1
|
Mukherjee MM, Bond MR, Abramowitz LK, Biesbrock D, Woodroofe CC, Kim EJ, Swenson RE, Hanover JA. Tools and tactics to define specificity of metabolic chemical reporters. Front Mol Biosci 2023; 10:1286690. [PMID: 38143802 PMCID: PMC10740162 DOI: 10.3389/fmolb.2023.1286690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Metabolic chemical reporters (MCRs) provide easily accessible means to study glycans in their native environments. However, because monosaccharide precursors are shared by many glycosylation pathways, selective incorporation has been difficult to attain. Here, a strategy for defining the selectivity and enzymatic incorporation of an MCR is presented. Performing β-elimination to interrogate O-linked sugars and using commercially available glycosidases and glycosyltransferase inhibitors, we probed the specificity of widely used azide (Ac4GalNAz) and alkyne (Ac4GalNAlk and Ac4GlcNAlk) sugar derivatives. Following the outlined strategy, we provide a semiquantitative assessment of the specific and non-specific incorporation of this bioorthogonal sugar (Ac4GalNAz) into numerous N- and O-linked glycosylation pathways. This approach should be generally applicable to other MCRs to define the extent of incorporation into the various glycan species.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michelle R. Bond
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lara K. Abramowitz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Devin Biesbrock
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carolyn C. Woodroofe
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, MD, United States
| | - Eun Ju Kim
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - Rolf E. Swenson
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
3
|
Tian Y, Zhu Q, Sun Z, Geng D, Lin B, Su X, He J, Guo M, Xu H, Zhao Y, Qin W, Wang PG, Wen L, Yi W. One‐Step Enzymatic Labeling Reveals a Critical Role of O‐GlcNAcylation in Cell‐Cycle Progression and DNA Damage Response. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yinping Tian
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Jiahui He
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Miao Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Weijie Qin
- National Center for Protein Sciences Beijing State Key Laboratory of Proteomics, Beijing Proteome Research Center Beijing Institute of Lifeomics Beijing China
| | - Peng George Wang
- School of Medicine Southern University of Science and Technology Shenzhen China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| |
Collapse
|
4
|
Tian Y, Zhu Q, Sun Z, Geng D, Lin B, Su X, He J, Guo M, Xu H, Zhao Y, Qin W, Wang PG, Wen L, Yi W. One-Step Enzymatic Labeling Reveals a Critical Role of O-GlcNAcylation in Cell-Cycle Progression and DNA Damage Response. Angew Chem Int Ed Engl 2021; 60:26128-26135. [PMID: 34590401 DOI: 10.1002/anie.202110053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/26/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous post-translational modification of proteins that is essential for cell function. Perturbation of O-GlcNAcylation leads to altered cell-cycle progression and DNA damage response. However, the underlying mechanisms are poorly understood. Here, we develop a highly sensitive one-step enzymatic strategy for capture and profiling O-GlcNAcylated proteins in cells. Using this strategy, we discover that flap endonuclease 1 (FEN1), an essential enzyme in DNA synthesis, is a novel substrate for O-GlcNAcylation. FEN1 O-GlcNAcylation is dynamically regulated during the cell cycle. O-GlcNAcylation at the serine 352 of FEN1 disrupts its interaction with Proliferating Cell Nuclear Antigen (PCNA) at the replication foci, and leads to altered cell cycle, defects in DNA replication, accumulation of DNA damage, and enhanced sensitivity to DNA damage agents. Thus, our study provides a sensitive method for profiling O-GlcNAcylated proteins, and reveals an unknown mechanism of O-GlcNAcylation in regulating cell cycle progression and DNA damage response.
