1
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Kim HR, Tagirasa R, Yoo E. Covalent Small Molecule Immunomodulators Targeting the Protease Active Site. J Med Chem 2021; 64:5291-5322. [PMID: 33904753 DOI: 10.1021/acs.jmedchem.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells of the immune system utilize multiple proteases to regulate cell functions and orchestrate innate and adaptive immune responses. Dysregulated protease activities are implicated in many immune-related disorders; thus, protease inhibitors have been actively investigated for pharmaceutical development. Although historically considered challenging with concerns about toxicity, compounds that covalently modify the protease active site represent an important class of agents, emerging not only as chemical probes but also as approved drugs. Here, we provide an overview of technologies useful for the study of proteases with the focus on recent advances in chemoproteomic methods and screening platforms. By highlighting covalent inhibitors that have been designed to target immunomodulatory proteases, we identify opportunities for the development of small molecule immunomodulators.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ravichandra Tagirasa
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Elvas F, Vanden Berghe T, Adriaenssens Y, Vandenabeele P, Augustyns K, Staelens S, Stroobants S, Van der Veken P, Wyffels L. Caspase-3 probes for PET imaging of apoptotic tumor response to anticancer therapy. Org Biomol Chem 2020; 17:4801-4824. [PMID: 31033991 DOI: 10.1039/c9ob00657e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Apoptosis is a highly regulated process involved in the normal organism development and homeostasis. In the context of anticancer therapy, apoptosis is also studied intensively in an attempt to induce cell death in cancer cells. Caspase activation is a known key event in the apoptotic process. In particular, active caspase-3 and -7 are the common effectors in several apoptotic pathways, therefore effector caspase activation may be a promising biomarker for response evaluation to anticancer therapy. Quantitative imaging of apoptosis in vivo could provide early assessment of therapeutic effectiveness and could also be used in drug development to evaluate the efficacy as well as potential toxicity of novel treatments. Positron Emission Tomography (PET) is a highly sensitive molecular imaging modality that allows non-invasive in vivo imaging of biological processes such as apoptosis by using radiolabeled probes. Here we describe the development and evaluation of fluorine-18-labeled caspase-3 activity-based probes (ABPs) for PET imaging of apoptosis. ABPs were selected by screening of a small library of fluorine-19-labeled DEVD peptides containing different electrophilic warhead groups. An acyloxymethyl ketone was identified with low nanomolar affinity for caspase-3 and was radiolabeled with fluorine-18. The resulting radiotracer, [18F]MICA-302, showed good labeling of active caspase-3 in vitro and favorable pharmacokinetic properties. A μPET imaging experiment in colorectal tumor xenografts demonstrated an increased tumor accumulation of [18F]MICA-302 in drug-treated versus control animals. Therefore, our data suggest this radiotracer may be useful for clinical PET imaging of response to anticancer therapy.
Collapse
Affiliation(s)
- Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hillert LK, Ivanisenko NV, Busse D, Espe J, König C, Peltek SE, Kolchanov NA, Ivanisenko VA, Lavrik IN. Dissecting DISC regulation via pharmacological targeting of caspase-8/c-FLIP L heterodimer. Cell Death Differ 2020; 27:2117-2130. [PMID: 31959913 DOI: 10.1038/s41418-020-0489-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 11/09/2022] Open
Abstract
Pharmacological targeting via small molecule-based chemical probes has recently acquired an emerging importance as a valuable tool to delineate molecular mechanisms. Induction of apoptosis via CD95/Fas and TRAIL-R1/2 is triggered by the formation of the death-inducing signaling complex (DISC). Caspase-8 activation at the DISC is largely controlled by c-FLIP proteins. However molecular mechanisms of this control have just started to be uncovered. In this study we report the first-in-class chemical probe targeting c-FLIPL in the heterodimer caspase-8/c-FLIPL. This rationally designed small molecule was aimed to imitate the closed conformation of the caspase-8 L2' loop and thereby increase caspase-8 activity after initial processing of the heterodimer. In accordance with in silico predictions, this small molecule enhanced caspase-8 activity at the DISC, CD95L/TRAIL-induced caspase activation, and subsequent apoptosis. The generated computational model provided further evidence for the proposed effects of the small molecule on the heterodimer caspase-8/c-FLIPL. In particular, the model has demonstrated that boosting caspase-8 activity by the small molecule at the early time points after DISC assembly is crucial for promoting apoptosis induction. Taken together, our study allowed to target the heterodimer caspase-8/c-FLIPL and get new insights into molecular mechanisms of its activation.
