1
|
Yang Q, Kaw HY, Yu J, Ma X, Yang K, Zhu L, Wang W. Basic Nitrogenous Heterocyclic Rings at the 7-Position of Fluoroquinolones Foster Their Induction of Antibiotic Resistance in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6787-6798. [PMID: 40116633 DOI: 10.1021/acs.est.4c11346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The extensive prescription of fluoroquinolone antibiotics has resulted in their ubiquitous presence in the environment, fueling the ongoing development of antibiotic resistance. Besides antibiotics, fluoroquinolone production intermediates, an overlooked category of pollutants that oftentimes possess the intact fluoroquinolone core structure, may also contribute to this public health crisis. To assess their relative potency and collectively examine the structural effects of fluoroquinolones on resistance development, wild-type Escherichia coli K12 was exposed to ten fluoroquinolone antibiotics and five intermediates at their environmentally relevant concentrations for 30 days. Phenotypic resistance alterations revealed that the absence of the C7 ring system in fluoroquinolones significantly impaired their capacity to induce resistance in E. coli, potentially due to diminished oxidative DNA damage and gyrase-mediated dsDNA breaks. Genetic and transcriptional analyses indicated that a uniform resistance mechanism emerged under both antibiotic and intermediate stress. Quantitative structure-activity relationship (QSAR) analysis further emphasized the positive impact of both basic nitrogenous heterocyclic rings at C7 (particularly the hydrogen-bond-donor pharmacophores) and aromatic rings at N1 in promoting resistance development, while highlighting the adverse effects of hydrophobic and hydrogen-bond-donor groups at N1. A robust QSAR model was developed and applied to assess the relative risks of other 105 fluoroquinolones. This study underscored the direct role of fluoroquinolone production intermediates in promoting environmental antibiotic resistance and illustrated how different structural features of fluoroquinolone pollutants will influence this process, offering theoretical insights for future antibiotic design and environmental regulation efforts.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Han Yeong Kaw
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Jing Yu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Xuejing Ma
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Kun Yang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Lizhong Zhu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Wei Wang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
2
|
Qiu Y, Mao S, Li X, Chen Y, Chen W, Wen Y, Liu P. Chinese advances in understanding and managing genitourinary tract infections caused by Mycoplasma genitalium, Mycoplasma hominis, and Ureaplasma urealyticum. Arch Microbiol 2024; 207:5. [PMID: 39607610 DOI: 10.1007/s00203-024-04204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma hominis are bacterial pathogens found in the genitourinary tract, implicated in a range of infections. In women, these infections including pelvic inflammatory disease, vaginitis, infertility, and cervical cancer, while in men, they can cause non-gonococcal urethritis, prostate cancer, among other conditions. These infections are a global health concern, with China identified as a country with a high prevalence. This review provides a comprehensive overview of the epidemiology, causative factors, and diagnostic methods for these three Mycoplasma species with in China. The rise of multi-drug resistance, driven by antibiotics overuse, poses a significant challenge to treatment, complicating patient management. These Mycoplasma species employ unique adhesion mechanisms that trigger a cascade of signal transduction, culminating to inflammatory responses, tissue damage, and the release of toxic metabolites. Here, we delineate the mechanisms of underlying Mycoplasma resistance and propose key therapeutic strategies for these three mycoplasmas in China. This includes a summary of effective antibiotic treatment strategies, and potential combinations of therapeutic to improve cure rates, and a discussion of potential therapeutic approaches using traditional Chinese medicine.
Collapse
Affiliation(s)
- Yanyan Qiu
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China
| | - Siyi Mao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China
| | - Xianqi Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China
| | - Yinan Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China
| | - Wenxin Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China.
| | - Yating Wen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China.
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang Central Hospital, Hengyang, 421001, China.
| |
Collapse
|
3
|
Liu L, Wang Y, Sun J, Zhang Y, Zhang X, Wu L, Liu Y, Zhang X, Xia Y, Zhang Q, Gao N. Improved photostability, solubility, hygroscopic stability and antimicrobial activity of fleroxacin by synthesis of fleroxacin-D-tartaric acid pharmaceutical salt. Eur J Pharm Biopharm 2024; 203:114464. [PMID: 39181416 DOI: 10.1016/j.ejpb.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
To improve the solubility of the fluoroquinolone drug fleroxacin (FL), based on the previous experience of our research group in synthesizing co-crystals/salts of quinolone drugs to improve the physicochemical properties of drugs, Fleroxacin-D-tartaric acid dihydrate salt (FL-D-TT, C17H19F3N3O3·C4H5O6·2(H2O)), was synthesized for the first time using fleroxacin and D/L-tartaric acid (D/L-TT). Structural characterization of FL-D-TT was carried out using single-crystal X-ray diffraction, infrared spectral analysis (FT-IR) and powder X-ray diffraction (PXRD). Molecular electrostatic potential analysis showed that D-tartaric acid interacted more readily with FL than L-tartaric acid. The solubility of FL-D-TT (9.71 mg/mL, 1.82 mg/mL) was significantly higher compared to FL (0.39 mg/mL, 0.71 mg/mL) in water and buffer solution at pH 7.4. This may be attributed to the formation of charge-assisted hydrogen bonds (CAHBs) between FL and D-TT that facilitates the dissociation of FL cations in the dissolution medium, leading to an increase in FL solubility. This also led to some improvement in the in vitro antimicrobial activity of FL-D-TT against E. coli, S. typhi, and S. aureus. In addition, the hygroscopic stability of FL has been improved. Surprisingly, FL-D-TT had better photostability than FL, which could be attributed to the introduction of D-TT to make the photosensitizing moiety of FL more stable, which led to the improvement of the photostability of FL.
Collapse
Affiliation(s)
- Lixin Liu
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China.
| | - Yuning Wang
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| | - Jiuyi Sun
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| | - Yunan Zhang
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China.