Collapse
Affiliation(s)
- Yinping Tian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahui He
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Miao Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wang J, Dou B, Zheng L, Cao W, Zeng X, Wen Y, Ma J, Li X. Synthesis of Na 2S 2O 4 mediated cleavable affinity tag for labeling of O-GlcNAc modified proteins via azide-alkyne cycloaddition. Bioorg Med Chem Lett 2021; 48:128244. [PMID: 34229054 DOI: 10.1016/j.bmcl.2021.128244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/22/2023]
Abstract
A facile and convergent procedure for the synthesis of azobenzene-based probe was reported, which could selectively release interested proteins conducted with sodium dithionite. Besides, the cleavage efficiency is closely associated with the structural features, in which an ortho-hydroxyl substituent is necessary for reactivity. In addition, the azobenzene tag applied in the Ac4GlcNAz-labled proteins demonstrated high efficiency and selectivity in comparison with Biotin-PEG4-Alkyne, which provides a useful platform for enrichment of any desired bioorthogonal proteomics.
Collapse
Affiliation(s)
- Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Biao Dou
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Lu Zheng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Wei Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Xueke Zeng
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Yinhang Wen
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China
| | - Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, 475004 Kaifeng, China.
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medicine Science, Henan University, 475004 Kaifeng, China.
| |
Collapse
|
6
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
7
|
Design and synthesis of a highly efficient labelling reagent for incorporation of tetrafluorinated aromatic azide into proteins. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zimmermann M, Ehret J, Kolmar H, Zimmer A. Impact of Acetylated and Non-Acetylated Fucose Analogues on IgG Glycosylation. Antibodies (Basel) 2019; 8:antib8010009. [PMID: 31544815 PMCID: PMC6640710 DOI: 10.3390/antib8010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 12/14/2022] Open
Abstract
The biological activity of therapeutic antibodies is highly influenced by their glycosylation profile. A valuable method for increasing the cytotoxic efficacy of antibodies, which are used, for example, in cancer treatment, is the reduction of core fucosylation, as this enhances the elimination of target cells through antibody-dependent cell-mediated cytotoxicity. Development of fucose analogues is currently the most promising strategy to reduce core fucosylation without cell line engineering. Since peracetylated sugars display enhanced cell permeability over the highly polar free hydroxy sugars, this work sought to compare the efficacy of peracetylated sugars to their unprotected forms. Two potent fucose analogues, 2-deoxy-2-fluorofucose and 5-alkynylfucose, and their acetylated forms were compared for their effects on fucosylation. 5-alkynylfucose proved to be more potent than 2-deoxy-2-fluorofucose at reducing core fucosylation but was associated with a significant higher incorporation of the alkynylated fucose analogue. Acetylation of the sugar yielded only slightly lower fucosylation levels suggesting that acetylation has a minor impact on cellular entry. Even though the efficacy of all tested components was confirmed, results presented in this study also show a significant incorporation of unnatural fucose analogues into the glycosylation pattern of the produced IgG, with unknown effect on safety and potency of the monoclonal antibody.
Collapse
Affiliation(s)
- Martina Zimmermann
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany.
| | - Janike Ehret
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany.
| | - Aline Zimmer
- Merck Life Sciences, Upstream R&D, Frankfurter Strasse 250, 64293 Darmstadt, Germany.
| |
Collapse
|
9
|
Walter LA, Batt AR, Darabedian N, Zaro BW, Pratt MR. Azide- and Alkyne-Bearing Metabolic Chemical Reporters of Glycosylation Show Structure-Dependent Feedback Inhibition of the Hexosamine Biosynthetic Pathway. Chembiochem 2018; 19:1918-1921. [PMID: 29979493 PMCID: PMC6261355 DOI: 10.1002/cbic.201800280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/18/2022]
Abstract
Metabolic chemical reporters (MCRs) of protein glycosylation are analogues of natural monosaccharides that bear reactive groups, like azides and alkynes. When they are added to living cells and organisms, these small molecules are biosynthetically transformed into nucleotide donor sugars and then used by glycosyltransferases to modify proteins. Subsequent installation of tags by bioorthogonal chemistries can then enable the visualization and enrichment of these glycoproteins. Although this two-step procedure is powerful, the use of MCRs has the potential to change the endogenous production of the natural repertoire of donor sugars. A major route for the generation of these glycosyltransferase substrates is the hexosamine biosynthetic pathway (HBP), which results in uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). Interestingly, the rate-determining enzyme of the HBP, glutamine fructose-6-phosphate amidotransferase (GFAT), is feedback inhibited by UDP-GlcNAc. This raises the possibility that a build-up of UDP-MCRs would block the biosynthesis of UDP-GlcNAc, resulting in off target effects. Here, we directly test this possibility with recombinant human GFAT and a small panel of synthetic UDP-MCRs. We find that MCRs with larger substitutions at the N-acetyl position do not inhibit GFAT, whereas those with modifications of the 2- or 6-hydroxy group do. These results further illuminate the considerations that should be applied to the use of MCRs.
Collapse
Affiliation(s)
- Lisa A. Walter
- Department of Chemistry, University of Southern California 840 Downey Way, LJS 250, Los Angeles, CA, 90089 (USA)
| | - Anna R. Batt
- Department of Chemistry, University of Southern California 840 Downey Way, LJS 250, Los Angeles, CA, 90089 (USA)
| | - Narek Darabedian
- Department of Chemistry, University of Southern California 840 Downey Way, LJS 250, Los Angeles, CA, 90089 (USA)
| | - Balyn W. Zaro
- Department of Chemistry, University of Southern California 840 Downey Way, LJS 250, Los Angeles, CA, 90089 (USA)
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California 840 Downey Way, LJS 250, Los Angeles, CA, 90089 (USA)
- Department of Biological Sciences, University of Southern California 840 Downey Way, LJS 250, Los Angeles, CA, 90089 (USA)
| |
Collapse
|
10
|
Darabedian N, Gao J, Chuh KN, Woo CM, Pratt MR. The Metabolic Chemical Reporter 6-Azido-6-deoxy-glucose Further Reveals the Substrate Promiscuity of O-GlcNAc Transferase and Catalyzes the Discovery of Intracellular Protein Modification by O-Glucose. J Am Chem Soc 2018; 140:7092-7100. [PMID: 29771506 PMCID: PMC6540071 DOI: 10.1021/jacs.7b13488] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolic chemical reporters of glycosylation in combination with bioorthogonal reactions have been known for two decades and have been used by many different research laboratories for the identification and visualization of glycoconjugates. More recently, however, they have begun to see utility for the investigation of cellular metabolism and the tolerance of biosynthetic enzymes and glycosyltransferases to different sugars. Here, we take this concept one step further by using the metabolic chemical reporter 6-azido-6-deoxy-glucose (6AzGlc). We show that treatment of mammalian cells with the per- O-acetylated version of 6AzGlc results in robust labeling of a variety of proteins. Notably, the pattern of this labeling was consistent with O-GlcNAc modifications, suggesting that the enzyme O-GlcNAc transferase is quite promiscuous for its donor sugar substrates. To confirm this possibility, we show that 6AzGlc-treatment results in the labeling of known O-GlcNAcylated proteins, that the UDP-6AzGlc donor sugar is indeed produced in living cells, and that recombinant OGT will accept UDP-6AzGlc as a substrate in vitro. Finally, we use proteomics to first identify several bona fide 6AzGlc-modifications in mammalian cells and then an endogenous O-glucose modification on host cell factor. These results support the conclusion that OGT can endogenously modify proteins with both N-acetyl-glucosamine and glucose, raising the possibility that intracellular O-glucose modification may be a widespread modification under certain conditions or in particular tissues.
Collapse
Affiliation(s)
- Narek Darabedian
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jinxu Gao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kelly N. Chuh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Sinclair WR, Shrimp JH, Zengeya TT, Kulkarni RA, Garlick JM, Luecke H, Worth AJ, Blair IA, Snyder NW, Meier JL. Bioorthogonal pro-metabolites for profiling short chain fatty acylation. Chem Sci 2017; 9:1236-1241. [PMID: 29675169 PMCID: PMC5885804 DOI: 10.1039/c7sc00247e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
A systematically designed panel of biorthogonal pro-metabolites was synthesized and evaluated as agents for tracing cellular short chain fatty acylation.
Short chain fatty acids (SCFAs) play a central role in health and disease. One function of these signaling molecules is to serve as precursors for short chain fatty acylation, a class of metabolically-derived posttranslational modifications (PTMs) that are established by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Via this mechanism, short chain fatty acylation serves as an integrated reporter of metabolism as well as KAT and KDAC activity, and has the potential to illuminate the role of these processes in disease. However, few methods to study short chain fatty acylation exist. Here we report a bioorthogonal pro-metabolite strategy for profiling short chain fatty acylation in living cells. Inspired by the dietary component tributyrin, we synthesized a panel of ester-caged bioorthogonal short chain fatty acids. Cellular evaluation of these agents led to the discovery of an azido-ester that is metabolized to its cognate acyl-coenzyme A (CoA) and affords robust protein labeling profiles. We comprehensively characterize the metabolic dependence, toxicity, and histone deacetylase (HDAC) inhibitor sensitivity of these bioorthogonal pro-metabolites, and apply an optimized probe to identify novel candidate protein targets of short chain fatty acids in cells. Our studies showcase the utility of bioorthogonal pro-metabolites for unbiased profiling of cellular protein acylation, and suggest new approaches for studying the signaling functions of SCFAs in differentiation and disease.
Collapse
Affiliation(s)
- Wilson R Sinclair
- Chemical Biology Laboratory , Center for Cancer Research , National Cancer Institute , National Institutes of Health , Frederick , MD 21702 , USA .
| | - Jonathan H Shrimp
- Chemical Biology Laboratory , Center for Cancer Research , National Cancer Institute , National Institutes of Health , Frederick , MD 21702 , USA .
| | - Thomas T Zengeya
- Chemical Biology Laboratory , Center for Cancer Research , National Cancer Institute , National Institutes of Health , Frederick , MD 21702 , USA .
| | - Rhushikesh A Kulkarni
- Chemical Biology Laboratory , Center for Cancer Research , National Cancer Institute , National Institutes of Health , Frederick , MD 21702 , USA .
| | - Julie M Garlick
- Chemical Biology Laboratory , Center for Cancer Research , National Cancer Institute , National Institutes of Health , Frederick , MD 21702 , USA .
| | - Hans Luecke
- National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , MD 20817 , USA
| | - Andrew J Worth
- Penn SRP Center , Center for Excellence in Environmental Toxicology , University of Pennsylvania , Philadelphia , PA 19104 , USA
| | - Ian A Blair
- Penn SRP Center , Center for Excellence in Environmental Toxicology , University of Pennsylvania , Philadelphia , PA 19104 , USA
| | - Nathaniel W Snyder
- Drexel University , A.J. Drexel Autism Institute , 3020 Market St , Philadelphia , PA 19104 , USA
| | - Jordan L Meier
- Chemical Biology Laboratory , Center for Cancer Research , National Cancer Institute , National Institutes of Health , Frederick , MD 21702 , USA .
| |
Collapse
|
12
|
Kizuka Y, Nakano M, Yamaguchi Y, Nakajima K, Oka R, Sato K, Ren CT, Hsu TL, Wong CH, Taniguchi N. An Alkynyl-Fucose Halts Hepatoma Cell Migration and Invasion by Inhibiting GDP-Fucose-Synthesizing Enzyme FX, TSTA3. Cell Chem Biol 2017; 24:1467-1478.e5. [PMID: 29033318 DOI: 10.1016/j.chembiol.2017.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/30/2017] [Accepted: 08/30/2017] [Indexed: 12/30/2022]
Abstract
Fucosylation is a glycan modification critically involved in cancer and inflammation. Although potent fucosylation inhibitors are useful for basic and clinical research, only a few inhibitors have been developed. Here, we focus on a fucose analog with an alkyne group, 6-alkynyl-fucose (6-Alk-Fuc), which is used widely as a detection probe for fucosylated glycans, but is also suggested for use as a fucosylation inhibitor. Our glycan analysis using lectin and mass spectrometry demonstrated that 6-Alk-Fuc is a potent and general inhibitor of cellular fucosylation, with much higher potency than the existing inhibitor, 2-fluoro-fucose (2-F-Fuc). The action mechanism was shown to deplete cellular GDP-Fuc, and the direct target of 6-Alk-Fuc is FX (encoded by TSTA3), the bifunctional GDP-Fuc synthase. We also show that 6-Alk-Fuc halts hepatoma invasion. These results highlight the unappreciated role of 6-Alk-Fuc as a fucosylation inhibitor and its potential use for basic and clinical science.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Kazuki Nakajima