Collapse
Affiliation(s)
- Laura K Hillert
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Denise Busse
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany
| | - Sergey E Peltek
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Nikolai A Kolchanov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Center of Dynamic Systems, Otto von Guericke University Magdeburg, Geb.28. 1 OG/R. 111, Pfälzer Platz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
5
|
CrmA orthologs from diverse poxviruses potently inhibit caspases-1 and -8, yet cleavage site mutagenesis frequently produces caspase-1-specific variants. Biochem J 2019; 476:1335-1357. [PMID: 30992316 DOI: 10.1042/bcj20190202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Poxviruses encode many proteins that enable them to evade host anti-viral defense mechanisms. Spi-2 proteins, including Cowpox virus CrmA, suppress anti-viral immune responses and contribute to poxviral pathogenesis and lethality. These proteins are 'serpin' protease inhibitors, which function via a pseudosubstrate mechanism involving initial interactions between the protease and a cleavage site within the serpin. A conformational change within the serpin interrupts the cleavage reaction, deforming the protease active site and preventing dissociation. Spi-2 proteins like CrmA potently inhibit caspases-1, -4 and -5, which produce proinflammatory cytokines, and caspase-8, which facilitates cytotoxic lymphocyte-mediated target cell death. It is not clear whether both of these functions are equally perilous for the virus, or whether only one must be suppressed for poxviral infectivity and spread but the other is coincidently inhibited merely because these caspases are biochemically similar. We compared the caspase specificity of CrmA to three orthologs from orthopoxviruses and four from more distant chordopoxviruses. All potently blocked caspases-1, -4, -5 and -8 activity but exhibited negligible inhibition of caspases-2, -3 and -6. The orthologs differed markedly in their propensity to inhibit non-mammalian caspases. We determined the specificity of CrmA mutants bearing various residues in positions P4, P3 and P2 of the cleavage site. Almost all variants retained the ability to inhibit caspase-1, but many lacked caspase-8 inhibitory activity. The retention of Spi-2 proteins' caspase-8 specificity during chordopoxvirus evolution, despite this function being readily lost through cleavage site mutagenesis, suggests that caspase-8 inhibition is crucial for poxviral pathogenesis and spread.
Collapse
|
6
|
Inokuma T. Asymmetric Synthesis of Unnatural Amino Acid-containing Peptides <i>via</i> Direct Asymmetric Reaction of Peptidyl Compounds. YAKUGAKU ZASSHI 2018; 138:1371-1379. [DOI: 10.1248/yakushi.18-00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsubasa Inokuma
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University
| |
Collapse
|
7
|
Poreba M, Groborz K, Navarro M, Snipas SJ, Drag M, Salvesen GS. Caspase selective reagents for diagnosing apoptotic mechanisms. Cell Death Differ 2018; 26:229-244. [PMID: 29748600 DOI: 10.1038/s41418-018-0110-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/30/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
Apical caspases initiate and effector caspases execute apoptosis. Reagents that can distinguish between caspases, particularly apical caspases-8, 9, and 10 are scarce and generally nonspecific. Based upon a previously described large-scale screen of peptide-based caspase substrates termed HyCoSuL, we sought to develop reagents to distinguish between apical caspases in order to reveal their function in apoptotic cell death paradigms. To this end, we selected tetrapeptide-based sequences that deliver optimal substrate selectivity and converted them to inhibitors equipped with a detectable tag (activity-based probes-ABPs). We demonstrate a strong relationship between substrate kinetics and ABP kinetics. To evaluate the utility of selective substrates and ABPs, we examined distinct apoptosis pathways in Jurkat T lymphocyte and MDA-MB-231 breast cancer lines triggered to undergo cell death via extrinsic or intrinsic apoptosis. We report the first highly selective substrate appropriate for quantitation of caspase-8 activity during apoptosis. Converting substrates to ABPs promoted loss-of-activity and selectivity, thus we could not define a single ABP capable of detecting individual apical caspases in complex mixtures. To overcome this, we developed a panel strategy utilizing several caspase-selective ABPs to interrogate apoptosis, revealing the first chemistry-based approach to uncover the participation of caspase-8, but not caspase-9 or -10 in TRAIL-induced extrinsic apoptosis. We propose that using select panels of ABPs can provide information regarding caspase-8 apoptotic signaling more faithfully than can single, generally nonspecific reagents.
