C.)
| | - Vasilis Panagiotopoulos
- Cloudpharm Private Company, Kifissias Avenue 44, 15125 Marousi, Greece; (V.P.); (A.Z.); (E.C.); (S.C.)
- Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Apostolia Zarmpala
- Cloudpharm Private Company, Kifissias Avenue 44, 15125 Marousi, Greece; (V.P.); (A.Z.); (E.C.); (S.C.)
| | - Eleni Chontzopoulou
- Cloudpharm Private Company, Kifissias Avenue 44, 15125 Marousi, Greece; (V.P.); (A.Z.); (E.C.); (S.C.)
| | - Stephanos Christodoulou
- Cloudpharm Private Company, Kifissias Avenue 44, 15125 Marousi, Greece; (V.P.); (A.Z.); (E.C.); (S.C.)
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (A.-T.L.); (P.Z.)
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Minos-Timotheos Matsoukas
- Cloudpharm Private Company, Kifissias Avenue 44, 15125 Marousi, Greece; (V.P.); (A.Z.); (E.C.); (S.C.)
- Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| |
Collapse
|
14
|
Ravichandran A, Araque JC, Lawson JW. Predicting the functional state of protein kinases using interpretable graph neural networks from sequence and structural data. Proteins 2024; 92:623-636. [PMID: 38083830 DOI: 10.1002/prot.26641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 04/13/2024]
Abstract
Protein kinases are central to cellular activities and are actively pursued as drug targets for several conditions including cancer and autoimmune diseases. Despite the availability of a large structural database for kinases, methodologies to elucidate the structure-function relationship of these proteins (without manual intervention) are lacking. Such techniques are essential in structural biology and to accelerate drug discovery efforts. Here, we implement an interpretable graph neural network (GNN) framework for classifying the functionally active and inactive states of a large set of protein kinases by only using their tertiary structure and amino acid sequence. We show that the GNN models can classify kinase structures with high accuracy (>97%). We implement the Gradient-weighted Class Activation Mapping for graphs (Graph Grad-CAM) to automatically identify structurally important residues and residue-residue contacts of the kinases without any a priori input. We show that the motifs identified through the Graph Grad-CAM methodology are functionally critical, consistent with the existing kinase literature. Notably, the highly conserved DFG and HRD motifs of the well-known hydrophobic spine are identified by the interpretable framework in addition to some of the lesser known motifs. Further, using Grad-CAM maps as the vector embedding of the protein structures, we identify the subtle differences in the crystal structures among different sub-classes of kinases in the Protein Data Bank (PDB). Frameworks such as the one implemented here, for high-throughput identification of protein structure-function relationships are essential in designing targeted small molecules therapies as well as in engineering new proteins for novel applications.
Collapse
Affiliation(s)
- Ashwin Ravichandran
- KBR Inc., Intelligent Systems Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Juan C Araque
- KBR Inc., Intelligent Systems Division, NASA Ames Research Center, Moffett Field, California, USA
| | - John W Lawson
- Intelligent Systems Division, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
15
|
Budipramana K, Sangande F. Structural and molecular insights from dual inhibitors of EGFR and VEGFR2 as a strategy to improve the efficacy of cancer therapy. Chem Biol Drug Des 2024; 103:e14534. [PMID: 38697951 DOI: 10.1111/cbdd.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor 2 (VEGFR2) are known as valid targets for cancer therapy. Overexpression of EGFR induces uncontrolled cell proliferation and VEGF expression triggering angiogenesis via VEGFR2 signaling. On the other hand, VEGF expression independent of EGFR signaling is already known as one of the mechanisms of resistance to anti-EGFR therapy. Therefore, drugs that act as dual inhibitors of EGFR and VEGFR2 can be a solution to the problem of drug resistance and increase the effectiveness of therapy. In this review, we summarize the relationship between EGFR and VEGFR2 signal transduction in promoting cancer growth and how their kinase domain structures can affect the selectivity of an inhibitor as the basis for designing dual inhibitors. In addition, several recent studies on the development of dual EGFR and VEGFR2 inhibitors involving docking simulations were highlighted in this paper to provide some references such as pharmacophore features of inhibitors and key residues for further research, especially in computer-aided drug design.
Collapse
Affiliation(s)
- Krisyanti Budipramana
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia
| | - Frangky Sangande
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, Indonesia
| |
Collapse
|
16
|
Khan ZR, Welsby PJ, Stasik I, Hayes JM. Discovery of Potent Multikinase Type-II Inhibitors Targeting CDK5 in the DFG-out Inactive State with Promising Potential against Glioblastoma. J Med Chem 2024. [PMID: 38686637 DOI: 10.1021/acs.jmedchem.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Kinases have proven valuable targets in successful cancer drug discovery projects, but not yet for malignant brain tumors where type-II inhibition of cyclin-dependent kinase 5 (CDK5) stabilizing the DFG-out inactive state has potential for design of selective and clinically efficient drug candidates. In the absence of crystallographic evidence for a CDK5 DFG-out inactive state protein-ligand complex, for the first time, a model was designed using metadynamics/molecular dynamics simulations. Glide docking of the ZINC15 biogenic database identified [pyrimidin-2-yl]amino-furo[3,2-b]-furyl-urea/amide hit chemical scaffolds. For four selected analogues (4, 27, 36, and 42), potent effects on glioblastoma cell viability in U87-MG, T98G, and U251-MG cell lines and patient-derived cultures were generally observed (IC50s ∼ 10-40 μM at 72 h). Selectivity profiling against 11 homologous kinases revealed multikinase inhibition (CDK2, CDK5, CDK9, and GSK-3α/β), most potent for GSK-3α in the nanomolar range (IC50s ∼ 0.23-0.98 μM). These compounds may therefore have diverse anticancer mechanisms of action and are of considerable interest for lead optimization.
Collapse
Affiliation(s)
- Zahra R Khan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Philip J Welsby
- Education Directorate, Royal College of Physicians, Liverpool L7 3FA, United Kingdom
| | - Izabela Stasik
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Joseph M Hayes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
17
|
Iliev P, Jaworski C, Wängler C, Wängler B, Page BDG, Schirrmacher R, Bailey JJ. Type II & III inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Expert Opin Ther Pat 2024; 34:231-244. [PMID: 38785069 DOI: 10.1080/13543776.2024.2358818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications. AREAS COVERED Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Relevant patents were identified using the Web of Science database, Google, and Google Patents. EXPERT OPINION While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.
Collapse
Affiliation(s)
- Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
18
|
Reda N, Mohamed KO, Abdou K, Helwa AA, Elshewy A. Novel Pyrimidine-5-Carbonitriles as potential apoptotic and antiproliferative agents by dual inhibition of EGFR WT/T790M and PI3k enzymes; Design, Synthesis, biological Evaluation, and docking studies. Bioorg Chem 2024; 145:107185. [PMID: 38350273 DOI: 10.1016/j.bioorg.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
A new series of 6-(4-fluorophenyl)-2-(methylthio) pyrimidine-5-carbonitrile derivatives were designed and synthesized as EGFR/PI3K dual inhibitors, and potential antiproliferative agents. The new 22 compounds were screened by DTP-NCI against all NCI60 cell lines. Almost all compounds showed cytotoxic activity. Compound 7c showed a promising antitumour activity on CNS cancer (SNB-75), and ovarian cancer (OVAR-4) with IC50 < 0.01, and 0.64 µM, respectively. Fortunately, 7c exhibited a better safety profile on normal cells (WI-38) than doxorubicin by 2.2-fold. Compound 7c displayed selective inhibitory activity on EGFRt790m over EGFRWT with IC50 = 0.08, and 0.13 µM, respectively, wherefore it might overcome EGFR-TKIs resistance. In addition to its remarkable inhibitory activity on all PI3K isoforms, specifically PI3K-δ with IC50 = 0.64 µM Compared with LY294002 IC50 = 7.6 µM. Compound 7c arrested the cell cycle of SNB-75 & OVAR-4 at the G0-G1 phase coupled with apoptosis induction. The western blotting analysis approved decreasing the expression level of p-AKT coupled with an increase in Casp3, Casp9, and BAX proteins in the SNB-75 & OVAR-4 after being treated with 7c which may support the suggested mechanism of action of 7c as EGFR/PI3K dual inhibitor. Physicochemical parameters were forecasted using SwissADME online tool. MD showed the interaction of 7c with the crucial amino acids of the active domain of both EGFR/PI3K which may explain its potent inhibitory activities. In vivo study disclosed a significant decrease in tumor weight and the number of nodules in the group of mice treated with 7c compared with the control group.