- Division of Clinical Research Promotion and Support, Center for Research Promotion, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Ritsuko Oka
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Keiko Sato
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
13
|
Zaro BW, Batt AR, Chuh KN, Navarro MX, Pratt MR. The Small Molecule 2-Azido-2-deoxy-glucose Is a Metabolic Chemical Reporter of O-GlcNAc Modifications in Mammalian Cells, Revealing an Unexpected Promiscuity of O-GlcNAc Transferase. ACS Chem Biol 2017; 12:787-794. [PMID: 28135057 DOI: 10.1021/acschembio.6b00877] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glycans can be directly labeled using unnatural monosaccharide analogs, termed metabolic chemical reporters (MCRs). These compounds enable the secondary visualization and identification of glycoproteins by taking advantage of bioorthogonal reactions. Most widely used MCRs have azides or alkynes at the 2-N-acetyl position but are not selective for one class of glycoprotein over others. To address this limitation, we are exploring additional MCRs that have bioorthogonal functionality at other positions. Here, we report the characterization of 2-azido-2-deoxy-glucose (2AzGlc). We find that 2AzGlc selectively labels intracellular O-GlcNAc modifications, which further supports a somewhat unexpected, structural flexibility in this pathway. In contrast to the endogenous modification N-acetyl-glucosamine (GlcNAc), we find that 2AzGlc is not dynamically removed from protein substrates and that treatment with higher concentrations of per-acetylated 2AzGlc is toxic to cells. Finally, we demonstrate that this toxicity is an inherent property of the small-molecule, as removal of the 6-acetyl-group renders the corresponding reporter nontoxic but still results in protein labeling.
Collapse
Affiliation(s)
- Balyn W. Zaro
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Anna R. Batt
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Kelly N. Chuh
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Marisol X. Navarro
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Matthew R. Pratt
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| |
Collapse
|
14
|
Palsuledesai CC, Ochocki JD, Kuhns MM, Wang YC, Warmka JK, Chernick DS, Wattenberg EV, Li L, Arriaga EA, Distefano MD. Metabolic Labeling with an Alkyne-modified Isoprenoid Analog Facilitates Imaging and Quantification of the Prenylome in Cells. ACS Chem Biol 2016; 11:2820-2828. [PMID: 27525511 PMCID: PMC5074897 DOI: 10.1021/acschembio.6b00421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein prenylation is a post-translational modification that is responsible for membrane association and protein-protein interactions. The oncogenic protein Ras, which is prenylated, has been the subject of intense study in the past 20 years as a therapeutic target. Several studies have shown a correlation between neurodegenerative diseases including Alzheimer's disease and Parkinson's disease and protein prenylation. Here, a method for imaging and quantification of the prenylome using microscopy and flow cytometry is described. We show that metabolically incorporating an alkyne isoprenoid into mammalian cells, followed by a Cu(I)-catalyzed alkyne azide cycloaddition reaction to a fluorophore, allows for detection of prenylated proteins in several cell lines and that different cell types vary significantly in their levels of prenylated proteins. The addition of a prenyltransferase inhibitor or the precursors to the native isoprenoid substrates lowers the levels of labeled prenylated proteins. Finally, we demonstrate that there is a significantly higher (22%) level of prenylated proteins in a cellular model of compromised autophagy as compared to normal cells, supporting the hypothesis of a potential involvement of protein prenylation in abrogated autophagy. These results highlight the utility of total prenylome labeling for studies on the role of protein prenylation in various diseases including aging-related disorders.