Collapse
Affiliation(s)
- Marcin Poreba
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Mario Navarro
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Scott J Snipas
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Guy S Salvesen
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
Adriaenssens Y, Jiménez Fernández D, Vande Walle L, Elvas F, Joossens J, Lambeir A, Augustyns K, Lamkanfi M, Van der Veken P. Carboxylate isosteres for caspase inhibitors: the acylsulfonamide case revisited. Org Biomol Chem 2017; 15:7456-7473. [PMID: 28837200 DOI: 10.1039/c7ob01403a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As part of an ongoing effort to discover inhibitors of caspase-1 with an optimized selectivity and biopharmaceutical profile, acylsulfonamides were explored as carboxylate isosteres for caspase inhibitors. Acylsulfonamide analogues of the clinically investigated caspase-1 inhibitor VRT-043198 and of the pan-caspase inhibitor Z-VAD-CHO were synthesized. The isostere-containing analogues with an aldehyde warhead had inhibitory potencies comparable to the carboxylate references. In addition, the conformational and tautomeric characteristics of these molecules were determined using 1H- and 13C-based NMR. The propensity of acylsulfonamides with an aldehyde warhead to occur in a ring-closed conformation at physiological pH significantly increases the sensitivity to hydrolysis of the acylsulfonamide moiety, yielding the parent carboxylate containing inhibitors. These results indicate that the acylsulfonamide analogues of the aldehyde-based inhibitor VRT-043198 might have potential as a novel type of prodrug for the latter. Finally, inhibition of caspase 1 and 11 mediated inflammation in mouse macrophages was found to correlate with the potencies of the compounds in enzymatic assays.
Collapse
Affiliation(s)
- Y Adriaenssens
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kasperkiewicz P, Poreba M, Groborz K, Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 2017; 284:1518-1539. [PMID: 28052575 PMCID: PMC7164106 DOI: 10.1111/febs.14001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Proteases are enzymes that hydrolyze the peptide bond of peptide substrates and proteins. Despite significant progress in recent years, one of the greatest challenges in the design and testing of substrates, inhibitors and activity‐based probes for proteolytic enzymes is achieving specificity toward only one enzyme. This specificity is particularly important if the enzyme is present with other enzymes with a similar catalytic mechanism and substrate specificity but completely different functionality. The cross‐reactivity of substrates, inhibitors and activity‐based probes with other enzymes can significantly impair or even prevent investigations of a target protease. In this review, we describe important concepts and the latest challenges, focusing mainly on peptide‐based substrate specificity techniques used to distinguish individual enzymes within major protease families.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
11
|
Proctor A, Zigoneanu IG, Wang Q, Sims CE, Lawrence DS, Allbritton NL. Development of a protease-resistant reporter to quantify BCR-ABL activity in intact cells. Analyst 2016; 141:6008-6017. [PMID: 27704073 PMCID: PMC5111365 DOI: 10.1039/c6an01378c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A peptidase-resistant ABL kinase substrate was developed by identifying protease-susceptible bonds on an ABL substrate peptide and replacing flanking amino acids with non-native amino acids. After an iterative design process, the lead, or designed, peptide X-A possesses a six-fold longer life in a cytosolic lysate than that of the starting peptide. The catalytic efficiency (kcat/KM) of purified ABL kinase for the lead peptide (125 s-1 μM-1) is similar to that of the starting peptide (103 s-1 μM-1) demonstrating preservation of the peptide's ability to serve as a kinase substrate. When incubated in cytosolic lysates, the lead peptide is slowly degraded into 4 fragments over time. In contrast, when loaded into intact cells, the peptide is metabolized into 5 fragments, with only 2 of the fragments corresponding to those in the lysate. Thus the two environments possess differing peptidase activities, which must be accounted for when designing peptidase-resistant peptides. In both settings, the substrate is phosphorylated by BCR-ABL providing a readout of BCR-ABL activity. A small panel of tyrosine kinase inhibitors verified the substrate's specificity for BCR-ABL/ABL kinase activity in both lysates and cells in spite of the multitude of other kinases present. The designed peptide X-A acts as a long-lived BCR-ABL kinase reporter in the leukemic cells possessing the BCR-ABL mutation.
