1
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Roman G. Thiophene-containing compounds with antimicrobial activity. Arch Pharm (Weinheim) 2022; 355:e2100462. [PMID: 35289443 DOI: 10.1002/ardp.202100462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Thiophene, as a member of the group of five-membered heterocycles containing one heteroatom, is one of the simplest heterocyclic systems. Many synthetic strategies allow the accurate positioning of various functionalities onto the thiophene ring. This review provides a comprehensive, systematic and detailed account of the developments in the field of antimicrobial compounds featuring at least one thiophene ring in their structure, over the last decade.
Collapse
Affiliation(s)
- Gheorghe Roman
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Iaşi, Romania
| |
Collapse
|
3
|
Phạm TTT, Rainey JK. On-cell nuclear magnetic resonance spectroscopy to probe cell surface interactions. Biochem Cell Biol 2021; 99:683-692. [PMID: 33945753 DOI: 10.1139/bcb-2021-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy allows determination of atomic-level information about intermolecular interactions, molecular structure, and molecular dynamics in the cellular environment. This may be broadly divided into studies focused on obtaining detailed molecular information in the intracellular context ("in-cell") or those focused on characterizing molecules or events at the cell surface ("on-cell"). In this review, we outline some key NMR techniques applied for on-cell NMR studies through both solution-state and solid-state NMR and survey studies that have used these techniques to uncover key information. We particularly focus on application of on-cell NMR spectroscopy to characterize ligand interactions with cell surface membrane proteins such as G-protein coupled receptors (GPCRs), receptor tyrosine kinases, etc. These techniques allow for quantification of binding affinities, competitive binding assays, delineation of portions of ligands involved in binding, ligand bound-state conformational determination, evaluation of receptor structuring and dynamics, and inference of distance constraints characteristic of the ligand-receptor bound state. Excitingly, it is possible to avoid the barriers of production and purification of membrane proteins while obtaining directly physiologically-relevant information through on-cell NMR. We also provide a briefer survey of the applicability of on-cell NMR approaches to other classes of cell surface molecule.
Collapse
Affiliation(s)
- Trần Thanh Tâm Phạm
- Dalhousie University, 3688, Department of Biochemistry & Molecular Biology, Halifax, Nova Scotia, Canada;
| | - Jan K Rainey
- Dalhousie University, 3688, Department of Biochemistry & Molecular Biology, Halifax, Canada;
| |
Collapse
|
4
|
Applications of Solution NMR in Drug Discovery. Molecules 2021; 26:molecules26030576. [PMID: 33499337 PMCID: PMC7865596 DOI: 10.3390/molecules26030576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.
Collapse
|
5
|
Haupenthal J, Kautz Y, Elgaher WAM, Pätzold L, Röhrig T, Laschke MW, Tschernig T, Hirsch AKH, Molodtsov V, Murakami KS, Hartmann RW, Bischoff M. Evaluation of Bacterial RNA Polymerase Inhibitors in a Staphylococcus aureus-Based Wound Infection Model in SKH1 Mice. ACS Infect Dis 2020; 6:2573-2581. [PMID: 32886885 DOI: 10.1021/acsinfecdis.0c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wounds infected with pathogens such as Staphylococcus aureus represent a worldwide health concern, especially in patients with a compromised immune system. As antimicrobial resistance has become an immense global problem, novel antibiotics are urgently needed. One strategy to overcome this threatening situation is the search for drugs targeting novel binding sites on essential and validated enzymes such as the bacterial RNA polymerase (RNAP). In this work, we describe the establishment of an in vivo wound infection model based on the pathogen S. aureus and hairless Crl:SKH1-Hrhr (SKH1) mice. The model proved to be a valuable preclinical tool to study selected RNAP inhibitors after topical application. While rifampicin showed a reduction in the loss of body weight induced by the bacteria, an acceleration of wound healing kinetics, and a reduced number of colony forming units in the wound, the ureidothiophene-2-carboxylic acid 1 was inactive under in vivo conditions, probably due to strong plasma protein binding. The cocrystal structure of compound 1 with RNAP, that we hereby also present, will be of great value for applying appropriate structural modifications to further optimize the compound, especially in terms of plasma protein binding.