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| | - Lili Wu
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| | - Yingli Liu
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| | - Xuan Zhang
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| | - Yidi Xia
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| | - Qiumei Zhang
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| | - Ning Gao
- College of Pharmacy, Jiamusi University, Heilongjiang Province, Jiamusi 154007, China
| |
Collapse
|
4
|
Collins J, Oviatt AA, Chan PF, Osheroff N. Target-Mediated Fluoroquinolone Resistance in Neisseria gonorrhoeae: Actions of Ciprofloxacin against Gyrase and Topoisomerase IV. ACS Infect Dis 2024; 10:1351-1360. [PMID: 38606464 PMCID: PMC11015056 DOI: 10.1021/acsinfecdis.4c00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Cherif J, Raddaoui A, Trabelsi M, Souissi N. Diagnostic low-dose X-ray radiation induces fluoroquinolone resistance in pathogenic bacteria. Int J Radiat Biol 2023; 99:1971-1977. [PMID: 37436698 DOI: 10.1080/09553002.2023.2232016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE The crisis of antibiotic resistance has been attributed to the overuse or misuse of these medications. However, exposure of bacteria to physical stresses such as X-ray radiation, can also lead to the development of resistance to antibiotics. The present study aimed to investigate the effect of exposure to diagnostic low-dose X-ray radiation on the bacterial response to antibiotics in two pathogenic bacteria, including the Gram-positive Staphylococcus aureus and Gram-negative Salmonella enteritidis. METHODS The bacterial strains were exposed to diagnostic X-ray doses of 5 and 10 mGy, which are equivalent to the doses delivered to patients during conventional radiography X-ray examinations in accordance with the European guidelines on quality criteria for diagnostic radiographic images. Following exposure to X-ray radiation, the samples were used to estimate bacterial growth dynamics and perform antibiotic susceptibility tests. RESULTS The results indicate that exposure to diagnostic low-dose X-ray radiation increased the number of viable bacterial colonies of both Staphylococcus aureus and Salmonella enteritidis and caused a significant change in bacterial susceptibility to antibiotics. For instance, in Staphylococcus aureus, the diameter of the inhibition zones for marbofloxacin decreased from 29.66 mm before irradiation to 7 mm after irradiation. A significant decrease in the inhibition zone was also observed for penicillin. In the case of Salmonella enteritidis, the diameter of the inhibition zone for marbofloxacin was 29 mm in unexposed bacteria but decreased to 15.66 mm after exposure to 10 mGy of X-ray radiation. Furthermore, a significant decrease in the inhibition zone was detected for amoxicillin and amoxicillin/clavulanic acid (AMC). CONCLUSION It is concluded that exposure to diagnostic X-ray radiation can significantly alter bacterial susceptibility to antibiotics. This irradiation decreased the effectiveness of fluoroquinolone and β-lactam antibiotics. Specifically, low-dose X-rays made Staphylococcus aureus resistant to marbofloxacin and increased its resistance to penicillin. Similarly, Salmonella Enteritidis became resistant to both marbofloxacin and enrofloxacin, and showed reduced sensitivity to amoxicillin and AMC.
Collapse
Affiliation(s)
- Jaouhra Cherif
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, University of Tunis El Manar, Tunis, Tunisia
| | - Meriam Trabelsi
- Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nada Souissi
- Bacteriology Laboratory, Tunisian Institute of Veterinary Research, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Goldmeier M, Khononov A, Belakhov V, Pieńko T, Orbach N, Gilad Barzilay Y, Baasov T. Dynamic Intramolecular Cap for Preserving Metallodrug Integrity─A Case of Catalytic Fluoroquinolones. J Med Chem 2022; 65:14049-14065. [PMID: 36219830 PMCID: PMC9620069 DOI: 10.1021/acs.jmedchem.2c01302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/29/2022]
Abstract
A library of eight new fluoroquinolone-nuclease conjugates containing a guanidinoethyl or aminoethyl auxiliary pendant on the cyclen moiety was designed and synthesized to investigate their potential for overcoming the general issue of "metallodrug vulnerability" under physiological conditions. The Cu(II) and Co(III) complexes of the new designer compounds were synthesized, and their potential to operate a dynamic, intramolecular cap with DNase activity was explored. The lead Co(III)-cyclen-ciprofloxacin conjugate showed excellent in vitro hydrolytic DNase activity, which was retained in the presence of strong endogenous chelators and exhibited enhanced antibacterial activity relative to the metal-free ligand (in the absence of any adjuvants), thereby demonstrating a "proof of concept" in vitro and ex vivo, respectively, for the dynamic cap hypothesis. The lead conjugate nicked supercoiled plasmid DNA within the fluoroquinolone-gyrase-DNA ternary complex and thereby disabled the function of gyrase, a new mode of action not previously reported for any fluoroquinolone.
Collapse
Affiliation(s)
| | | | | | - Tomasz Pieńko
- Edith and Joseph Fischer
Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Noam Orbach
- Edith and Joseph Fischer
Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Yuval Gilad Barzilay
- Edith and Joseph Fischer
Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa3200003, Israel
| | - Timor Baasov
- Edith and Joseph Fischer
Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa3200003, Israel
| |
Collapse
|
7
|
Alfonso EE, Deng Z, Boaretto D, Hood BL, Vasile S, Smith LH, Chambers JW, Chapagain P, Leng F. Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay. ACS Pharmacol Transl Sci 2022; 5:932-944. [PMID: 36268121 PMCID: PMC9578135 DOI: 10.1021/acsptsci.2c00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.