Collapse
Affiliation(s)
- Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Imola G Zigoneanu
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA, and North Carolina State University, Raleigh, NC, 27695, USA
| | - Qunzhao Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Christopher E Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David S Lawrence
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nancy L Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA, and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
12
|
Corbi-Verge C, Garton M, Nim S, Kim PM. Strategies to Develop Inhibitors of Motif-Mediated Protein-Protein Interactions as Drug Leads. Annu Rev Pharmacol Toxicol 2016; 57:39-60. [PMID: 27618737 DOI: 10.1146/annurev-pharmtox-010716-104805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions are fundamental for virtually all functions of the cell. A large fraction of these interactions involve short peptide motifs, and there has been increased interest in targeting them using peptide-based therapeutics. Peptides benefit from being specific, relatively safe, and easy to produce. They are also easy to modify using chemical synthesis and molecular biology techniques. However, significant challenges remain regarding the use of peptides as therapeutic agents. Identification of peptide motifs is difficult, and peptides typically display low cell permeability and sensitivity to enzymatic degradation. In this review, we outline the principal high-throughput methodologies for motif discovery and describe current methods for overcoming pharmacokinetic and bioavailability limitations.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Michael Garton
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , , .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
13
|
Abstract
Caspases are proteases that are essential components of apoptotic cell death pathways. There are approximately one dozen apoptotic caspases found in organisms where cells die via apoptosis. These caspases are responsible for initiation or execution of apoptosis through the proteolytic cleavage of specific substrates. These substrates contain specific motifs that are recognized and cleaved by caspases that result in alterations of substrate function that promotes the apoptotic phenotype. Analysis of caspase involvement, much like any other protease, can be followed using peptides corresponding to cleavage motifs of these substrates, which can be used as substrates, inhibitors, or affinity-based probes.Different caspases have different substrates and therefore different motifs are recognized by each different caspase. However, these different caspases have a common amino acid recognition pattern containing an aspartic acid residue at the amino-side of the cleavage site. Therefore, caspase substrates have a certain overlap in the cleavage motif as this aspartic acid is found in almost every one. This means that certain peptide motifs are not exclusively cleaved by one single caspase. This lack of exclusive cleavage has brought the use of these motif-based probes into question and spurred the development of truly caspase-specific motifs. This chapter describes the use of peptide-based probes to measure caspase activity while highlighting the limitations of these reagents.
Collapse
Affiliation(s)
- Gavin P McStay
- Department of Life Sciences, New York Institute of Technology, 432 Theobald Science Center, Northern Boulevard, Old Westbury, NY, 11568, USA.
| |
Collapse
|
14
|
Zhou H, Wang Q, Yuan D, Wang J, Huang Y, Wu H, Jian J, Yang D, Huang N, Haisch C, Jiang Z, Chen S. Early apoptosis real-time detection by label-free SERS based on externalized phosphatidylserine. Analyst 2016; 141:4293-8. [PMID: 27181439 DOI: 10.1039/c6an00606j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Early apoptosis real-time detection by label-free SERS based on externalized phosphatidylserine usingin situsynthesized silver nanoparticles.
Collapse
|
15
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
16
|
Wang AY, González-Páez GE, Wolan DW. Identification and Co-complex Structure of a New S. pyogenes SpeB Small Molecule Inhibitor. Biochemistry 2015; 54:4365-73. [PMID: 26132413 DOI: 10.1021/acs.biochem.5b00607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The secreted Streptococcus pyogenes cysteine protease SpeB is implicated in host immune system evasion and bacterial virulence. We present a small molecule inhibitor of SpeB 2477 identified from a high-throughput screen based on the hydrolysis of a fluorogenic peptide substrate Ac-AIK-AMC. 2477 inhibits other SpeB-related proteases but not human caspase-3, suggesting that the molecule targets proteases with the papain-like structural fold. A 1.59 Å X-ray crystal structure of 2477 bound to the SpeB active site reveals the mechanism of inhibition and the essential constituents of 2477 necessary for binding. An assessment against a panel of 2477 derivatives confirms our structural findings and shows that a carbamate and nitrile on 2477 are required for SpeB inhibition, as these moieties provide an extensive network of electrostatic and hydrogen-bonding interactions with SpeB active site residues. Surprisingly, despite 2477 having a reduced inhibitory potential against papain, the majority of 2477-related compounds inhibit papain to a much greater and broader extent than SpeB. These findings indicate that SpeB is more stringently selective than papain for this panel of small molecule inhibitors. On the basis of our structural and biochemical characterization, we propose modifications to 2477 for subsequent rounds of inhibitor design that will impart specificity to SpeB over other papain-like proteases, including alterations of the compound to exploit the differences in CA protease active site pocket sizes and electrostatics.
Collapse
Affiliation(s)
- Ana Y Wang
- Departments of Molecular and Experimental Medicine and Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Gonzalo E González-Páez
- Departments of Molecular and Experimental Medicine and Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dennis W Wolan
- Departments of Molecular and Experimental Medicine and Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|