Collapse
Affiliation(s)
- Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Yannik Kautz
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Saarland, Germany
| | - Walid A. M. Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Linda Pätzold
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Saarland, Germany
| | - Teresa Röhrig
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Saarland, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Saarland, Germany
| | - Anna K. H. Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Vadim Molodtsov
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rolf W. Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)−Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Saarland, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Saarland, Germany
| |
Collapse
|
6
|
Harbottle J, Zenkin N. Ureidothiophene inhibits interaction of bacterial RNA polymerase with -10 promotor element. Nucleic Acids Res 2020; 48:7914-7923. [PMID: 32652039 PMCID: PMC7430646 DOI: 10.1093/nar/gkaa591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 01/25/2023] Open
Abstract
Bacterial RNA polymerase is a potent target for antibiotics, which utilize a plethora of different modes of action, some of which are still not fully understood. Ureidothiophene (Urd) was found in a screen of a library of chemical compounds for ability to inhibit bacterial transcription. The mechanism of Urd action is not known. Here, we show that Urd inhibits transcription at the early stage of closed complex formation by blocking interaction of RNA polymerase with the promoter -10 element, while not affecting interactions with -35 element or steps of transcription after promoter closed complex formation. We show that mutation in the region 1.2 of initiation factor σ decreases sensitivity to Urd. The results suggest that Urd may directly target σ region 1.2, which allosterically controls the recognition of -10 element by σ region 2. Alternatively, Urd may block conformational changes of the holoenzyme required for engagement with -10 promoter element, although by a mechanism distinct from that of antibiotic fidaxomycin (lipiarmycin). The results suggest a new mode of transcription inhibition involving the regulatory domain of σ subunit, and potentially pinpoint a novel target for development of new antibacterials.
Collapse
Affiliation(s)
- John Harbottle
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
7
|
Vaid TM, Chalmers DK, Scott DJ, Gooley PR. INPHARMA-Based Determination of Ligand Binding Modes at α 1 -Adrenergic Receptors Explains the Molecular Basis of Subtype Selectivity. Chemistry 2020; 26:11796-11805. [PMID: 32291801 DOI: 10.1002/chem.202000642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Indexed: 01/06/2023]
Abstract
The structural poses of ligands that bind weakly to protein receptors are challenging to define. In this work we have studied ligand interactions with the adrenoreceptor (AR) subtypes, α1A -AR and α1B -AR, which belong to the G protein-coupled receptor (GPCR) superfamily, by employing the solution-based ligand-observed NMR method interligand NOEs for pharmacophore mapping (INPHARMA). A lack of receptor crystal structures and of subtype-selective drugs has hindered the definition of the physiological roles of each subtype and limited drug development. We determined the binding pose of the weakly binding α1A -AR-selective agonist A-61603 relative to an endogenous agonist, epinephrine, at both α1A -AR and α1B -AR. The NMR experimental data were quantitatively compared, by using SpINPHARMA, to the back-calculated spectra based on ligand poses obtained from all-atom molecular dynamics simulations. The results helped mechanistically explain the selectivity of (R)-A-61603 towards α1A -AR, thus demonstrating an approach for targeting subtype selectivity in ARs.
Collapse
Affiliation(s)
- Tasneem M Vaid
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, 3010, VIC, Australia.,Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, 3010, VIC, Australia.,The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, 3015, VIC, Australia
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, VIC, Australia
| | - Daniel J Scott
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, 3010, VIC, Australia.,The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, 3015, VIC, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, 3010, VIC, Australia.,Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, 3010, VIC, Australia
| |
Collapse
|
8
|
Huang MH, Kong B, Meng JY, Lv YB, Peng YF, Chen YP, Tan XD. Discovery of novel N-aryl pyrrothine derivatives as bacterial RNA polymerase inhibitors. Chem Biol Drug Des 2020; 96:1262-1271. [PMID: 32491252 DOI: 10.1111/cbdd.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 11/29/2022]
Abstract
Bacterial RNA polymerase (RNAP) is a validated drug target for broad-spectrum antibiotics, and its "switch region" is considered as the promising binding site for novel antibiotics. Based on the core scaffold of dithiolopyrrolone, a series of N-aryl pyrrothine derivatives was designed, synthesized, and evaluated for their antibacterial activity. Compounds generally displayed more active against Gram-positive bacteria, but less against Gram-negative bacteria. Among them, compound 6e exhibited moderate antibacterial activity against clinical isolates of rifampin-resistant Staphylococcus aureus with minimum inhibition concentration value of 1-2 μg/ml and inhibited Escherichia coli RNAP with IC50 value of 12.0 ± 0.9 μM. In addition, compound 6e showed certain degree of cytotoxicity against HepG2 and LO2 cells. Furthermore, molecular docking studies suggested that compound 6e might interact with the switch region of bacterial RNAP in a similar conformation to myxopyronin A. Together, the N-aryl pyrrothine scaffold is a promising lead for discovery of antibacterial drugs acting against bacterial RNAP.