Collapse
Affiliation(s)
- Nada Reda
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Egypt.
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy. Sinai University (Arish branch), El Arish, Egyptzip code 45511.
| | - Kareem Abdou
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Egypt.
| | - Ahmed Elshewy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| |
Collapse
|
19
|
Soltan OM, Abdel-Aziz SA, Sh Shaykoon M, Osawa K, Narumi A, Abdel-Aziz M, Shoman ME, Konno H. Development of 1,5-diarylpyrazoles as EGFR/JNK-2 dual inhibitors: design, synthesis, moleecular docking, and bioactivity evaluation. Bioorg Med Chem Lett 2024; 102:129673. [PMID: 38408511 DOI: 10.1016/j.bmcl.2024.129673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
The eradication of multifactorial diseases, such as cancer, requires the design of drug candidates that attack multiple targets that contribute to the progression and proliferation of such diseases. Here, 1,5-diarylpyrazole derivatives bearing vanillin or sulfanilamide are developed as potential dual inhibitors of epidermal growth factor receptor (EGFR)/c-Jun N-terminal kinase 2 (JNK-2) for possible anticancer activity. These derivatives inhibited the growths of DLD-1, HeLa, K-562, SUIT-2 and HepG2 cancer cell lines, with minimum concentration required to inhibit half of the cellular growth (IC50) values of 2.7-63 μM. The tests confirmed that 5b and 5d were potent JNK-2 inhibitors, with IC50 of 2.0 and 0.9 μM, respectively, whereas 6 h selectively inhibited EGFR protein kinase (EGFR-PK) (IC50 = 1.7 μM). Notably, 6c inhibited both kinases, with IC50 values of 2.7 and 3.0 μM against EGFR-PK and JNK-2, respectively, offering a reference for designing mutual inhibitors of EGFR/JNK-2. The docking studies revealed the ability of the pyrazole ring to bind to the hinge region of the ATP binding site, thereby supporting the experimental inhibitory results. Furthermore, the developed compounds could induce apoptosis and induce cell cycle arrest at different cell phases.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111 Minia, Egypt
| | - Montaser Sh Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Keima Osawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
20
|
Khan O, Jones G, Lazou M, Joseph-McCarthy D, Kozakov D, Beglov D, Vajda S. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites. J Chem Inf Model 2024; 64:2084-2100. [PMID: 38456842 DOI: 10.1021/acs.jcim.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The knowledge of ligand binding hot spots and of the important interactions within such hot spots is crucial for the design of lead compounds in the early stages of structure-based drug discovery. The computational solvent mapping server FTMap can reliably identify binding hot spots as consensus clusters, free energy minima that bind a variety of organic probe molecules. However, in its current implementation, FTMap provides limited information on regions within the hot spots that tend to interact with specific pharmacophoric features of potential ligands. E-FTMap is a new server that expands on the original FTMap protocol. E-FTMap uses 119 organic probes, rather than the 16 in the original FTMap, to exhaustively map binding sites, and identifies pharmacophore features as atomic consensus sites where similar chemical groups bind. We validate E-FTMap against a set of 109 experimentally derived structures of fragment-lead pairs, finding that highly ranked pharmacophore features overlap with the corresponding atoms in both fragments and lead compounds. Additionally, comparisons of mapping results to ensembles of bound ligands reveal that pharmacophores generated with E-FTMap tend to sample highly conserved protein-ligand interactions. E-FTMap is available as a web server at https://eftmap.bu.edu.
Collapse
Affiliation(s)
- Omeir Khan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Diane Joseph-McCarthy
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Acpharis Inc., Holliston, Massachusetts 01746, United States
| | - Sandor Vajda
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
21
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Computer aided drug discovery (CADD) of a thieno[2,3- d]pyrimidine derivative as a new EGFR inhibitor targeting the ribose pocket. J Biomol Struct Dyn 2024; 42:2369-2391. [PMID: 37129193 DOI: 10.1080/07391102.2023.2204500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Depending on the pharmacophoric characteristics of EGFR inhibitors, a new thieno[2,3-d]pyrimidine derivative has been developed. Firstly, the potential inhibitory effect of the designed compound against EGFR has been proven by docking experiments that showed correct binding modes and excellent binding energies of -98.44 and -88.00 kcal/mol, against EGFR wild-type and mutant type, respectively. Furthermore, MD simulations studies confirmed the precise energetic, conformational, and dynamic alterations that occurred after binding to EGFR. The correct binding was also confirmed by essential dynamics studies. To further investigate the general drug-like properties of the developed candidate, in silico ADME and toxicity studies have also been carried out. The thieno[2,3-d]pyrimidine derivative was synthesized following the earlier promising findings. Fascinatingly, the synthesized compound (4) showed promising inhibitory effects against EGFRWT and EGFRT790M with IC50 values of 25.8 and 182.3 nM, respectively. Also, it exhibited anticancer potentialities against A549 and MCF-7cell lines with IC50 values of 13.06 and 20.13 µM, respectively. Interestingly, these strong activities were combined with selectivity indices of 2.8 and 1.8 against the two cancer cell lines, respectively. Further investigations indicated the ability of compound 4 to arrest the cancer cells' growth at the G2/M phase and to increase early and late apoptosis percentages from 2.52% and 2.80 to 17.99% and 16.72%, respectively. Additionally, it was observed that compound 4 markedly increased the levels of caspase-3 and caspase-9 by 4 and 3-fold compared to the control cells. Moreover, it up-regulated the level of BAX by 3-fold and down-regulated the level of Bcl-2 by 3-fold affording a BAX/Bcl-2 ratio of 9.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eman A Sobh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Shibin-Elkom, Menoufia, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Abdel-Mohsen HT, Ibrahim MA, Nageeb AM, El Kerdawy AM. Receptor-based pharmacophore modeling, molecular docking, synthesis and biological evaluation of novel VEGFR-2, FGFR-1, and BRAF multi-kinase inhibitors. BMC Chem 2024; 18:42. [PMID: 38395926 PMCID: PMC10893631 DOI: 10.1186/s13065-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
A receptor-based pharmacophore model describing the binding features required for the multi-kinase inhibition of the target kinases (VEGFR-2, FGFR-1, and BRAF) were constructed and validated. It showed a good overall quality in discriminating between the active and the inactive in a compiled test set compounds with F1 score of 0.502 and Mathew's correlation coefficient of 0.513. It described the ligand binding to the hinge region Cys or Ala, the glutamate residue of the Glu-Lys αC helix conserved pair, the DFG motif Asp at the activation loop, and the allosteric back pocket next to the ATP binding site. Moreover, excluded volumes were used to define the steric extent of the binding sites. The application of the developed pharmacophore model in virtual screening of an in-house scaffold dataset resulted in the identification of a benzimidazole-based scaffold as a promising hit within the dataset. Compounds 8a-u were designed through structural optimization of the hit benzimidazole-based scaffold through (un)substituted aryl substitution on 2 and 5 positions of the benzimidazole ring. Molecular docking simulations and ADME properties predictions confirmed the promising characteristics of the designed compounds in terms of binding affinity and pharmacokinetic properties, respectively. The designed compounds 8a-u were synthesized, and they demonstrated moderate to potent VEGFR-2 inhibitory activity at 10 µM. Compound 8u exhibited a potent inhibitory activity against the target kinases (VEGFR-2, FGFR-1, and BRAF) with IC50 values of 0.93, 3.74, 0.25 µM, respectively. The benzimidazole derivatives 8a-u were all selected by the NCI (USA) to conduct their anti-proliferation screening. Compounds 8a and 8d resulted in a potent mean growth inhibition % (GI%) of 97.73% and 92.51%, respectively. Whereas compounds 8h, 8j, 8k, 8o, 8q, 8r, and 8u showed a mean GI% > 100% (lethal effect). The most potent compounds on the NCI panel of 60 different cancer cell lines were progressed further to NCI five-dose testing. The benzimidazole derivatives 8a, 8d, 8h, 8j, 8k, 8o, 8q, 8r and 8u exhibited potent anticancer activity on the tested cell lines reaching sub-micromolar range. Moreover, 8u was found to induce cell cycle arrest of MCF-7 cell line at the G2/M phase and accumulating cells at the sub-G1 phase as a result of cell apoptosis.