Collapse
Affiliation(s)
- Charuta C. Palsuledesai
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joshua D. Ochocki
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michelle M. Kuhns
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yen-Chih Wang
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Janel K. Warmka
- Division
of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dustin S. Chernick
- Department
of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth V. Wattenberg
- Division
of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ling Li
- Department
of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edgar A. Arriaga
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D. Distefano
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
16
|
Doll F, Buntz A, Späte AK, Schart VF, Timper A, Schrimpf W, Hauck CR, Zumbusch A, Wittmann V. Visualisierung proteinspezifischer Glycosylierung in lebenden Zellen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201503183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Franziska Doll
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Annette Buntz
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Anne-Katrin Späte
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Verena F. Schart
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Alexander Timper
- Fachbereich Biologie und Graduate School Biological Science; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Waldemar Schrimpf
- Department Chemie und Munich Center for Integrated Protein Science and Center for Nanoscience; Ludwig-Maximilians-Universität München; Butenandtstraße 11 81377 München Deutschland
| | - Christof R. Hauck
- Fachbereich Biologie und Graduate School Biological Science; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Zumbusch
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Valentin Wittmann
- Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
17
|
Doll F, Buntz A, Späte AK, Schart VF, Timper A, Schrimpf W, Hauck CR, Zumbusch A, Wittmann V. Visualization of Protein-Specific Glycosylation inside Living Cells. Angew Chem Int Ed Engl 2016; 55:2262-6. [DOI: 10.1002/anie.201503183] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/29/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Franziska Doll
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Annette Buntz
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Anne-Katrin Späte
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Verena F. Schart
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Alexander Timper
- Department of Biology and Graduate School Biological Science; University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Waldemar Schrimpf
- Department of Chemistry and Munich Center for Integrated Protein Science and Center for Nanoscience; Ludwig-Maximilians-Universität München; Butenandtstraße 11 81377 Munich Germany
| | - Christof R. Hauck
- Department of Biology and Graduate School Biological Science; University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Zumbusch
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School, Chemical Biology (KoRS-CB); University of Konstanz; Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
18
|
Extracellular Toxoplasma gondii tachyzoites metabolize and incorporate unnatural sugars into cellular proteins. Microbes Infect 2015; 18:199-210. [PMID: 26687036 DOI: 10.1016/j.micinf.2015.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that infects all nucleated cell types in diverse warm-blooded organisms. Many of the surface antigens and effector molecules secreted by the parasite during invasion and intracellular growth are modified by glycans. Glycosylated proteins in the nucleus and cytoplasm have also been reported. Despite their prevalence, the complete inventory and biological significance of glycosylated proteins in Toxoplasma remain unknown. In this study, we aimed to globally profile parasite glycoproteins using a bioorthogonal chemical reporter strategy. This strategy involves the metabolic incorporation of unnatural functional groups (i.e., "chemical reporters") into Toxoplasma glycans, followed by covalent labeling with visual probes or affinity tags. The two-step approach enables the visualization and identification of newly biosynthesized glycoconjugates in the parasite. Using a buffer that mimics intracellular conditions, extracellular Toxoplasma tachyzoites were found to metabolize and incorporate unnatural sugars (equipped with bioorthogonal functional groups) into diverse proteins. Covalent chemistries were used to visualize and retrieve these labeled structures. Subsequent mass spectrometry analysis revealed 89 unique proteins. This survey identified novel proteins as well as previously characterized proteins from lectin affinity analyses.
Collapse
|
19
|
Pham ND, Fermaintt CS, Rodriguez AC, McCombs JE, Nischan N, Kohler JJ. Cellular metabolism of unnatural sialic acid precursors. Glycoconj J 2015; 32:515-29. [PMID: 25957566 DOI: 10.1007/s10719-015-9593-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/10/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE.
Collapse
Affiliation(s)
- Nam D Pham
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charles S Fermaintt
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrea C Rodriguez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Janet E McCombs
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
20
|
Chuh KN, Pratt MR. Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr Opin Chem Biol 2014; 24:27-37. [PMID: 25461721 DOI: 10.1016/j.cbpa.2014.10.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022]
Abstract
Thousands of proteins are subjected to posttranslational modifications that can have dramatic effects on their functions. Traditional biological methods have struggled to address some of the challenges inherit in the unbiased identification of certain posttranslational modifications. As with many areas of biological discovery, the development of chemoselective and bioorthogonal reactions and chemical probes has transformed our ability to selectively label and enrich a wide variety of posttranslational modifications. Collectively, these efforts are making significant contributions to the goal of mapping the protein modification landscape.
Collapse
Affiliation(s)
- Kelly N Chuh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744, United States; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-0744, United States.
| |
Collapse
|