Collapse
Affiliation(s)
- Mo-Han Huang
- College of Pharmacy, Guilin Medical University, Guilin, China.,Department of Pharmacy, Liuzhou People's Hospital, Liuzhou, China
| | - Bo Kong
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jie-Yun Meng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yu-Bin Lv
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yan-Fen Peng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yi-Ping Chen
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Xiang-Duan Tan
- College of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
9
|
Bacteriophage gene products as potential antimicrobials against tuberculosis. Biochem Soc Trans 2019; 47:847-860. [PMID: 31085613 DOI: 10.1042/bst20180506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
Tuberculosis (TB) is recognised as one of the most pressing global health threats among infectious diseases. Bacteriophages are adapted for killing of their host, and they were exploited in antibacterial therapy already before the discovery of antibiotics. Antibiotics as broadly active drugs overshadowed phage therapy for a long time. However, owing to the rapid spread of antibiotic resistance and the increasing complexity of treatment of drug-resistant TB, mycobacteriophages are being studied for their antimicrobial potential. Besides phage therapy, which is the administration of live phages to infected patients, the development of drugs of phage origin is gaining interest. This path of medical research might provide us with a new pool of previously undiscovered inhibition mechanisms and molecular interactions which are also of interest in basic research of cellular processes, such as transcription. The current state of research on mycobacteriophage-derived anti-TB treatment is reviewed in comparison with inhibitors from other phages, and with focus on transcription as the host target process.
Collapse
|
10
|
Polshakov VI, Batuev EA, Mantsyzov AB. NMR screening and studies of target–ligand interactions. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Ángeles Canales M, Félix Espinosa J. Ligand-detected NMR Methods in Drug Discovery. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This book chapter describes the basic principles of NMR-based techniques for detecting ligand binding and uses examples of the application of these techniques in drug discovery programs for screening, hit validation and optimization to illustrate their utility in characterizing ligand–protein interactions. The binding of small molecules to biological receptors can be observed directly by detecting changes in a particular NMR parameter when the protein is added to a sample containing the ligand, or indirectly, using a “spy” molecule in competitive NMR experiments. Combinations of different NMR experiments can be used to confirm binding and also to obtain structural information that can be used to guide medicinal chemistry decisions. Ligand-observed NMR methods are able to identify weak affinity ligands that cannot be detected by other biophysical techniques, which means that NMR-based methods are extremely valuable tools for fragment-based drug discovery approaches.