Collapse
Affiliation(s)
- Heba T Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt.
| | - Marwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. 11562, Cairo, Egypt
| | - Amira M Nageeb
- High Throughput Molecular and Genetic Technology Lab, Center of Excellence for Advanced Sciences, Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. 11562, Cairo, Egypt
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, UK
| |
Collapse
|
23
|
Șandor A, Fizeșan I, Ionuț I, Marc G, Moldovan C, Oniga I, Pîrnău A, Vlase L, Petru AE, Macasoi I, Oniga O. Discovery of A Novel Series of Quinazoline-Thiazole Hybrids as Potential Antiproliferative and Anti-Angiogenic Agents. Biomolecules 2024; 14:218. [PMID: 38397456 PMCID: PMC10886515 DOI: 10.3390/biom14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Considering the pivotal role of angiogenesis in solid tumor progression, we developed a novel series of quinazoline-thiazole hybrids (SA01-SA07) as antiproliferative and anti-angiogenic agents. Four out of the seven compounds displayed superior antiproliferative activity (IC50 =1.83-4.24 µM) on HepG2 cells compared to sorafenib (IC50 = 6.28 µM). The affinity towards the VEGFR2 kinase domain was assessed through in silico prediction by molecular docking, molecular dynamics studies, and MM-PBSA. The series displayed a high degree of similarity to sorafenib regarding the binding pose within the active site of VEGFR2, with a different orientation of the 4-substituted-thiazole moieties in the allosteric pocket. Molecular dynamics and MM-PBSA evaluations identified SA05 as the hybrid forming the most stable complex with VEGFR2 compared to sorafenib. The impact of the compounds on vascular cell proliferation was assessed on EA.hy926 cells. Six compounds (SA01-SA05, SA07) displayed superior anti-proliferative activity (IC50 = 0.79-5.85 µM) compared to sorafenib (IC50 = 6.62 µM). The toxicity was evaluated on BJ cells. Further studies of the anti-angiogenic effect of the most promising compounds, SA04 and SA05, through the assessment of impact on EA.hy296 motility using a wound healing assay and in ovo potential in a CAM assay compared to sorafenib, led to the confirmation of the anti-angiogenic potential.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș, Street, 400012 Cluj-Napoca, Romania;
| | - Andreea-Elena Petru
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana Macasoi
- Department of Toxicology, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babes, Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (I.I.); (G.M.); (C.M.); (O.O.)
| |
Collapse
|
24
|
Sk MF, Samanta S, Poddar S, Kar P. Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey. J Comput Aided Mol Des 2024; 38:8. [PMID: 38324213 DOI: 10.1007/s10822-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
The Janus kinases (JAK) are crucial targets in drug development for several diseases. However, accounting for the impact of possible structural rearrangements on the binding of different kinase inhibitors is complicated by the extensive conformational variability of their catalytic kinase domain (KD). The dynamic KD contains mainly four prominent mobile structural motifs: the phosphate-binding loop (P-loop), the αC-helix within the N-lobe, the Asp-Phe-Gly (DFG) motif, and the activation loop (A-loop) within the C-lobe. These distinct structural orientations imply a complex signal transmission path for regulating the A-loop's flexibility and conformational preference for optimal JAK function. Nevertheless, the precise dynamical features of the JAK induced by different types of inhibitors still remain elusive. We performed comparative, microsecond-long, Gaussian accelerated molecular dynamics simulations in triplicate of three phosphorylated JAK2 systems: the KD alone, type-I ATP-competitive inhibitor (CI) bound KD in the catalytically active DFG-in conformation, and the type-II inhibitor (AI) bound KD in the catalytically inactive DFG-out conformation. Our results indicate significant conformational variations observed in the A-loop and αC helix motions upon inhibitor binding. Our studies also reveal that the DFG-out inactive conformation is characterized by the closed A-loop rearrangement, open catalytic cleft of N and C-lobe, the outward movement of the αC helix, and open P-loop states. Moreover, the outward positioning of the αC helix impacts the hallmark salt bridge formation between Lys882 and Glu898 in an inactive conformation. Finally, we compared their ligand binding poses and free energy by the MM/PBSA approach. The free energy calculations suggested that the AI's binding affinity is higher than CI against JAK2 due to an increased favorable contribution from the total non-polar interactions and the involvement of the αC helix. Overall, our study provides the structural and energetic insights crucial for developing more promising type I/II JAK2 inhibitors for treating JAK-related diseases.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, NIH Resource for Macromolecular Modeling and Visualization, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India.
| |
Collapse
|
25
|
Rahman A, Sandeep Kumar Jain R, Meghana P, Nippu BN, Manjunatha KS, Rajaput PS, Kumaraswamy HM, Satyanarayan ND. Tetrahydrobenzothiophene derivatives ameliorate Mia PaCa-2 cell progression and induces apoptosis via inhibiting EGFR2 tyrosine kinase signal. Bioorg Chem 2024; 143:106968. [PMID: 38007893 DOI: 10.1016/j.bioorg.2023.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/28/2023]
Abstract
A series of new thiophene analogues with acarbonitrile-basedmoiety were designed and synthesized via structural optimization. The conjugates were assessed for their in-vitro cytotoxic activity against a human pancreatic cancer cell line (Mia PaCa-2) and among them compound 5b showed IC50 value of 13.37 ± 2.37 μM. The compounds 5b (20 µM & 25 µM) and 7c (30 & 35 µM) also showed reduced clonogenicity, enhanced ROS and decreased mitochondrial membrane potential in Mia PaCa-2 cells. Treatment with these compounds also increased apoptotic population as evident with the double staining assay. Among the evaluated series, compounds 5b, 5g, 7c, and 9a attained a greater inhibitory potency than first generation's reversible EGFR inhibitor, Gefitinib. EGFR2 enzyme inhibitory studies revealed that 5b efficiently and arbitrarily suppressed the development of EGFR2 dependent cells and inhibited the enzymatic activity with an IC50 value of 0.68 µM; interestingly, the most effective molecule 5b with N-methyl piperazine substitution, has 1.29-fold greater potency than well-known EGFR inhibitor Gefitinib and increased Gefitinib's anti-growth impact with 2.04 folds greater against Mia PaCa-2. The in-vitro studies were validated with in-silico docking studies wherein compounds 5b and 7c exhibited binding energies of -8.2 and -7.4 Kcal/mol respectively. The present study reveals that tetrahydrobenzothiophene based analogues could be a promising lead for the evolution of potent chemo preventives over pancreatic cancer.
Collapse
Affiliation(s)
- Abdul Rahman
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur, Chikkamagaluru, Karnataka 577548, India
| | - R Sandeep Kumar Jain
- Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shankargatta, Shimoga, Karnataka 577451, India
| | - P Meghana
- Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shankargatta, Shimoga, Karnataka 577451, India
| | - B N Nippu
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur, Chikkamagaluru, Karnataka 577548, India
| | - K S Manjunatha
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur, Chikkamagaluru, Karnataka 577548, India
| | - Pooja S Rajaput
- Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shankargatta, Shimoga, Karnataka 577451, India
| | - H M Kumaraswamy
- Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shankargatta, Shimoga, Karnataka 577451, India
| | - N D Satyanarayan
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur, Chikkamagaluru, Karnataka 577548, India.
| |
Collapse
|
26
|
Wang X, DeFilippis RA, Leung YK, Shah NP, Li HY. N-(3-Methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine is an inhibitor of the FLT3-ITD and BCR-ABL pathways, and potently inhibits FLT3-ITD/D835Y and FLT3-ITD/F691L secondary mutants. Bioorg Chem 2024; 143:106966. [PMID: 37995643 DOI: 10.1016/j.bioorg.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Activating mutations within FLT3 make up 30 % of all newly diagnosed acute myeloid leukemia (AML) cases, with the most common mutation being an internal tandem duplication (FLT3-ITD) in the juxtamembrane region (25 %). Currently, two generations of FLT3 kinase inhibitors have been developed, with three inhibitors clinically approved. However, treatment of FLT3-ITD mutated AML is limited due to the emergence of secondary clinical resistance, caused by multiple mechanism including on-target FLT3 secondary mutations - FLT3-ITD/D835Y and FLT3-ITD/F691L being the most common, as well as the off-target activation of alternative pathways including the BCR-ABL pathway. Through the screening of imidazo[1,2-a]pyridine derivatives, N-(3-methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine (compound 1) was identified as an inhibitor of both the FLT3-ITD and BCR-ABL pathways. Compound 1 potently inhibits clinically related leukemia cell lines driven by FLT3-ITD, FLT3-ITD/D835Y, FLT3-ITD/F691L, or BCR-ABL. Studies indicate that it mediates proapoptotic effects on cells by inhibiting FLT3 and BCR-ABL pathways, and other possible targets. Compound 1 is more potent against FLT3-ITD than BCR-ABL, and it may have other possible targets; however, compound 1 is first step for further optimization for the development of a balanced FLT3-ITD/BCR-ABL dual inhibitor for the treatment of relapsed FLT3-ITD mutated AML with multiple secondary clinical resistant subtypes such as FLT3-ITD/D835Y, FLT3-ITD/F691L, and cells co-expressing FLT3-ITD and BCR-ABL.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Yuet-Kin Leung
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
27
|
Madhukar G, Subbarao N. Potential inhibitors of RPS6KB2 and NRF2 in head and neck squamous cell carcinoma. J Biomol Struct Dyn 2024; 42:1875-1900. [PMID: 37160694 DOI: 10.1080/07391102.2023.2205946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Among the major altered pathways in head and neck squamous cell carcinoma, AKT/mTORC1/S6K and NRF2/KEAP1 pathway are quite significant. The overexpression and overstimulation of proteins from both these pathways makes them the promising candidates in cancer therapeutics. Inhibiting mTOR has been in research from past several decades but the tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms, encourages to explore other downstream targets for inhibiting the pathway. One such downstream effectors of mTOR is S6K2. It is reported to be overexpressed in cancers such as head and neck cancer, breast cancer and prostate cancer. In case of NRF2/KEAP1 pathway, nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2) is overexpressed in ∼90% of head and neck squamous cell carcinoma (HNSCC) cases. It associates with poor survival rate and therapeutic resistance in HNSCC treatment. NRF2 pathway is the primary antioxidant pathway in the cell which also serves pro-tumorigenic functions, such as repression of apoptosis, cell proliferation support and chemoresistance. The aim of this work was to explore S6K2 and NRF2 and identify novel and potential inhibitors against them for treating head and neck squamous cell carcinoma. Since the crystal structure of S6K2 was not available at the time of this study, we modelled its structure using homology modelling and performed high throughput screening, molecular dynamics simulations, free energy calculations and protein-ligand interaction studies to identify the inhibitors. We identified natural compounds Crocin and Gypenoside XVII against S6K2 and Chebulinic acid and Sennoside A against NRF2. This study provides a significant in-depth understanding of the two studied pathways and therefore can be used in the development of potential therapeutics against HNSCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Geet Madhukar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Wang X, DeFilippis RA, Weldemichael T, Gunaganti N, Tran P, Leung YK, Shah NP, Li HY. An imidazo[1,2-a]pyridine-pyridine derivative potently inhibits FLT3-ITD and FLT3-ITD secondary mutants, including gilteritinib-resistant FLT3-ITD/F691L. Eur J Med Chem 2024; 264:115977. [PMID: 38056299 DOI: 10.1016/j.ejmech.2023.115977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
FLT3 activating mutations are detected in approximately 30 % of newly diagnosed acute myeloid leukemia (AML) cases, most commonly consisting of internal tandem duplication (ITD) mutations in the juxtamembrane region. Recently, several FLT3 inhibitors have demonstrated clinical activity and three are currently approved - midostaurin, quizartinib, and gilteritinib. Midostaurin is a first-generation FLT3 inhibitor with minimal activity as monotherapy. Midostaurin lacks selectivity and is only approved by the USFDA for use in combination with other chemotherapy agents. The second-generation inhibitors quizartinib and gilteritinib display improved specificity and selectivity, and have been approved for use as monotherapy. However, their clinical efficacies are limited in part due to the emergence of drug-resistant FLT3 secondary mutations in the tyrosine kinase domain at positions D835 and F691. Therefore, in order to overcome drug resistance and further improve outcomes, new compounds targeting FLT3-ITD with secondary mutants are urgently needed. In this study, through the structural modification of a reported compound Ling-5e, we identified compound 24 as a FLT3 inhibitor that is equally potent against FLT3-ITD and the clinically relevant mutants FLT3-ITD/D835Y, and FLT3-ITD/F691L. Its inhibitory effects were demonstrated in both cell viability assays and western blots analyses. When tested against cell lines lacking activating mutations in FLT3, no non-specific cytotoxicity effect was observed. Interestingly, molecular docking results showed that compound 24 may adopt different binding conformations with FLT3-F691L compared to FLT3, which may explain its retained activity against FLT3-ITD/F691L. In summary, compound 24 has inhibition potency on FLT3 comparable to gilteritinib, but a more balanced inhibition on FLT3 secondary mutations, especially FLT3-ITD/F691L which is gilteritinib resistant. Compound 24 may serve as a promising lead for the drug development of either primary or relapsed AML with FLT3 secondary mutations.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Tsigereda Weldemichael
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Phuc Tran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
29
|
Trono P, Ottavi F, Rosano' L. Novel insights into the role of Discoidin domain receptor 2 (DDR2) in cancer progression: a new avenue of therapeutic intervention. Matrix Biol 2024; 125:31-39. [PMID: 38081526 DOI: 10.1016/j.matbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/12/2024]
Abstract
Discoidin domain receptors (DDRs), including DDR1 and DDR2, are a unique class of receptor tyrosine kinases (RTKs) activated by collagens at the cell-matrix boundary interface. The peculiar mode of activation makes DDRs as key cellular sensors of microenvironmental changes, with a critical role in all physiological and pathological processes governed by collagen remodeling. DDRs are widely expressed in fetal and adult tissues, and experimental and clinical evidence has shown that their expression is deregulated in cancer. Strong findings supporting the role of collagens in tumor progression and metastasis have led to renewed interest in DDRs. However, despite an increasing number of studies, DDR biology remains poorly understood, particularly the less studied DDR2, whose involvement in cancer progression mechanisms is undoubted. Thus, the understanding of a wider range of DDR2 functions and related molecular mechanisms is expected. To date, several lines of evidence support DDR2 as a promising target in cancer therapy. Its involvement in key functions in the tumor microenvironment makes DDR2 inhibition particularly attractive to achieve simultaneous targeting of tumor and stromal cells, and tumor regression, which is beneficial for improving the response to different types of anti-cancer therapies, including chemo- and immunotherapy. This review summarizes current research on DDR2, focusing on its role in cancer progression through its involvement in tumor and stromal cell functions, and discusses findings that support the rationale for future development of direct clinical strategies targeting DDR2.
Collapse
Affiliation(s)
- Paola Trono
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, Via E. Ramarini, 32, Monterotondo Scalo 00015 Rome
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy
| | - Laura Rosano'
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy.
| |
Collapse
|
30
|
Abdelhamed AM, Hassan RA, Kadry HH, Helwa AA. Novel pyrazolo[3,4- d]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity. RSC Med Chem 2023; 14:2640-2657. [PMID: 38107182 PMCID: PMC10718518 DOI: 10.1039/d3md00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
A novel series of 12 pyrazolo[3,4-d]pyrimidine derivatives were created and evaluated in vitro for their antiproliferative activity against the NCI 60 human tumor cell line panel. Compounds 12a-d displayed significant antitumor activity against MDA-MB-468 and T-47D (breast cancer cell lines), especially compound 12b, which exhibited the highest anticancer activity against MDA-MB-468 and T-47D cell lines with IC50 values of 3.343 ± 0.13 and 4.792 ± 0.21 μM, respectively compared to staurosporine with IC50 values of 6.358 ± 0.24 and 4.849 ± 0.22 μM. The most potent cytotoxic derivatives 12a-d were studied for their VEGFR-2 inhibitory activity to explore the mechanism of action of these substances. Compound 12b had potent activity against VEGFR-2 with an IC50 value of 0.063 ± 0.003 μM, compared to sunitinib with IC50 = 0.035 ± 0.012 μM. Moreover, there was an excellent reduction in HUVEC migratory potential that resulted in a significant disruption of wound healing patterns by 23% after 72 h of treatment with compound 12b. Cell cycle and apoptosis investigations showed that compound 12b could stop the cell cycle at the S phase and significantly increase total apoptosis in the MDA-MB-468 cell line by 18.98-fold compared to the control. Moreover, compound 12b increased the caspase-3 level in the MDA-MB-468 cell line by 7.32-fold as compared to the control.
Collapse
Affiliation(s)
- Ahmed M Abdelhamed
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Hanan H Kadry
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| |
Collapse
|
31
|
Eissa IH, Yousef RG, Elkaeed EB, Alsfouk AA, Husein DZ, Ibrahim IM, El-Mahdy HA, Elkady H, Metwaly AM. Computer-Assisted Drug Discovery of a Novel Theobromine Derivative as an EGFR Protein-Targeted Apoptosis Inducer. Evol Bioinform Online 2023; 19:11769343231217916. [PMID: 38046652 PMCID: PMC10693208 DOI: 10.1177/11769343231217916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (T-1-DOCA). Firstly, T-1-DOCA's total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of T-1-DOCA against wild and mutant EGFR proteins. T-1-DOCA's correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, T-1-DOCA showed noticeable efficacy compared to erlotinib by suppressing EGFRWT and EGFRT790M with IC50 values of 56.94 and 269.01 nM, respectively. T-1-DOCA inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC50 values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of T-1-DOCA were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, T-1-DOCA, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that T-1-DOCA is a promising candidate for further development as an anti-cancer drug.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University. Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
32
|
Zhao Z, Bourne PE. How Ligands Interact with the Kinase Hinge. ACS Med Chem Lett 2023; 14:1503-1508. [PMID: 37974950 PMCID: PMC10641887 DOI: 10.1021/acsmedchemlett.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
ATP-competitive kinase inhibitors form hydrogen bond interactions with the kinase hinge region at the adenine binding site. Thus, it is crucial to explore hinge-ligand recognition as part of a rational drug design strategy. Here, harnessing known ligand-bound kinase structures and experimental assay resources, we first created a kinase structure-assay database (KSAD) containing 2705 nM ligand-bound kinase complexes. Then, using KSAD, we systematically investigate hinge-ligand binding patterns using interaction fingerprints, thereby delineating 15 different hydrogen-bond interaction modes. We believe these results will be valuable for de novo drug design and/or scaffold hopping of kinase-targeted drugs.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science and Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Philip E. Bourne
- School of Data Science and Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
33
|
Tanabe M, Sakate R, Nakabayashi J, Tsumura K, Ohira S, Iwato K, Kimura T. A novel in silico scaffold-hopping method for drug repositioning in rare and intractable diseases. Sci Rep 2023; 13:19358. [PMID: 37938624 PMCID: PMC10632405 DOI: 10.1038/s41598-023-46648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
In the field of rare and intractable diseases, new drug development is difficult and drug repositioning (DR) is a key method to improve this situation. In this study, we present a new method for finding DR candidates utilizing virtual screening, which integrates amino acid interaction mapping into scaffold-hopping (AI-AAM). At first, we used a spleen associated tyrosine kinase inhibitor as a reference to evaluate the technique, and succeeded in scaffold-hopping maintaining the pharmacological activity. Then we applied this method to five drugs and obtained 144 compounds with diverse structures. Among these, 31 compounds were known to target the same proteins as their reference compounds and 113 compounds were known to target different proteins. We found that AI-AAM dominantly selected functionally similar compounds; thus, these selected compounds may represent improved alternatives to their reference compounds. Moreover, the latter compounds were presumed to bind to the targets of their references as well. This new "compound-target" information provided DR candidates that could be utilized for future drug development.
Collapse
Affiliation(s)
- Mao Tanabe
- Laboratory of Rare Disease Information and Resource Library, Center for Intractable Diseases and ImmunoGenomics Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Ryuichi Sakate
- Laboratory of Rare Disease Information and Resource Library, Center for Intractable Diseases and ImmunoGenomics Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Jun Nakabayashi
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Kyosuke Tsumura
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Shino Ohira
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Kaoru Iwato
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minami-ashigara, Kanagawa, Japan
| | - Tomonori Kimura
- Reverse Translational Research Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-City, Osaka, Japan.
- KAGAMI Project, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan.
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
34
|
Pratap Reddy Gajulapalli V. Development of Kinase-Centric Drugs: A Computational Perspective. ChemMedChem 2023; 18:e202200693. [PMID: 37442809 DOI: 10.1002/cmdc.202200693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Kinases are prominent drug targets in the pharmaceutical and research community due to their involvement in signal transduction, physiological responses, and upon dysregulation, in diseases such as cancer, neurological and autoimmune disorders. Several FDA-approved small-molecule drugs have been developed to combat human diseases since Gleevec was approved for the treatment of chronic myelogenous leukemia. Kinases were considered "undruggable" in the beginning. Several FDA-approved small-molecule drugs have become available in recent years. Most of these drugs target ATP-binding sites, but a few target allosteric sites. Among kinases that belong to the same family, the catalytic domain shows high structural and sequence conservation. Inhibitors of ATP-binding sites can cause off-target binding. Because members of the same family have similar sequences and structural patterns, often complex relationships between kinases and inhibitors are observed. To design and develop drugs with desired selectivity, it is essential to understand the target selectivity for kinase inhibitors. To create new inhibitors with the desired selectivity, several experimental methods have been designed to profile the kinase selectivity of small molecules. Experimental approaches are often expensive, laborious, time-consuming, and limited by the available kinases. Researchers have used computational methodologies to address these limitations in the design and development of effective therapeutics. Many computational methods have been developed over the last few decades, either to complement experimental findings or to forecast kinase inhibitor activity and selectivity. The purpose of this review is to provide insight into recent advances in theoretical/computational approaches for the design of new kinase inhibitors with the desired selectivity and optimization of existing inhibitors.
Collapse
|
35
|
Herrington NB, Stein D, Li YC, Pandey G, Schlessinger A. Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555779. [PMID: 37693436 PMCID: PMC10491245 DOI: 10.1101/2023.08.31.555779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Protein kinase function and interactions with drugs are controlled in part by the movement of the DFG and ɑC-Helix motifs, which enable kinases to adopt various conformational states. Small molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that often depend on the kinase conformation(s) they bind. However, the limited availability of experimentally determined structural data for kinases in inactive states restricts drug discovery efforts for this major protein family. Modern AI-based structural modeling methods hold potential for exploring the previously experimentally uncharted druggable conformational space for kinases. Here, we first evaluated the currently explored conformational space of kinases in the PDB and models generated by AlphaFold2 (AF2) (1) and ESMFold (2), two prominent AI-based structure prediction methods. We then investigated AF2's ability to predict kinase structures in different conformations at various multiple sequence alignment (MSA) depths, based on this parameter's ability to explore conformational diversity. Our results showed a bias within the PDB and predicted structural models generated by AF2 and ESMFold toward structures of kinases in the active state over alternative conformations, particularly those conformations controlled by the DFG motif. Finally, we demonstrate that predicting kinase structures using AF2 at lower MSA depths allows the exploration of the space of these alternative conformations, including identifying previously unobserved conformations for 398 kinases. The results of our analysis of structural modeling by AF2 create a new avenue for the pursuit of new therapeutic agents against a notoriously difficult-to-target family of proteins. Significance Statement Greater abundance of kinase structural data in inactive conformations, currently lacking in structural databases, would improve our understanding of how protein kinases function and expand drug discovery and development for this family of therapeutic targets. Modern approaches utilizing artificial intelligence and machine learning have potential for efficiently capturing novel protein conformations. We provide evidence for a bias within AlphaFold2 and ESMFold to predict structures of kinases in their active states, similar to their overrepresentation in the PDB. We show that lowering the AlphaFold2 algorithm's multiple sequence alignment depth can help explore kinase conformational space more broadly. It can also enable the prediction of hundreds of kinase structures in novel conformations, many of whose models are likely viable for drug discovery.
Collapse
|
36
|
Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Blood Cancer Discov 2023; 4:352-364. [PMID: 37498362 PMCID: PMC10472187 DOI: 10.1158/2643-3230.bcd-22-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023] Open
Abstract
Selective inhibitors of Janus kinase (JAK) 2 have been in demand since the discovery of the JAK2 V617F mutation present in patients with myeloproliferative neoplasms (MPN); however, the structural basis of V617F oncogenicity has only recently been elucidated. New structural studies reveal a role for other JAK2 domains, beyond the kinase domain, that contribute to pathogenic signaling. Here we evaluate the structure-based approaches that led to recently-approved type I JAK2 inhibitors (fedratinib and pacritinib), as well as type II (BBT594 and CHZ868) and pseudokinase inhibitors under development (JNJ7706621). With full-length JAK homodimeric structures now available, superior selective and mutation-specific JAK2 inhibitors are foreseeable. SIGNIFICANCE The JAK inhibitors currently used for the treatment of MPNs are effective for symptom management but not for disease eradication, primarily because they are not strongly selective for the mutant clone. The rise of computational and structure-based drug discovery approaches together with the knowledge of full-length JAK dimer complexes provides a unique opportunity to develop better targeted therapies for a range of conditions driven by pathologic JAK2 signaling.
Collapse
Affiliation(s)
- Pramod C. Nair
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Discipline of Clinical Pharmacology, Flinders Health and Medical Research Institute (FHMRI) Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - David M. Ross
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Daniel Thomas
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Farghaly TA, Abbas EMH, Al-Sheikh MA, Medrasi HY, Masaret GS, Pashameah RA, Qurban J, Harras MF. Synthesis of tricyclic and tetracyclic benzo[6,7]cycloheptane derivatives linked morpholine moiety as CDK2 inhibitors. Drug Dev Res 2023; 84:1127-1141. [PMID: 37170788 DOI: 10.1002/ddr.22074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
With the aim of developing cyclin-dependent kinase 2 (CDK2) inhibitors with strong antibreast cancer efficacy, new tricyclic and tetracyclic benzo[6,7]cycloheptane derivatives were synthesized. The newly synthesized tri- and tetracyclic derivatives were achieved from the reaction of 4-(4-morpholin-4-yl-phenyl)-1,3,4,5,6,7-hexahydro-benzo[6,7]cyclohepta[1,2-d]pyrimidine-2-thione (5) with α-haloketone derivatives as hydrazonyl chlorides, phenacyl bromide derivatives, chloroacetone, and ethyl substituted acetate derivatives. The MCF-7 and MDA-MB-231 breast cancer cell lines were utilized to examine the anticancer properties. Compounds 5 and 8 were shown to be the most effective, with half-maximal inhibitory concentration (IC50 ) values between 5.73 and 9.11 µM, which are on the level with doxorubicin. Mechanistic studies showed that 5 and 8 caused tumor cell death by inducing apoptosis and they also produced cancer arrest in the S phase of the cell cycle. In addition, compounds 5 and 8 showed strong anti-CDK2 action (IC50 = 0.112 and 0.18 µM, respectively) comparable to roscovitine (IC50 = 0.127 µM). Moreover, the docking result demonstrated that derivatives 5 and 8 fit into the CDK2 active site in the proper orientation.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman M H Abbas
- Chemistry of National and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Mariam A Al-Sheikh
- Department of Chemistry, Faculty of Science, University of Jeddah, AlFaisaliah, Jeddah, Saudi Arabia
| | - Hanadi Y Medrasi
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jihan Qurban
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
38
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
39
|
Singh A, Sonawane P, Kumar A, Singh H, Naumovich V, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022. ACS OMEGA 2023; 8:27819-27844. [PMID: 37576670 PMCID: PMC10413849 DOI: 10.1021/acsomega.3c00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 08/15/2023]
Abstract
Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and αC-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants.
Collapse
Affiliation(s)
- Ankit
Kumar Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pankaj Sonawane
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Adarsh Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vladislav Naumovich
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Prateek Pathak
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Maria Grishina
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Habibullah Khalilullah
- Department
of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of
Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative and Red Sea Research Center, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Amita Verma
- Bioorganic
and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical
Sciences, Sam Higginbottom University of
Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Pradeep Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
40
|
Seif SE, Mahmoud Z, Wardakhan WW, Abdou AM, Hassan RA. Design and synthesis of novel hexahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as potential anticancer agents with antiangiogenic activity via VEGFR-2 inhibition, and down-regulation of PI3K/AKT/mTOR signaling pathway. Drug Dev Res 2023; 84:839-860. [PMID: 37016480 DOI: 10.1002/ddr.22058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
New thieno[2,3-d]pyrimidine derivatives were designed and synthesized. The National Cancer Institute (NCI) evaluated the synthesized novel compounds against a panel of 60 tumor cell lines for their antiproliferative activity. Compounds 6b, 6f, and 6g showed potent anticancer activity at 10 µM dose, with mean GI of 20.86%, 76.41%, and 31.49%, respectively. Compound 6f was selected for five-dose concentrations evaluation. Compound 6f scored a submicromolar range of GI50 values against 10 cancer cell lines, indicating broad-spectrum and potent antiproliferative activity. Compound 6f TGI values were recorded in the cytostatic range of 4.02-95.1 µM. In comparison to sorafenib, the tested compounds 6b, 6f, and 6g inhibited VEGFR-2 with IC50 values of 0.290 ± 0.032, 0.066 ± 0.004, and 0.16 ± 0.006 µM, correspondingly. Compound 6f significantly reduced the total VEGFR-2 expression and its phosphorylation. Additionally, 6f reduced the phosphorylation of PI3K, Akt, and mTOR pathway proteins. Moreover, the migratory potential of HUVECs was significantly reduced, after 72 h of treatment with compound 6f, resulting in disrupted wound healing patterns which verified the angiogenesis suppression properties of compound 6f. Compound 6f increased the total apoptosis percentage by 21.27-fold compared to sorafenib, which caused a 24.11-fold increase in the total apoptosis percentage. This apoptotic activity was accompanied by a 7.81-fold increase in the level of apoptotic caspase-3. Furthermore, the cell cycle analysis revealed that the target derivative 6f reduced cellular proliferation and induced an arrest in HCT-15 colon cancer cell cycle at the S phase. Molecular modeling was used to determine the binding profile and affinity of derivative 6f toward the VEGFR-2 active site.
Collapse
Affiliation(s)
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
41
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Discovery of new thieno[2,3- d]pyrimidines as EGFR tyrosine kinase inhibitors for cancer treatment. Future Med Chem 2023; 15:1167-1184. [PMID: 37529910 DOI: 10.4155/fmc-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background: EGFR has been considered a vital molecular target in cancer management. Aim: The discovery of new thieno[2,3-d]pyrimidine derivatives as EGFR tyrosine kinase inhibitors. Methods: Nine derivatives were designed, synthesized and subjected to in vitro and in silico studies. Results: Compound 7a significantly inhibited the growth of HepG2 and PC3 cells for both EGFR wild-type and EGFRT790M. Compound 7a caused a significant apoptotic effect, arresting HepG2 cells' growth in the S and G2/M phases. Docking and molecular dynamics simulation studies confirmed the correct and stable binding modes of the synthesized compounds against the active sites. Conclusion: Compound 7a is a promising dual EGFR inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Eman A Sobh
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy & Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering & Biotechnology Research Institute, City of Scientific Research & Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
42
|
Aarhus TI, Bjørnstad F, Wolowczyk C, Larsen KU, Rognstad L, Leithaug T, Unger A, Habenberger P, Wolf A, Bjørkøy G, Pridans C, Eickhoff J, Klebl B, Hoff BH, Sundby E. Synthesis and Development of Highly Selective Pyrrolo[2,3- d]pyrimidine CSF1R Inhibitors Targeting the Autoinhibited Form. J Med Chem 2023; 66:6959-6980. [PMID: 37191268 DOI: 10.1021/acs.jmedchem.3c00428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Colony-stimulating factor-1 receptor (CSF1R) is a receptor tyrosine kinase that controls the differentiation and maintenance of most tissue-resident macrophages, and the inhibition of CSF1R has been suggested as a possible therapy for a range of human disorders. Herein, we present the synthesis, development, and structure-activity relationship of a series of highly selective pyrrolo[2,3-d]pyrimidines, showing subnanomolar enzymatic inhibition of this receptor and with excellent selectivity toward other kinases in the platelet-derived growth factor receptor (PDGFR) family. The crystal structure of the protein and 23 revealed that the binding conformation of the protein is DFG-out-like. The most promising compounds in this series were profiled for cellular potency and subjected to pharmacokinetic profiling and in vivo stability, indicating that this compound class could be relevant in a potential disease setting. Additionally, these compounds inhibited primarily the autoinhibited form of the receptor, contrasting the behavior of pexidartinib, which could explain the exquisite selectivity of these structures.
Collapse
Affiliation(s)
- Thomas Ihle Aarhus
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Frithjof Bjørnstad
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Line Rognstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Trygve Leithaug
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Anke Unger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Alexander Wolf
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bård H Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Eirik Sundby
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
43
|
Hanafy NS, Aziz NAAM, El-Hddad SSA, Abdelgawad MA, Ghoneim MM, Dawood AF, Mohamady S, El-Adl K, Ahmed S. Design, synthesis, and docking of novel thiazolidine-2,4-dione multitarget scaffold as new approach for cancer treatment. Arch Pharm (Weinheim) 2023:e2300137. [PMID: 37147779 DOI: 10.1002/ardp.202300137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Novel thiazolidine-2,4-diones have been developed and estimated as conjoint inhibitors of EGFRT790M and VEGFR-2 against HCT-116, MCF-7, A549, and HepG2 cells. Compounds 6a, 6b, and 6c were known to be the dominant advantageous congeners against HCT116 (IC50 = 15.22, 8.65, and 8.80 µM), A549 (IC50 = 7.10, 6.55, and 8.11 µM), MCF-7 (IC50 = 14.56, 6.65, and 7.09 µM) and HepG2 (IC50 = 11.90, 5.35, and 5.60 µM) mass cell lines, correspondingly. Although compounds 6a, 6b, and 6c disclosed poorer effects than sorafenib (IC50 = 4.00, 4.04, 5.58, and 5.05 µM) against the tested cell sets, congeners 6b and 6c demonstrated higher actions than erlotinib (IC50 = 7.73, 5.49, 8.20, and 13.91 µM) against HCT116, MCF-7 and HepG2 cells, yet lesser performance on A549 cells. The hugely effective derivatives 4e-i and 6a-c were inspected versus VERO normal cell strains. Compounds 6b, 6c, 6a, and 4i were found to be the most effective derivatives, which suppressed VEGFR-2 by IC50 = 0.85, 0.90, 1.50, and 1.80 µM, respectively. Moreover, compounds 6b, 6a, 6c, and 6i could interfere with the EGFRT790M performing strongest effects with IC50 = 0.30, 0.35, 0.50, and 1.00 µM, respectively. What is more, 6a, 6b, and 6c represented satisfactory in silico computed ADMET profile.
Collapse
Affiliation(s)
- Noura S Hanafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Nada A A M Aziz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | | | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Mohamady
- Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Sahar Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
44
|
Tkacik E, Li K, Gonzalez-Del Pino G, Ha BH, Vinals J, Park E, Beyett TS, Eck MJ. Structure and RAF family kinase isoform selectivity of type II RAF inhibitors tovorafenib and naporafenib. J Biol Chem 2023; 299:104634. [PMID: 36963492 PMCID: PMC10149214 DOI: 10.1016/j.jbc.2023.104634] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
Upon activation by RAS, RAF family kinases initiate signaling through the MAP kinase cascade to control cell growth, proliferation, and differentiation. Among RAF isoforms (ARAF, BRAF, and CRAF), oncogenic mutations are by far most frequent in BRAF. The BRAFV600E mutation drives more than half of all malignant melanoma and is also found in many other cancers. Selective inhibitors of BRAFV600E (vemurafenib, dabrafenib, encorafenib) are used clinically for these indications, but they are not effective inhibitors in the context of oncogenic RAS, which drives dimerization and activation of RAF, nor for malignancies driven by aberrantly dimerized truncation/fusion variants of BRAF. By contrast, a number of "type II" RAF inhibitors have been developed as potent inhibitors of RAF dimers. Here, we compare potency of type II inhibitors tovorafenib (TAK-580) and naporafenib (LHX254) in biochemical assays against the three RAF isoforms and describe crystal structures of both compounds in complex with BRAF. We find that tovorafenib and naporafenib are most potent against CRAF but markedly less potent against ARAF. Crystal structures of both compounds with BRAFV600E or WT BRAF reveal the details of their molecular interactions, including the expected type II-binding mode, with full occupancy of both subunits of the BRAF dimer. Our findings have important clinical ramifications. Type II RAF inhibitors are generally regarded as pan-RAF inhibitors, but our studies of these two agents, together with recent work with type II inhibitors belvarafenib and naporafenib, indicate that relative sparing of ARAF may be a property of multiple drugs of this class.
Collapse
Affiliation(s)
- Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kunhua Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gonzalo Gonzalez-Del Pino
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Byung Hak Ha
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Javier Vinals
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
45
|
Ong HW, Truong A, Kwarcinski F, de Silva C, Avalani K, Havener TM, Chirgwin M, Galal KA, Willis C, Krämer A, Liu S, Knapp S, Derbyshire ER, Zutshi R, Drewry DH. Discovery of potent Plasmodium falciparum protein kinase 6 (PfPK6) inhibitors with a type II inhibitor pharmacophore. Eur J Med Chem 2023; 249:115043. [PMID: 36736152 PMCID: PMC10052868 DOI: 10.1016/j.ejmech.2022.115043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Malaria is a devastating disease that causes significant global morbidity and mortality. The rise of drug resistance against artemisinin-based combination therapy demonstrates the necessity to develop alternative antimalarials with novel mechanisms of action. We report the discovery of Ki8751 as an inhibitor of essential kinase PfPK6. 79 derivatives were designed, synthesized and evaluated for PfPK6 inhibition and antiplasmodial activity. Using group efficiency analyses, we established the importance of key groups on the scaffold consistent with a type II inhibitor pharmacophore. We highlight modifications on the tail group that contribute to antiplasmodial activity, cumulating in the discovery of compound 67, a PfPK6 inhibitor (IC50 = 13 nM) active against the P. falciparum blood stage (EC50 = 160 nM), and compound 79, a PfPK6 inhibitor (IC50 < 5 nM) with dual-stage antiplasmodial activity against P. falciparum blood stage (EC50 = 39 nM) and against P. berghei liver stage (EC50 = 220 nM).
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna Truong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Frank Kwarcinski
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Chandi de Silva
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Krisha Avalani
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael Chirgwin
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Kareem A Galal
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caleb Willis
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Andreas Krämer
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC, 27599-3420, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3420, USA
| | - Stefan Knapp
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC, 27710, USA.
| | - Reena Zutshi
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA.
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
46
|
Aceves-Hernández JM, Inés Nicolás Vázquez M, Luis Garza Rivera J, Espinoza Godínez A, Mateo Flores J, de Jesús Cruz Guzmán J, Castaño VM. Palbociclib (PD 0332991) Interaction with Kinases. Theoretical and Comparative Molecular Docking Study. Chem Biodivers 2023; 20:e202200554. [PMID: 36799136 DOI: 10.1002/cbdv.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
The optimized geometry of palbociclib, (PD 0332991) (8-cyclopentyl-6-ethanoyl-5-methyl-2-(5-(piperazin-1-yl)pyridin-2-ylamino)pyrido[2,3-d]pyrimidin-7(8H)-one), electrostatic potential map, molecular orbitals were calculated using the density functional theory. The geometry was used in a molecular docking study of palbociclib-kinase complexes, results could be explained by the charge of the nitrogen and oxygen atoms within the palbociclib. Energy gap of HOMO-LUMO surfaces, could help to explain the reactivity of the ligand and the hydrogen bonding with three different kinases, two of CDK6 and one of CDK4 type. Docking results are similar and complementary with literature reports using molecular dynamics, were hydrogen bonding was obtained and analyzed. The promiscuity of three kinases with palbociclib was detected by the docking results, thus, palbociclib could be used in other types of cancer besides myeloid leukemia. Some similarities are found with CDK4/CDK6 kinases which allow us to determine that palbociclib could be used to control other resistant inhibitor types of cancer.
Collapse
Affiliation(s)
- Juan M Aceves-Hernández
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli, Estado de México, 54740, México
| | - María Inés Nicolás Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli, Estado de México, 54740, México
| | - José Luis Garza Rivera
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli, Estado de México, 54740, México
| | - Angélica Espinoza Godínez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli, Estado de México, 54740, México
| | - Juan Mateo Flores
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli, Estado de México, 54740, México
| | - José de Jesús Cruz Guzmán
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Avenida 1o de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli, Estado de México, 54740, México
| | - Víctor M Castaño
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla, Querétaro, 76230, México
| |
Collapse
|
47
|
Wei C, Zhou L, Yang Y, Niu L, Yan H. Design, synthesis, and anticancer evaluation of N 6 -hydrazone purine derivatives with potential antiplatelet aggregation activity. Chem Biol Drug Des 2023; 101:568-580. [PMID: 36112079 DOI: 10.1111/cbdd.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
In our research on novel anticancer agents, a series of N6 -hydrazone purine derivatives were designed and synthesized by analysis of a pharmacophore model for ATP-competitive inhibitors. The activities screening results showed that N6 -hydrazone purine derivatives 21 and 26 not only showed potential antiproliferative activity against the A549 and MCF-7 cell lines comparable to Vandetanib as a positive control but also had moderate antiplatelet aggregation activity. In order to investigate the possible targets, a molecular docking study was carried out on the fourteen kinases associated with anticancer and antiplatelet aggregation activities. The results indicated that compounds 21 and 26 had the potential activity to target VEGFR-2, PI3Kα, EGFR, and HER2 kinases. The inhibition of the kinases assay showed that compound 26 could target VEGFR-2, PI3Kα, and EGFR (IC50 = 0.822, 3.040 and 6.625 μM). All results indicated that compound 26 will be an encouraging framework as potential new multi-target anticancer agent with potential antiplatelet aggregation activity.
Collapse
Affiliation(s)
- Chaochun Wei
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Liying Zhou
- Beijing Tide Pharmaceutical Co., Ltd, Beijing, China
| | - Yifan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Lexuan Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Hong Yan
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
48
|
Aziz NAAM, George RF, El-Adl K, Mahmoud WR. Exploration of thiazolidine-2,4-diones as tyrosine kinase inhibitors: Design, synthesis, ADMET, docking, and antiproliferative evaluations. Arch Pharm (Weinheim) 2023; 356:e2200465. [PMID: 36403198 DOI: 10.1002/ardp.202200465] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
As dual EGFR and VEGFR-2 inhibitors, 22 innovative thiazolidine-2,4-diones were modeled, constructed, and measured for their anticancer performance versus four human neoplasms HCT-116, MCF-7, A549, and HepG2. Molecular docking and MD simulation were performed to inspect the binding technique of the proffered congeners with the EGFR and VEGFR-2 receptors. Evidence realized thanks to the docking inquests was vastly consistent together with that detected through the biological screening. Structures 14a and 14g emerged as the most active compounds toward HCT116 (IC50 = 6.01 and 7.44 µM), MCF-7 (IC50 = 5.77 and 7.23 µM), A549 (IC50 = 5.35 and 5.47 µM) and HepG2 (IC50 = 3.55 and 3.85 µM) tumefaction cells. Compounds 14a and 14g exhibited higher events than sorafenib (IC50 = 5.05, 5.58, 4.04, and 4.00 µM) against HepG2 instead subordinate incidents concerning A549, MCF-7, and HCT116, parallelly. Nevertheless, these compounds signified weightier performance than erlotinib (IC50 = 13.91, 8.20, 5.49, 7.73, and µM), with respect to the four cell lines. Compounds having the best activity against the four cell lines, 12a-f, 13a-d, and 14a-g were chosen to appraise their in vitro VEGFR-2 and EGFRT790M inhibiting activities. The best results were for compounds 14a and 14g compared to sorafenib and erlotinib, respectively, with IC50 values of 0.74 and 0.78 µM and 0.12 and 0.14 µM, respectively. Moreover, 13d, 14a, and 14g showed an adequate in silico calculated ADMET profile. The current investigation presents novel candidates for future optimization to construct mightier and eclectic binary VEGFR-2/EGFRT790M restrainers with higher antitumor effects.
Collapse
Affiliation(s)
- Nada A A M Aziz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.,Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
49
|
Xin X, Wang Y, Zhang L, Zhang D, Sha L, Zhu Z, Huang X, Mao W, Zhang J. Development and therapeutic potential of adaptor-associated kinase 1 inhibitors in human multifaceted diseases. Eur J Med Chem 2023; 248:115102. [PMID: 36640459 DOI: 10.1016/j.ejmech.2023.115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Adaptor-Associated Kinase 1 (AAK1), a Ser/Thr protein kinase, responsible for regulating clathrin-mediated endocytosis, is ubiquitous in the central nervous system (CNS). AAK1 plays an important role in neuropathic pain and a variety of other human diseases, including viral invasion, Alzheimer's disease, Parkinson's syndrome, etc. Therefore, targeting AAK1 is a promising therapeutic strategy. However, although small molecule AAK1 inhibitors have been vigorously developed, only BMS-986176/LX-9211 has entered clinical trials. Simultaneously, new small molecule inhibitors, including BMS-911172 and LP-935509, exhibited excellent druggability. This review elaborates on the structure, biological function, and disease relevance of AAK1. We emphatically analyze the structure-activity relationships (SARs) of small molecule AAK1 inhibitors based on different binding modalities and discuss prospective strategies to provide insights into novel AAK1 therapeutic agents for clinical practice.
Collapse
Affiliation(s)
- Xin Xin
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yue Wang
- Leling Traditional Chinese Medicine Hospital, Leling, 253600, Shandong, China
| | - Lele Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leihao Sha
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyu Zhu
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyi Huang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wuyu Mao
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
50
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|