1
|
Green Tea Catechin Potentiating Doxorubicine Effects against BE(2)C Neuroblastoma Cells In Vitro. Jundishapur J Nat Pharm Prod 2023. [DOI: 10.5812/jjnpp-129683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Neuroblastoma (NB), a malignant sympathetic nervous system cancer, is the second most common type of pediatric tumor. Increasing the number of NB death emerges to design a new strategy for NB treatment. Nowadays, the development of natural compounds has gradually increased due to their ability to apoptosis induction. Tea catechin, a flavonoid compound, is one of the natural combinations which inhibit tumor growth and enhance tumor cell apoptosis. In the current study, the effects of pure catechin, doxorubicin (DOX), and their combination on a cellular model of NB [BE(2)C cells] are perused. (NB) a malignant sympathetic nervous system cancer is the second most common type of pediatric tumor. