1
|
Leiva D, Lucendo E, García-Jareño AB, Sancho M, Orzáez M. Phenotyping of cancer-associated somatic mutations in the BCL2 transmembrane domain. Oncogenesis 2024; 13:14. [PMID: 38670940 PMCID: PMC11052995 DOI: 10.1038/s41389-024-00516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The BCL2 family of proteins controls cell death by modulating the permeabilization of the mitochondrial outer membrane through a fine-tuned equilibrium of interactions among anti- and pro-apoptotic members. The upregulation of anti-apoptotic BCL2 proteins represents an unfavorable prognostic factor in many tumor types due to their ability to shift the equilibrium toward cancer cell survival. Furthermore, cancer-associated somatic mutations in BCL2 genes interfere with the protein interaction network, thereby promoting cell survival. A range of studies have documented how these mutations affect the interactions between the cytosolic domains of BCL2 and evaluate the impact on cell death; however, as the BCL2 transmembrane interaction network remains poorly understood, somatic mutations affecting transmembrane regions have been classified as pathogenic-based solely on prediction algorithms. We comprehensively investigated cancer-associated somatic mutations affecting the transmembrane domain of BCL2 proteins and elucidated their effect on membrane insertion, hetero-interactions with the pro-apoptotic protein BAX, and modulation of cell death in cancer cells. Our findings reveal how specific mutations disrupt switchable interactions, alter the modulation of apoptosis, and contribute to cancer cell survival. These results provide experimental evidence to distinguish BCL2 transmembrane driver mutations from passenger mutations and provide new insight regarding selecting precision anti-tumor treatments.
Collapse
Affiliation(s)
- Diego Leiva
- Targeted Therapies on Cancer and Inflammation Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Estefanía Lucendo
- Targeted Therapies on Cancer and Inflammation Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alicia Belén García-Jareño
- Targeted Therapies on Cancer and Inflammation Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Mónica Sancho
- Targeted Therapies on Cancer and Inflammation Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Mar Orzáez
- Targeted Therapies on Cancer and Inflammation Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
2
|
Lee TH, Checco JW, Malcolm T, Eller CH, Raines RT, Gellman SH, Lee EF, Fairlie WD, Aguilar MI. Differential membrane binding of α/β-peptide foldamers: implications for cellular delivery and mitochondrial targeting. Aust J Chem 2023; 76:482-492. [PMID: 37780415 PMCID: PMC10540276 DOI: 10.1071/ch23063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/β-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/β-peptides contained cyclic β-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
| | - James W Checco
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Current address: Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Current address: The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tess Malcolm
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
- Current address: School of Chemistry, University of Melbourne, Parkville, Vic 3052, Australia
| | - Chelcie H Eller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ronald T Raines
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Vic, 3800, Australia
| |
Collapse
|
3
|
Osterlund EJ, Hirmiz N, Nguyen D, Pemberton JM, Fang Q, Andrews DW. Endoplasmic reticulum protein BIK binds to and inhibits mitochondria-localized antiapoptotic proteins. J Biol Chem 2023; 299:102863. [PMID: 36603764 PMCID: PMC9932132 DOI: 10.1016/j.jbc.2022.102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
The proapoptotic BCL-2 homology (BH3)-only endoplasmic reticulum (ER)-resident protein BCL-2 interacting killer (BIK) positively regulates mitochondrial outer membrane permeabilization, the point of no return in apoptosis. It is generally accepted that BIK functions at a distance from mitochondria by binding and sequestering antiapoptotic proteins at the ER, thereby promoting ER calcium release. Although BIK is predominantly localized to the ER, we detect by fluorescence lifetime imaging microscopy-FRET microscopy, BH3 region-dependent direct binding between BIK and mitochondria-localized chimeric mutants of the antiapoptotic proteins BCL-XL and BCL-2 in both baby mouse kidney (BMK) and MCF-7 cells. Direct binding was accompanied by cell type-specific differential relocalization in response to coexpression of either BIK or one of its target binding partners, BCL-XL, when coexpressed in cells. In BMK cells with genetic deletion of both BAX and BAK (BMK-double KO), our data suggest that a fraction of BIK protein moves toward mitochondria in response to the expression of a mitochondria-localized BCL-XL mutant. In contrast, in MCF-7 cells, our data suggest that BIK is localized at both ER and mitochondria-associated ER membranes and binds to the mitochondria-localized BCL-XL mutant via relocalization of BCL-XL to ER and mitochondria-associated ER membrane. Rather than functioning at a distance, our data suggest that BIK initiates mitochondrial outer membrane permeabilization via direct interactions with ER and mitochondria-localized antiapoptotic proteins, which occur via ER-mitochondria contact sites, and/or by relocalization of either BIK or antiapoptotic proteins in cells.
Collapse
Affiliation(s)
- Elizabeth J Osterlund
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nehad Hirmiz
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Dang Nguyen
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James M Pemberton
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Wu G, Yang F, Cheng X, Mai Z, Wang X, Chen T. Live-cell imaging analysis on the anti-apoptotic function of the Bcl-xL transmembrane carboxyl terminal domain. Biochem Biophys Res Commun 2023; 639:91-99. [PMID: 36476951 DOI: 10.1016/j.bbrc.2022.11.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
The Transmembrane Carboxyl Terminal Domain (TMD) of some Bcl-2 family proteins has been demonstrated to play a key role in modulating apoptosis. We here ustilzed live-cell fluorescence imaging to evaluate how the Bcl-xL TMD (XT) regulate apoptosis. Cell viability assay revealed that XT had strong anti-apoptotic ability similarly to the full-length Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and Bad-YFP or YFP-Bax revealed that XT recruited Bad to mitochondria but prevented Bax translocation to mitochondria, and also significantly suppressed Bad/Bax-mediated apoptosis, indicating that XT prevents the pro-apoptotic function of Bad and Bax. Fluorescence Resonance Energy Transfer (FRET) analyses determined that XT directly interacted with Bad and Bax, and deletion of XT completely eliminated the mitochondrial localization and homo-oligomerization of Bcl-xL. Fluorescence images of living cells co-expressing CFP-XT and YFP-Bax revealed that XT significantly prevented mitochondrial Bax oligomerization, resulting in cytosolic Bax distribution. Collectively, XT is necessary for the mitochondrial localization and anti-apoptotic capacity of Bcl-xL, and XT, similarly to the full-length Bcl-xL, forms homo-oligomers on mitochondria to directly interact with Bad and Bax to inhibit their apoptotic functions.
Collapse
Affiliation(s)
- Ge Wu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Fangfang Yang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xuecheng Cheng
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Zihao Mai
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou, 5610632, China.
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, 510631, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China.
| |
Collapse
|
5
|
Sinha S, Ghosh Dastidar S. Shifting Polar Residues Across Primary Sequence Frames of Transmembrane Domains Calibrates Membrane Permeation Thermodynamics. Biochemistry 2020; 59:4353-4366. [PMID: 33136366 DOI: 10.1021/acs.biochem.0c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Permeation of the mitochondrial outer membrane (MOM) using the transmembrane domains (TMDs) is the key step of the Bcl-2 family of proteins to control apoptosis. The primary sequences of the TMDs of the family members like Bcl-xL, Bcl-2, Bak, etc. indicate the presence of charged residues at the C-terminal tip to be essential for drilling the membrane. However, Bax, a variant of the same family, is an exception, as the charged residues are shifted away from the tip by two positional frames in the primary sequence, but does it matter really? The free energy landscapes of membrane permeation, computed from a total of ∼13.3 μs of conformational sampling, show how such shifting of the amino acid frames in the primary sequence is correlated with the energy landscape that ensures the balance between membrane permeation and cytosolic population. Shifting the charged residues back to the terminal, in suitable mutants of Bax, proves the necessity of terminal charged residues by improving the insertion free energy but adds a high energy barrier unless some other polar residues are adjusted further. The difference in the TMDs of Bcl-xL and Bax is also reflected in their mechanism to drill the MOM-like anionic membrane; only Bax-TMD requires surface crowding to favorably shape the permeation landscape by weakening the bilayer integrity. So, this investigation suggests that such proteins can calibrate the free energy landscape of membrane permeation by adjusting the positions of the charged or polar residues in the primary sequence frames, a strategy analogous to the game of the "sliding tile puzzle" but played with primary sequence frames.
Collapse
Affiliation(s)
- Souvik Sinha
- Division of Bioinformatics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700054, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700054, India
| |
Collapse
|
6
|
Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis. Proc Natl Acad Sci U S A 2020; 117:27980-27988. [PMID: 33093207 DOI: 10.1073/pnas.2008885117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Bcl-2 protein family comprises both pro- and antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family members can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner. While the Bok TMD oligomers locate preferentially to the endoplasmic reticulum (ER), heterooligomerization between the TMDs of Mcl-1 and Bok predominantly takes place at the mitochondrial membrane. Strikingly, the coexpression of Mcl-1 and Bok TMDs produces an increase in ER mitochondrial-associated membranes, suggesting an active role of Mcl-1 in the induced mitochondrial targeting of Bok. Finally, the introduction of Mcl-1 TMD somatic mutations detected in cancer patients alters the TMD interaction pattern to provide the Mcl-1 protein with enhanced antiapoptotic activity, thereby highlighting the clinical relevance of Mcl-1 TMD interactions.
Collapse
|
7
|
Zheng X, Li Z, Gao W, Meng X, Li X, Luk LYP, Zhao Y, Tsai YH, Wu C. Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a Novel Bioorthogonal Reaction for Site-Specific Protein Modification and Peptide Cyclization. J Am Chem Soc 2020; 142:5097-5103. [DOI: 10.1021/jacs.9b11875] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoli Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhuoru Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Gao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoting Meng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Xuefei Li
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
8
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
9
|
Suhaili SH, Karimian H, Stellato M, Lee TH, Aguilar MI. Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization. Biophys Rev 2017; 9:443-457. [PMID: 28823106 DOI: 10.1007/s12551-017-0308-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is important in regulating cell death turnover and is mediated by the intrinsic and death receptor-based extrinsic pathways which converge at the mitochondrial outer membrane (MOM) leading to mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of apoptotic proteins that further activate the downstream pathway of apoptosis. Thus, tight regulation of MOMP is crucial in controlling apoptosis, and a lack of control may lead to tissue and organ malformation and the development of cancers. Despite a growing number of studies focusing on the structure and activity of the proteins involved in mediating MOMP, such as the Bcl-2 family proteins, the mechanism of MOMP is not well understood. In particular, the crucial role of the various structural properties and changes in lipid components of the MOM in mediating the recruitment and activation of different Bcl-2 proteins remains poorly understood. Furthermore, the factors that control the changes in mitochondrial membrane integrity from the initiation to the final disruption of MOM have yet to be clearly defined. In this review, we provide an overview of studies that focus on the mitochondrial membrane with a biophysical analysis of the interactions of the Bcl-2 proteins with the mitochondrial membrane.
Collapse
Affiliation(s)
- Siti Haji Suhaili
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia
| | - Hamed Karimian
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia
| | - Matthew Stellato
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia
| | - Tzong-Hsien Lee
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia
| | - Marie-Isabel Aguilar
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia.
| |
Collapse
|
10
|
Andreu-Fernández V, García-Murria MJ, Bañó-Polo M, Martin J, Monticelli L, Orzáez M, Mingarro I. The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes. J Biol Chem 2016; 291:25207-25216. [PMID: 27758854 DOI: 10.1074/jbc.m116.733634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/31/2016] [Indexed: 11/06/2022] Open
Abstract
Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the insertion capacity of hydrophobic C-terminal regions of the BH3-only proteins Bik, Bim, Noxa, Bmf, and Puma into microsomal membranes. An Escherichia coli complementation assay was used to validate the results in a cellular context, and peptide insertions were modeled using molecular dynamics simulations. We also found that some of the C-terminal domains were sufficient to direct green fluorescent protein fusion proteins to specific membranes in human cells, but the domains did not activate apoptosis. Thus, the hydrophobic regions in the C termini of BH3-only members associated in distinct ways with various biological membranes, suggesting that a detailed investigation of the entire process of apoptosis should include studying the membranes as a setting for protein-protein and protein-membrane interactions.
Collapse
Affiliation(s)
- Vicente Andreu-Fernández
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain.,the Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain, and
| | - María J García-Murria
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Manuel Bañó-Polo
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain
| | - Juliette Martin
- the Bases Moléculaires et Structurales des Systèmes Infectieux (BMSSI), CNRS UMR 5086, 7 Passage du Vercors, 69007 Lyon, France
| | - Luca Monticelli
- the Bases Moléculaires et Structurales des Systèmes Infectieux (BMSSI), CNRS UMR 5086, 7 Passage du Vercors, 69007 Lyon, France
| | - Mar Orzáez
- the Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain, and
| | - Ismael Mingarro
- From the Departament de Bioquímica i Biologia Molecular, ERI BioTecMed, Universitat de València, E-46100 Burjassot, Spain,
| |
Collapse
|
11
|
Hirst DJ, Lee TH, Kulkarni K, Wilce JA, Aguilar MI. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1841-9. [PMID: 27163492 DOI: 10.1016/j.bbamem.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022]
Abstract
We have studied the effect of penetratin and a truncated analogue on the bilayer structure using dual polarisation interferometry, to simultaneously measure changes in mass per unit area and birefringence (an optical parameter representing bilayer order) with high sensitivity during the binding and dissociation from the membrane. Specifically, we studied penetratin (RQIKIWFQNRRMKWKK), along with a shortened and biotinylated version known as R8K-biotin (RRMKWKKK(Biotin)-NH2). Overall both peptides bound only weakly to the neutral DMPC and POPC bilayers, while much higher binding was observed for the anionic DMPC/DMPG and POPC/POPG. The binding of penetratin to gel-phase DMPC/DMPG was adequately represented by a two-state model, whereas on the fluid-phase POPC/POPG it exhibited a distinctly different binding pattern, best represented by a three-state kinetic model. However, R8K-biotin did not bind well to DMPC/DMPG and showed a more transitory and superficial binding to POPC/POPG. Comparing the modelling results for both peptides binding to POPC/POPG suggests an important role for a securely bound intermediate prior to penetratin insertion and translocation. Overall these results further elucidate the mechanism of penetratin, and provide another example of the significance of the ability of DPI to measure structural changes and the use of kinetic analysis to investigate the stages of peptide-membrane interactions.
Collapse
Affiliation(s)
- Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800,Australia.
| |
Collapse
|
12
|
Kvansakul M, Hinds MG. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 2015; 20:136-50. [PMID: 25398535 DOI: 10.1007/s10495-014-1051-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for 'BH3-mimics', drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia,
| | | |
Collapse
|
13
|
Helix 8 of the angiotensin- II type 1A receptor interacts with phosphatidylinositol phosphates and modulates membrane insertion. Sci Rep 2015; 5:9972. [PMID: 26126083 PMCID: PMC5378882 DOI: 10.1038/srep09972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/26/2015] [Indexed: 11/16/2022] Open
Abstract
The carboxyl-terminus of the type 1 angiotensin II receptor (AT1A) regulates receptor activation/deactivation and the amphipathic Helix 8 within the carboxyl-terminus is a high affinity interaction motif for plasma membrane lipids. We have used dual polarisation interferometry (DPI) to examine the role of phosphatidylinositdes in the specific recognition of Helix 8 in the AT1A receptor. A synthetic peptide corresponding to Leu305 to Lys325 (Helix 8 AT1A) discriminated between PIPs and different charges on lipid membranes. Peptide binding to PtdIns(4)P-containing bilayers caused a dramatic change in the birefringence (a measure of membrane order) of the bilayer. Kinetic modelling showed that PtdIns(4)P is held above the bilayer until the mass of bound peptide reaches a threshold, after which the peptides insert further into the bilayer. This suggests that Helix 8 can respond to the presence of PI(4)P by withdrawing from the bilayer, resulting in a functional conformational change in the receptor.
Collapse
|
14
|
Lee TH, Hirst DJ, Aguilar MI. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1868-85. [PMID: 26009270 DOI: 10.1016/j.bbamem.2015.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Biomolecular-membrane interactions play a critical role in the regulation of many important biological processes such as protein trafficking, cellular signalling and ion channel formation. Peptide/protein-membrane interactions can also destabilise and damage the membrane which can lead to cell death. Characterisation of the molecular details of these binding-mediated membrane destabilisation processes is therefore central to understanding cellular events such as antimicrobial action, membrane-mediated amyloid aggregation, and apoptotic protein induced mitochondrial membrane permeabilisation. Optical biosensors have provided a unique approach to characterising membrane interactions allowing quantitation of binding events and new insight into the kinetic mechanism of these interactions. One of the most commonly used optical biosensor technologies is surface plasmon resonance (SPR) and there have been an increasing number of studies reporting the use of this technique for investigating biophysical analysis of membrane-mediated events. More recently, a number of new optical biosensors based on waveguide techniques have been developed, allowing membrane structure changes to be measured simultaneously with mass binding measurements. These techniques include dual polarisation interferometry (DPI), plasmon waveguide resonance spectroscopy (PWR) and optical waveguide light mode spectroscopy (OWLS). These techniques have expanded the application of optical biosensors to allow the analysis of membrane structure changes during peptide and protein binding. This review provides a theoretical and practical overview of the application of biosensor technology with a specific focus on DPI, PWR and OWLS to study biomembrane-mediated events and the mechanism of biomembrane disruption. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia.
| |
Collapse
|
15
|
Landeta O, Valero JG, Flores-Romero H, Bustillo-Zabalbeitia I, Landajuela A, Garcia-Porras M, Terrones O, Basañez G. Lipid-dependent bimodal MCL1 membrane activity. ACS Chem Biol 2014; 9:2852-63. [PMID: 25314294 DOI: 10.1021/cb500592e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence indicates that the mitochondrial lipid membrane environment directly modulates the BCL2 family protein function, but the underlying mechanisms are still poorly understood. Here, we used minimalistic reconstituted systems to examine the influence of mitochondrial lipids on MCL1 activity and conformation. Site-directed mutagenesis and fluorescence spectroscopic analyses revealed that the BCL2 homology region of MCL1 (MCL1ΔNΔC) inhibits permeabilization of MOM-like membranes exclusively via canonical BH3-into-groove interactions with both cBID-like activators and BAX-like effectors. Contrary to currently popular models, MCL1ΔNΔC did not require becoming embedded into the membrane to inhibit membrane permeabilization, and interaction with cBID was more productive for MCL1ΔNΔC inhibitory activity than interaction with BAX. We also report that membranes rich in cardiolipin (CL), but not phosphatidylinositol (PI), trigger a profound conformational change in MCL1ΔNΔC leading to membrane integration and unleashment of an intrinsic lipidic pore-forming activity of the molecule. Cholesterol (CHOL) reduces both the conformational change and the lipidic pore-forming activity of MCL1ΔNΔC in CL-rich membranes, but it does not affect the interaction of MCL1ΔNΔC with proapoptotic partners in MOM-like liposomes. In addition, we identified MCL1α5 as the minimal domain of the protein responsible for its membrane-permeabilizing function both in model membranes and at the mitochondrial level. Our results provide novel mechanistic insight into MCL1 function in the context of a membrane milieu and add significantly to a growing body of evidence supporting an active role of mitochondrial membrane lipids in BCL2 protein function.
Collapse
Affiliation(s)
- Olatz Landeta
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Juan Garcia Valero
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Hector Flores-Romero
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Itsasne Bustillo-Zabalbeitia
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Ane Landajuela
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Miguel Garcia-Porras
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Oihana Terrones
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| | - Gorka Basañez
- Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Euskal Herriko Unibertsitatea/Universidad del Pais Vasco (EHU/UPV), Barrio Sarriena s/n, Leioa 48940, Spain
| |
Collapse
|