Collapse
Affiliation(s)
- Eddy E. Alfonso
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Zifang Deng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Daniel Boaretto
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Becky L. Hood
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Vasile
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Layton H. Smith
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jeremy W. Chambers
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Environmental Health Sciences, Florida
International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
8
|
Kumar GS, Sobhia ME, Ghosh K. Binding affinity analysis of quinolone and dione inhibitors with Mtb-DNA gyrase emphasising the crystal water molecular transfer energy to the protein–ligand association. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2042530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- G. Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - M. Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ketan Ghosh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
9
|
Kirk R, Ratcliffe A, Noonan G, Uosis-Martin M, Lyth D, Bardell-Cox O, Massam J, Schofield P, Lyons A, Clare D, Maclean J, Smith A, Savage V, Mohmed S, Charrier C, Salisbury AM, Moyo E, Ooi N, Chalam-Judge N, Cheung J, Stokes NR, Best S, Craighead M, Armer R, Huxley A. Rational design, synthesis and testing of novel tricyclic topoisomerase inhibitors for the treatment of bacterial infections part 2. RSC Med Chem 2020; 11:1379-1385. [PMID: 34095845 PMCID: PMC8126889 DOI: 10.1039/d0md00175a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 11/21/2022] Open
Abstract
Building on our previously-reported novel tricyclic topoisomerase inhibitors (NTTIs), we disclose the discovery of REDX07965, which has an MIC90 of 0.5 μg mL-1 against Staphylococcus aureus, favourable in vitro pharmacokinetic properties, selectivity versus human topoisomerase II and an acceptable toxicity profile. The results herein validate a rational design approach to address the urgent unmet medical need for novel antibiotics.
Collapse
Affiliation(s)
- R Kirk
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - A Ratcliffe
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - G Noonan
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - M Uosis-Martin
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - D Lyth
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - O Bardell-Cox
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - J Massam
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - P Schofield
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - A Lyons
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - D Clare
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - J Maclean
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - A Smith
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - V Savage
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - S Mohmed
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - C Charrier
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - A-M Salisbury
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - E Moyo
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - N Ooi
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - N Chalam-Judge
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - J Cheung
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - N R Stokes
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - S Best
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - M Craighead
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - R Armer
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| | - A Huxley
- Redx Anti-Infectives Ltd Alderley Park Macclesfield SK10 4TG Cheshire UK
| |
Collapse
|
10
|
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020; 25:E5662. [PMID: 33271787 PMCID: PMC7730664 DOI: 10.3390/molecules25235662] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/05/2022] Open
Abstract
Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics.
Collapse
Affiliation(s)
| | | | | | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (N.G.B.); (I.D.-S.); (L.R.A.)
| |
Collapse
|
11
|
Magnetic covalent organic frameworks with core-shell structure as sorbents for solid phase extraction of fluoroquinolones, and their quantitation by HPLC. Mikrochim Acta 2019; 186:827. [DOI: 10.1007/s00604-019-3757-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/11/2019] [Indexed: 11/27/2022]
|
12
|
Wang H, Si X, Wu T, Wang P. Silver nanoparticles enhanced fluorescence for sensitive determination of fluoroquinolones in water solutions. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractA new type of silver nanoparticle (AgNPs) was prepared with simple and fast methods and low-toxic compounds. With the addition of different concentrations of AgNPs, the effects of AgNPs on the fluorescence properties of three different kinds of fluoroquinolones (enrofloxacin ENR, lomefloxacin LMF and norfloxacin NOR) in water solutions were studied, respectively. The experimental results demonstrated that the fluorescence intensity for each of the fluoroquinolones (FQ)was firstly enhanced and then quenched with the increased concentration of AgNPs in water solutions. The possible mechanisms about the AgNPs on the fluorescence behaviors of each FQ were also investigated, respectively. In addition, new silver enhanced nanoparticles materials fluorescence methods were established for the separate determination of ENR, LMF and NOR in water solutions. As compared with the identical control fluorimetric methods with no addition of AgNPs, the new enhanced fluorimetic methods were also investigated, respectively. The experimental results indicated that the new enhanced methods could detect lower concentrations of ENR, LMF and NOR in water solutions. Moreover, the newly enhanced fluorimetric methods were validated and successfully applied for the quantitative assay of ENR, LMF and NOR in different kinds of medicinal preparations, respectively.
Collapse
Affiliation(s)
- Hongling Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuejing Si
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tunhua Wu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou325035, China
| | - Ping Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
13
|
Xu X, Feng L, Li J, Yuan P, Feng J, Wei L, Cheng X. Rapid screening detection of fluoroquinolone residues in milk based on turn-on fluorescence of terbium coordination polymer nanosheets. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
The C7-aminomethylpyrrolidine group rescues the activity of a thio-fluoroquinolone. Biochimie 2019; 160:24-27. [PMID: 30763638 DOI: 10.1016/j.biochi.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 01/03/2023]
Abstract
A Mg2+-water bridge between the C-3, C-4 diketo moiety of fluoroquinolones and the conserved amino acid residues in the GyrA/ParC subunit is critical for the binding of a fluoroquinolone to a topoisomerase-DNA covalent complex. The fluoroquinolone UING-5-249 (249) can bind to the GyrB subunit through its C7-aminomethylpyrrolidine group. This interaction is responsible for enhanced activities of 249 against the wild type and quinolone-resistant mutant topoisomerases. To further evaluate the effects of the 249-GyrB interaction on fluoroquinolone activity, we examined the activities of decarboxy- and thio-249 against DNA gyrase and conducted docking studies using the structure of a gyrase-ciprofloxacin-DNA ternary complex. We found that the 249-GyrB interaction rescued the activity of thio-249 but not that of decarboxy-249. A C7-group that binds more strongly to the GyrB subunit may allow for modifications at the C-4 position, leading to a novel compound that is active against the wild type and quinolone-resistant pathogens.
Collapse
|
15
|
Yao T, Wang H, Si X, Yin S, Wu T, Wang P. Determination of trace fluoroquinolones in water solutions and in medicinal preparations by conventional and synchronous fluorescence spectrometry. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractSimple, rapid and sensitive and synchronous fluorescence spectrometry (SFS) were developed for determination the fluoroquinolones of ciprofloxacin (CIP), norfloxacin (NOR) and enrofloxacin (ENR) separately in water solutions and in medicinal preparations. The optimized wavelength intervals between the emission and excitation wavelengths were 170 nm, 160 nm and 170 nm for CIP, NOR and ENR, respectively. The different experimental parameters affecting the synchronous fluorescence intensities of the three fluoroquinolones were carefully studied. Under the optimal conditions, good linearity was obtained over the range of 0.01 to 1.20 mg/L, 0.005 to 0.45 mg/L and 0.005 to 0.60 mg/L for the CIP, NOR and ENR, and with good relative standard deviations below 1.9% (n=9). In addition, the detection limits for CIP, NOR and ENR were 0.17 μg/L, 0.013 μg/L and 0.055 μg/L, respectively. What is more, compared with the conventional fluorescence spectrometry, the SFS could detect lower concentrations of each fluoroquinolone. Moreover, the proposed SFS were validated and successfully applied for the quantitative assay of each fluoroquinolone in medicinal preparations.
Collapse
Affiliation(s)
- Ting Yao
- School of Management and Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongling Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuejing Si
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shengnan Yin
- School of Management and Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tunhua Wu
- School of Information and Engineering, Wenzhou Medical University, Wenzhou325035, China
| | - Ping Wang
- School of Information and Engineering, Wenzhou Medical University, Wenzhou325035, China
| |
Collapse
|
16
|
Farahi RM, Ali AA, Gharavi S. Characterization of gyrA and parC mutations in ciprofloxacin-resistant Pseudomonas aeruginosa isolates from Tehran hospitals in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:242-249. [PMID: 30483376 PMCID: PMC6243147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND AND OBJECTIVES Pseudomonas aeruginosa, a major cause of several infectious diseases, has become a hazardous resistant pathogen. One of the factors contributing to quinolone resistance in P. aeruginosa is mutations occurring in gyrA and parC genes encoding the A subunits of type II and IV topoisomerases, respectively, in quinolone resistance determining regions (QRDR) of the bacterial chromosome. MATERIALS AND METHODS Thirty seven isolates from patients with burn wounds and 20 isolates from blood, urine and sputum specimen were collected. Minimum Inhibitory Concentrations (MICs) of ciprofloxacin were determined by agar diffusion assay. Subsequently, QRDRs regions of gyrA and parC were amplified from resistant isolates and were assessed for mutations involved in ciprofloxacin resistance after sequencing. RESULTS Nine isolates with MIC≥8 μg/ml had a mutation in gyrA (Thr83→Ile). Amongst these, seven isolates also had a mutation in parC (Ser87→ Leu or Trp) indicating that the prevalent mutation in gyrA is Thr83Ile and Ser87Leu/Trp in parC. No single parC mutation was observed. CONCLUSION It seems that mutations in gyrA are concomitant with mutations in parC which might lead to high-level ciprofloxacin resistance in P. aeruginosa isolates from patients with burn wounds and urinary tract infections.
Collapse
Affiliation(s)
| | - Ahya Abdi Ali
- Department of Microbiology, Alzahra University, Tehran, Iran
| | - Sara Gharavi
- Department of Biotechnology, Alzahra University, Tehran, Iran,Corresponding author: Sara Gharavi, Ph.D, Department of Biotechnology, Alzahra University, Tehran, Iran. Tel: +98-21-85692709, Fax: +98-21-88058912, ,
| |
Collapse
|
17
|
Abstract
The quinolones are potent antibacterials that act by forming complexes with DNA and either gyrase or topoisomerase IV. These ternary complexes, called cleaved complexes because the DNA moiety is broken, block replication, transcription, and bacterial growth. Cleaved complexes readily form in vitro when gyrase, plasmid DNA, and quinolone are combined and incubated; complexes are detected by the linearization of plasmid DNA, generally assayed by gel electrophoresis. The stability of the complexes can be assessed by treatment with EDTA, high temperature, or dilution to dissociate the complexes and reseal the DNA moiety. Properties of the complexes are sensitive to quinolone structure and to topoisomerase amino acid substitutions associated with quinolone resistance. Consequently, studies of cleaved complexes can be used to identify improvements in quinolone structure and to understand the biochemical basis of target-based resistance. Cleaved complexes can also be detected in quinolone-treated bacterial cells by their ability to rapidly block DNA replication and to cause chromosome fragmentation; they can even be recovered from lysed cells following CsCl density-gradient centrifugation. Thus, in vivo and cell-fractionation tests are available for assessing the biological relevance of work with purified components.
Collapse
|
18
|
Germe T, Vörös J, Jeannot F, Taillier T, Stavenger RA, Bacqué E, Maxwell A, Bax BD. A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance. Nucleic Acids Res 2018; 46:4114-4128. [PMID: 29538767 PMCID: PMC5934680 DOI: 10.1093/nar/gky181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA ('poisoning') in an analogous fashion to fluoroquinolones, but without the requirement for the water-metal-ion bridge. Biochemical experiments and structural studies of cleavage complexes of IPYs compared with an uncleaved gyrase-DNA complex, reveal conformational transitions coupled to DNA cleavage at the DNA gate. These involve movement at the GyrA interface and tilting of the TOPRIM domains toward the scissile phosphate coupled to capture of the catalytic metal ion. Our experiments show that these structural transitions are involved generally in poisoning of gyrase by therapeutic compounds and resemble those undergone by the enzyme during its adenosine triphosphate-coupled strand-passage cycle. In addition to resistance mutations affecting residues that directly interact with the compounds, we characterized a mutant (D82N) that inhibits formation of the cleavage complex by the unpoisoned enzyme. The D82N mutant appears to act by stabilizing the binary conformation of DNA gyrase with uncleaved DNA without direct interaction with the compounds. This provides general insight into the resistance mechanisms to antibiotics targeting bacterial type II topoisomerases.
Collapse
Affiliation(s)
- Thomas Germe
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Judit Vörös
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Frederic Jeannot
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Thomas Taillier
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Robert A Stavenger
- Antibacterial Discovery Performance Unit, Infectious Diseases Therapy Area Unit, GlaxoSmithKline, 1250 Collegeville Road, Collegeville, PA 19426, USA
| | - Eric Bacqué
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Benjamin D Bax
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
19
|
Suppression of Reactive Oxygen Species Accumulation Accounts for Paradoxical Bacterial Survival at High Quinolone Concentration. Antimicrob Agents Chemother 2018; 62:AAC.01622-17. [PMID: 29229642 DOI: 10.1128/aac.01622-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
Abstract
When bacterial cells are exposed to increasing concentrations of quinolone-class antibacterials, survival drops, reaches a minimum, and then recovers, sometimes to 100%. Despite decades of study, events underlying this paradoxical high-concentration survival remain obscure. Since reactive oxygen species (ROS) have been implicated in antimicrobial lethality, conditions generating paradoxical survival were examined for diminished ROS accumulation. Escherichia coli cultures were treated with various concentrations of nalidixic acid, followed by measurements of survival, rate of protein synthesis, and ROS accumulation. The last measurement used a dye (carboxy-H2DCFDA) that fluoresces in the presence of ROS; fluorescence was assessed by microscopy (individual cells) and flow cytometry (batch cultures). High, nonlethal concentrations of nalidixic acid induced lower levels of ROS than moderate, lethal concentrations. Sublethal doses of exogenous hydrogen peroxide became lethal and eliminated the nalidixic acid-associated paradoxical survival. Thus, quinolone-mediated lesions needed for ROS-executed killing persist at high, nonlethal quinolone concentrations, thereby implicating ROS as a key factor in cell death. Chloramphenicol suppressed nalidixic acid-induced ROS accumulation and blocked lethality, further supporting a role for ROS in killing. Nalidixic acid also inhibited protein synthesis, with extensive inhibition at high concentrations correlating with lower ROS accumulation and paradoxical survival. A catalase deficiency, which elevated ROS levels, overcame the inhibitory effect of chloramphenicol on nalidixic acid-mediated killing, emphasizing the importance of ROS. The data collectively indicate that ROS play a dominant role in the lethal action of narrow-spectrum quinolone-class compounds; a drop in ROS levels accounted for the quinolone tolerance observed at very high concentrations.
Collapse
|
20
|
Analytical profiling of mutations in quinolone resistance determining region of gyrA gene among UPEC. PLoS One 2018; 13:e0190729. [PMID: 29300775 PMCID: PMC5754135 DOI: 10.1371/journal.pone.0190729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022] Open
Abstract
Mutations in gyrA are the primary cause of quinolone resistance encountered in gram-negative clinical isolates. The prospect of this work was to analyze the role of gyrA mutations in eliciting high quinolone resistance in uropathogenic E.coli (UPEC) through molecular docking studies. Quinolone susceptibility testing of 18 E.coli strains isolated from UTI patients revealed unusually high resistance level to all the quinolones used; especially norfloxacin and ciprofloxacin. The QRDR of gyrA was amplified and sequenced. Mutations identified in gyrA of E.coli included Ser83Leu, Asp87Asn and Ala93Gly/Glu. Contrasting previous reports, we found Ser83Leu substitution in sensitive strains. Strains with S83L, D87N and A93E (A15 and A26) demonstrated norfloxacin MICs ≥1024mg/L which could be proof that Asp87Asn is necessary for resistance phenotype. Resistance to levofloxacin was comparatively lower in all the isolates. Docking of 4 quinolones (ciprofloxacin, ofloxacin, levofloxacin and norfloxacin) to normal and mutated E.coli gyrase A protein demonstrated lower binding energies for the latter, with significant displacement of norfloxacin in the mutated GyrA complex and least displacement in case of levofloxacin.
Collapse
|
21
|
Abstract
DNA topoisomerases are proven therapeutic targets of antibacterial agents. Quinolones, especially fluoroquinolones, are the most successful topoisomerase-targeting antibacterial drugs. These drugs target type IIA topoisomerases in bacteria. Recent structural and biochemical studies on fluoroquinolones have provided the molecular basis for both their mechanism of action, as well as the molecular basis of bacterial resistance. Due to the development of drug resistance, including fluoroquinolone resistance, among bacterial pathogens, there is an urgent need to discover novel antibacterial agents. Recent advances in topoisomerase inhibitors may lead to the development of novel antibacterial drugs that are effective against fluoroquinolone-resistant pathogens. They include type IIA topoisomerase inhibitors that either interact with the GyrB/ParE subunit or form nick-containing ternary complexes. In addition, several topoisomerase I inhibitors have recently been identified. Thus, DNA topoisomerases remain important targets of antibacterial agents.
Collapse
|
22
|
Yin SN, Yao T, Wu TH, Zhang Y, Wang P. Novel metal nanoparticle-enhanced fluorescence for determination of trace amounts of fluoroquinolone in aqueous solutions. Talanta 2017; 174:14-20. [DOI: 10.1016/j.talanta.2017.05.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 11/16/2022]
|
23
|
Abstract
Diagnosis of deep-seated bacterial infection is difficult, as neither standard anatomical imaging nor radiolabeled, autologous leukocytes distinguish sterile inflammation from infection. Two recent imaging efforts are receiving attention: (1) radioactive derivatives of sorbitol show good specificity with Gram-negative bacterial infections, and (2) success in combining anatomical and functional imaging for cancer diagnosis has rekindled interest in 99mTc-fluoroquinolone-based imaging. With the latter, computed tomography (CT) would be combined with single-photon-emission-computed tomography (SPECT) to detect 99mTc-fluoroquinolone-bacterial interactions. The present minireview provides a framework for advancing fluoroquinolone-based imaging by identifying gaps in our understanding of the process. One issue is the reliance of 99mTc labeling on the reduction of sodium pertechnetate, which can lead to colloid formation and loss of specificity. Specificity problems may be reduced by altering the quinolone structure (for example, switching from ciprofloxacin to sitafloxacin). Another issue is the uncharacterized nature of 99mTc-ciprofloxacin binding to, or sequestration in, bacteria: specific interactions with DNA gyrase, an intracellular fluoroquinolone target, are unlikely. Labeling with 68Ga rather than 99mTc enables detection by positron emission tomography, but with similar biological uncertainties. Replacing the C6-F of the fluoroquinolone with 18F provides an alternative to pertechnetate and gallium that may lead to imaging based on drug interactions with gyrase. Gyrase-based imaging requires knowledge of fluoroquinolone action, which we update. We conclude that quinolone-based probes show promise for the diagnosis of infection, but improvements in specificity and sensitivity are needed. These improvements include the optimization of the quinolone structure; such chemistry efforts can be accelerated by refining microbiological assays.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad-38000, Pakistan
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, Newark NJ USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Science, Newark, NJ USA
| |
Collapse
|
24
|
Ashley RE, Lindsey RH, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Interactions between Quinolones and Bacillus anthracis Gyrase and the Basis of Drug Resistance. Biochemistry 2017; 56:4191-4200. [PMID: 28708938 PMCID: PMC5560241 DOI: 10.1021/acs.biochem.7b00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Gyrase appears to
be the primary cellular target for quinolone
antibacterials in multiple pathogenic bacteria, including Bacillus anthracis, the causative agent of anthrax. Given
the significance of this type II topoisomerase as a drug target, it
is critical to understand how quinolones interact with gyrase and
how specific mutations lead to resistance. However, these important
issues have yet to be addressed for a canonical gyrase. Therefore,
we utilized a mechanistic approach to characterize interactions of
quinolones with wild-type B. anthracis gyrase and
enzymes containing the most common quinolone resistance mutations.
Results indicate that clinically relevant quinolones interact with
the enzyme through a water–metal ion bridge in which a noncatalytic
divalent metal ion is chelated by the C3/C4 keto acid of the drug.
In contrast to other bacterial type II topoisomerases that have been
examined, the bridge is anchored to gyrase primarily through a single
residue (Ser85). Substitution of groups at the quinolone C7 and C8
positions generated drugs that were less dependent on the water–metal
ion bridge and overcame resistance. Thus, by analyzing the interactions
of drugs with type II topoisomerases from individual bacteria, it
may be possible to identify specific quinolone derivatives that can
overcome target-mediated resistance in important pathogenic species.
Collapse
Affiliation(s)
| | | | - Sylvia A McPherson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Robert J Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy , Iowa City, Iowa 52242, United States
| | - Neil Osheroff
- VA Tennessee Valley Healthcare System , Nashville, Tennessee 37212, United States
| |
Collapse
|
25
|
Maitre T, Petitjean G, Chauffour A, Bernard C, El Helali N, Jarlier V, Reibel F, Chavanet P, Aubry A, Veziris N. Are moxifloxacin and levofloxacin equally effective to treat XDR tuberculosis? J Antimicrob Chemother 2017; 72:2326-2333. [DOI: 10.1093/jac/dkx150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/24/2017] [Indexed: 11/15/2022] Open
|
26
|
Bansal S, Bajaj P, Pandey S, Tandon V. Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 2016; 37:404-438. [PMID: 27687257 DOI: 10.1002/med.21417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases are ubiquitously present remarkable molecular machines that help in altering topology of DNA in living cells. The crucial role played by these nucleases during DNA replication, transcription, and recombination vis-à-vis less sequence similarity among different species makes topoisomerases unique and attractive targets for different anticancer and antibacterial drugs. However, druggability of topoisomerases by the existing class of molecules is increasingly becoming questationable due to resistance development predominated by mutations in the corresponding genes. The current scenario facing a decline in the development of new molecules further comprises an important factor that may challenge topoisomerase-targeting therapy. Thus, it is imperative to wisely use the existing inhibitors lest with this rapid rate of losing grip over the target we may not go too far. Furthermore, it is important not only to design new molecules but also to develop new approaches that may avoid obstacles in therapies due to multiple resistance mechanisms. This review provides a succinct account of different classes of topoisomerase inhibitors, focuses on resistance acquired by mutations in topoisomerases, and discusses the various approaches to increase the efficacy of topoisomerase inhibitors. In a later section, we also suggest the possibility of using bisbenzimidazoles along with efflux pump inhibitors for synergistic bactericidal effects.
Collapse
Affiliation(s)
- Sandhya Bansal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Priyanka Bajaj
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Stuti Pandey
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
27
|
Laponogov I, Pan XS, Veselkov DA, Cirz RT, Wagman A, Moser HE, Fisher LM, Sanderson MR. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquinolones. Open Biol 2016; 6:rsob.160157. [PMID: 27655731 PMCID: PMC5043579 DOI: 10.1098/rsob.160157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site—the E-site—found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem.280, 14 252–14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site.
Collapse
Affiliation(s)
- Ivan Laponogov
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Xiao-Su Pan
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Dennis A Veselkov
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Ryan T Cirz
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - Allan Wagman
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - Heinz E Moser
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - L Mark Fisher
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Mark R Sanderson
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK
| |
Collapse
|
28
|
Charrier C, Salisbury AM, Savage VJ, Moyo E, Forward H, Ooi N, Cheung J, Metzger R, McGarry D, Walker R, Cooper IR, Ratcliffe AJ, Stokes NR. In vitro biological evaluation of novel broad-spectrum isothiazolone inhibitors of bacterial type II topoisomerases. J Antimicrob Chemother 2016; 71:2831-9. [PMID: 27353465 DOI: 10.1093/jac/dkw228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/13/2016] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES To evaluate the in vitro biological properties of a novel class of isothiazolone inhibitors of the bacterial type II topoisomerases. METHODS Inhibition of DNA gyrase and topoisomerase IV activity was assessed using DNA supercoiling and decatenation assays. MIC and MBC were determined according to CLSI guidelines. Antibacterial combinations were assessed using a two-dimensional chequerboard MIC method. Spontaneous frequency of resistance was measured at various multiples of the MIC. Resistant mutants were generated by serial passage at subinhibitory concentrations of antibacterials and genetic mutations were determined through whole genome sequencing. Mammalian cytotoxicity was evaluated using the HepG2 cell line. RESULTS Representative isothiazolone compound REDX04957 and its enantiomers (REDX05967 and REDX05990) showed broad-spectrum bactericidal activity against the ESKAPE organisms, with the exception of Enterococcus spp., as well as against a variety of other human bacterial pathogens. Compounds retained activity against quinolone-resistant strains harbouring GyrA S83L and D87G mutations (MIC ≤4 mg/L). Compounds inhibited the supercoiling activity of wild-type DNA gyrase and the decatenation function of topoisomerase IV. Frequency of resistance of REDX04957 at 4× MIC was <9.1 × 10(-9). Against a panel of recent MDR isolates, REDX05967 demonstrated activity against Acinetobacter baumannii with MIC50 and MIC90 of 16 and 64 mg/L, respectively. Compounds showed a lack of cytotoxicity against HepG2 cells at 128 mg/L. CONCLUSIONS Isothiazolone compounds show potent activity against Gram-positive and -negative pathogens with a dual targeting mechanism-of-action and a low potential for resistance development, meriting their continued investigation as broad-spectrum antibacterial agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Ooi
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, UK
| | | | | | | | - Rolf Walker
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, UK
| | - Ian R Cooper
- Redx Pharma, Alderley Park, Cheshire SK10 4TG, UK
| | | | | |
Collapse
|
29
|
Veselkov DA, Laponogov I, Pan XS, Selvarajah J, Skamrova GB, Branstrom A, Narasimhan J, Prasad JVNV, Fisher LM, Sanderson MR. Structure of a quinolone-stabilized cleavage complex of topoisomerase IV from Klebsiella pneumoniae and comparison with a related Streptococcus pneumoniae complex. Acta Crystallogr D Struct Biol 2016; 72:488-96. [PMID: 27050128 PMCID: PMC4822561 DOI: 10.1107/s2059798316001212] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/19/2016] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that is responsible for a range of common infections, including pulmonary pneumonia, bloodstream infections and meningitis. Certain strains of Klebsiella have become highly resistant to antibiotics. Despite the vast amount of research carried out on this class of bacteria, the molecular structure of its topoisomerase IV, a type II topoisomerase essential for catalysing chromosomal segregation, had remained unknown. In this paper, the structure of its DNA-cleavage complex is reported at 3.35 Å resolution. The complex is comprised of ParC breakage-reunion and ParE TOPRIM domains of K. pneumoniae topoisomerase IV with DNA stabilized by levofloxacin, a broad-spectrum fluoroquinolone antimicrobial agent. This complex is compared with a similar complex from Streptococcus pneumoniae, which has recently been solved.
Collapse
Affiliation(s)
- Dennis A. Veselkov
- Randall Division of Cell and Molecular Biophysics, King’s College London, 3rd Floor, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| | - Ivan Laponogov
- Randall Division of Cell and Molecular Biophysics, King’s College London, 3rd Floor, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
- Cardiovascular and Cell Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, England
| | - Xiao-Su Pan
- Cardiovascular and Cell Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, England
| | - Jogitha Selvarajah
- Cardiovascular and Cell Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, England
| | - Galyna B. Skamrova
- Randall Division of Cell and Molecular Biophysics, King’s College London, 3rd Floor, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| | - Arthur Branstrom
- PTC Therapeutics Inc., 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Jana Narasimhan
- PTC Therapeutics Inc., 100 Corporate Court, South Plainfield, NJ 07080, USA
| | | | - L. Mark Fisher
- Cardiovascular and Cell Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, England
| | - Mark R. Sanderson
- Randall Division of Cell and Molecular Biophysics, King’s College London, 3rd Floor, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| |
Collapse
|
30
|
Malik M, Mustaev A, Schwanz HA, Luan G, Shah N, Oppegard LM, de Souza EC, Hiasa H, Zhao X, Kerns RJ, Drlica K. Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones. Nucleic Acids Res 2016; 44:3304-16. [PMID: 26984528 PMCID: PMC4838383 DOI: 10.1093/nar/gkw161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/02/2016] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones form drug-topoisomerase-DNA complexes that rapidly block transcription and replication. Crystallographic and biochemical studies show that quinolone binding involves a water/metal-ion bridge between the quinolone C3-C4 keto-acid and amino acids in helix-4 of the target proteins, GyrA (gyrase) and ParC (topoisomerase IV). A recent cross-linking study revealed a second drug-binding mode in which the other end of the quinolone, the C7 ring system, interacts with GyrA. We report that addition of a dinitrophenyl (DNP) moiety to the C7 end of ciprofloxacin (Cip-DNP) reduced protection due to resistance substitutions in Escherichia coli GyrA helix-4, consistent with the existence of a second drug-binding mode not evident in X-ray structures of drug-topoisomerase-DNA complexes. Several other C7 aryl fluoroquinolones behaved in a similar manner with particular GyrA mutants. Treatment of E. coli cultures with Cip-DNP selectively enriched an uncommon variant, GyrA-A119E, a change that may impede binding of the dinitrophenyl group at or near the GyrA-GyrA interface. Collectively the data support the existence of a secondary quinolone-binding mode in which the quinolone C7 ring system interacts with GyrA; the data also identify C7 aryl derivatives as a new way to obtain fluoroquinolones that overcome existing GyrA-mediated quinolone resistance.
Collapse
Affiliation(s)
- Muhammad Malik
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Arkady Mustaev
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Heidi A Schwanz
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Gan Luan
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Nirali Shah
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| | - Lisa M Oppegard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ernane C de Souza
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xilin Zhao
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province 361102, China
| | - Robert J Kerns
- University of Iowa, Division of Medicinal & Natural Products Chemistry, College of Pharmacy, Iowa City, IA 52246, USA
| | - Karl Drlica
- Public Heath Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Science, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
31
|
Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2016; 113:1706-13. [PMID: 26792525 DOI: 10.1073/pnas.1525047113] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects one-third of the world's population and in 2013 accounted for 1.5 million deaths. Fluoroquinolone antibacterials, which target DNA gyrase, are critical agents used to halt the progression from multidrug-resistant tuberculosis to extensively resistant disease; however, fluoroquinolone resistance is emerging and new ways to bypass resistance are required. To better explain known differences in fluoroquinolone action, the crystal structures of the WT Mtb DNA gyrase cleavage core and a fluoroquinolone-sensitized mutant were determined in complex with DNA and five fluoroquinolones. The structures, ranging from 2.4- to 2.6-Å resolution, show that the intrinsically low susceptibility of Mtb to fluoroquinolones correlates with a reduction in contacts to the water shell of an associated magnesium ion, which bridges fluoroquinolone-gyrase interactions. Surprisingly, the structural data revealed few differences in fluoroquinolone-enzyme contacts from drugs that have very different activities against Mtb. By contrast, a stability assay using purified components showed a clear relationship between ternary complex reversibility and inhibitory activities reported with cultured cells. Collectively, our data indicate that the stability of fluoroquinolone/DNA interactions is a major determinant of fluoroquinolone activity and that moieties that have been appended to the C7 position of different quinolone scaffolds do not take advantage of specific contacts that might be made with the enzyme. These concepts point to new approaches for developing quinolone-class compounds that have increased potency against Mtb and the ability to overcome resistance.
Collapse
|
32
|
Tsitsa I, Tarushi A, Doukoume P, Perdih F, de Almeida A, Papadopoulos A, Kalogiannis S, Casini A, Turel I, Psomas G. Structure and biological activities of metal complexes of flumequine. RSC Adv 2016. [DOI: 10.1039/c5ra25776j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Co(ii)–flumequine complexes were characterized and their biological activity was evaluated in regard to DNA- and albumin-binding and antimicrobial and antiproliferative activity.
Collapse
|
33
|
Bisacchi GS, Hale MR. A "Double-Edged" Scaffold: Antitumor Power within the Antibacterial Quinolone. Curr Med Chem 2016; 23:520-77. [PMID: 26695512 PMCID: PMC4997924 DOI: 10.2174/0929867323666151223095839] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/27/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
In the late 1980s, reports emerged describing experimental antibacterial quinolones having significant potency against eukaryotic Type II topoisomerases (topo II) and showing cytotoxic activity against tumor cell lines. As a result, several pharmaceutical companies initiated quinolone anticancer programs to explore the potential of this class in comparison to conventional human topo II inhibiting antitumor drugs such as doxorubicin and etoposide. In this review, we present a modern re-evaluation of the anticancer potential of the quinolone class in the context of today's predominantly pathway-based (rather than cytotoxicity-based) oncology drug R&D environment. The quinolone eukaryotic SAR is comprehensively discussed, contrasted with the corresponding prokaryotic data, and merged with recent structural biology information which is now beginning to help explain the basis for that SAR. Quinolone topo II inhibitors appear to be much less susceptible to efflux-mediated resistance, a current limitation of therapy with conventional agents. Recent advances in the biological understanding of human topo II isoforms suggest that significant progress might now be made in overcoming two other treatment-limiting disadvantages of conventional topo II inhibitors, namely cardiotoxicity and drug-induced secondary leukemias. We propose that quinolone class topo II inhibitors could have a useful future therapeutic role due to the continued need for effective topo II drugs in many cancer treatment settings, and due to the recent biological and structural advances which can now provide, for the first time, specific guidance for the design of a new class of inhibitors potentially superior to existing agents.
Collapse
Affiliation(s)
- Gregory S Bisacchi
- Syngene International Ltd., Biocon Park, Jigani Link Road, Bangalore 560099, India.
| | | |
Collapse
|
34
|
Chan PF, Srikannathasan V, Huang J, Cui H, Fosberry AP, Gu M, Hann MM, Hibbs M, Homes P, Ingraham K, Pizzollo J, Shen C, Shillings AJ, Spitzfaden CE, Tanner R, Theobald AJ, Stavenger RA, Bax BD, Gwynn MN. Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat Commun 2015; 6:10048. [PMID: 26640131 PMCID: PMC4686662 DOI: 10.1038/ncomms10048] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/29/2015] [Indexed: 12/02/2022] Open
Abstract
New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide's antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a ‘pair of swing-doors' hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1's bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested. Type IIA topoisomerases (topo2As) create transient double-strand DNA breaks. Here, the authors report structures showing how QPT-1 binds in the DNA/topo2A complex at the same site as the fluoroquinolone moxifloxacin, and discuss the potential for developing new classes of antibiotics.
Collapse
Affiliation(s)
- Pan F Chan
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | - Velupillai Srikannathasan
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Jianzhong Huang
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | - Haifeng Cui
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | - Andrew P Fosberry
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Minghua Gu
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | - Michael M Hann
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Martin Hibbs
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Paul Homes
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Karen Ingraham
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | - Jason Pizzollo
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | - Carol Shen
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | - Anthony J Shillings
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Claus E Spitzfaden
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Robert Tanner
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Andrew J Theobald
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Robert A Stavenger
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| | - Benjamin D Bax
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Michael N Gwynn
- Antibacterial Discovery Performance Unit, Infectious Diseases, Therapy Area Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, USA
| |
Collapse
|
35
|
Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci Rep 2015; 5:11827. [PMID: 26168713 PMCID: PMC4501059 DOI: 10.1038/srep11827] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.
Collapse
|
36
|
Aldred KJ, Schwanz HA, Li G, Williamson BH, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Activity of quinolone CP-115,955 against bacterial and human type II topoisomerases is mediated by different interactions. Biochemistry 2015; 54:1278-86. [PMID: 25586498 DOI: 10.1021/bi501073v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. On the basis of the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ⊥Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | | | |
Collapse
|