Collapse
Affiliation(s)
- María Ángeles Canales
- Department of Química Orgánica I, Universidad Complutense de Madrid Avd. Complutense s/n 28040 Madrid Spain
| | - Juan Félix Espinosa
- Centro de Investigación Lilly Avda. de la Industria 30 28108, Alcobendas, Madrid Spain
| |
Collapse
|
12
|
Harner MJ, Mueller L, Robbins KJ, Reily MD. NMR in drug design. Arch Biochem Biophys 2017; 628:132-147. [DOI: 10.1016/j.abb.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/09/2023]
|
13
|
Elgaher WAM, Sharma KK, Haupenthal J, Saladini F, Pires M, Real E, Mély Y, Hartmann RW. Discovery and Structure-Based Optimization of 2-Ureidothiophene-3-carboxylic Acids as Dual Bacterial RNA Polymerase and Viral Reverse Transcriptase Inhibitors. J Med Chem 2016; 59:7212-22. [PMID: 27339173 DOI: 10.1021/acs.jmedchem.6b00730] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We are concerned with the development of novel anti-infectives with dual antibacterial and antiretroviral activities for MRSA/HIV-1 co-infection. To achieve this goal, we exploited for the first time the mechanistic function similarity between the bacterial RNA polymerase (RNAP) "switch region" and the viral non-nucleoside reverse transcriptase inhibitor (NNRTI) binding site. Starting from our previously discovered RNAP inhibitors, we managed to develop potent RT inhibitors effective against several resistant HIV-1 strains with maintained or enhanced RNAP inhibitory properties following a structure-based design approach. A quantitative structure-activity relationship (QSAR) analysis revealed distinct molecular features necessary for RT inhibition. Furthermore, mode of action (MoA) studies revealed that these compounds inhibit RT noncompetitively, through a new mechanism via closing of the RT clamp. In addition, the novel RNAP/RT inhibitors are characterized by a potent antibacterial activity against S. aureus and in cellulo antiretroviral activity against NNRTI-resistant strains. In HeLa and HEK 293 cells, the compounds showed only marginal cytotoxicity.
Collapse
Affiliation(s)
- Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); and Pharmaceutical and Medicinal Chemistry, Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| | - Kamal K Sharma
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); and Pharmaceutical and Medicinal Chemistry, Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena , Viale Mario Bracci 16, 53100 Siena, Italy
| | - Manuel Pires
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); and Pharmaceutical and Medicinal Chemistry, Saarland University , Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Molodtsov V, Fleming PR, Eyermann CJ, Ferguson AD, Foulk MA, McKinney DC, Masse CE, Buurman ET, Murakami KS. X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J Med Chem 2015; 58:3156-71. [PMID: 25798859 DOI: 10.1021/acs.jmedchem.5b00050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Squaramides constitute a novel class of RNA polymerase inhibitors of which genetic evidence and computational modeling previously have suggested an inhibitory mechanism mediated by binding to the RNA polymerase switch region. An iterative chemistry program increased the fraction unbound to human plasma protein from below minimum detection levels, i.e., <1% to 4-6%, while retaining biochemical potency. Since in vitro antimicrobial activity against an efflux-negative strain of Haemophilus influenzae was 4- to 8-fold higher, the combined improvement was at least 20- to 60-fold. Cocrystal structures of Escherichia coli RNA polymerase with two key squaramides showed displacement of the switch 2, predicted to interfere with the conformational change of the clamp domain and/or with binding of template DNA, a mechanism akin to that of natural product myxopyronin. Furthermore, the structures confirmed the chemical features required for biochemical potency. The terminal isoxazole and benzyl rings bind into distinct relatively narrow, hydrophobic pockets, and both are required for biochemical potency. In contrast, the linker composed of squarate and piperidine accesses different conformations in their respective cocrystal structures with RNA polymerase, reflecting its main role of proper orientation of the aforementioned terminal rings. These observations further explain the tolerance of hydrophilic substitutions in the linker region that was exploited to improve the fraction unbound to human plasma protein while retaining biochemical potency.
Collapse
Affiliation(s)
- Vadim Molodtsov
- †Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | - Craig E Masse
- ⊥Nimbus Therapeutics, Inc., Cambridge, Massachusetts 02141, United States
| | | | - Katsuhiko S Murakami
- †Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Surface plasmon resonance – more than a screening technology: insights in the binding mode of σ70:core RNAP inhibitors. Future Med Chem 2014; 6:1551-65. [DOI: 10.4155/fmc.14.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Antibiotic resistance has become a major health problem. The σ70:core interface of bacterial RNA polymerase is a promising drug target. Recently, the coiled-coil and lid-rudder-system of the β’ subunit has been identified as an inhibition hot spot. Materials & methods & Results: By using surface plasmon resonance-based assays, inhibitors of the protein–protein interaction were identified and competition with σ70 was shown. Effective inhibition was verified in an in vitro transcription and a σ70:core assembly assay. For one hit series, we found a correlation between activity and affinity. Mutant interaction studies suggest the inhibitors’ binding site. Conclusion: Surface plasmon resonance is a valuable technology in drug design, that has been used in this study to identify and evaluate σ70:core RNA polymerase inhibitors.
Collapse
|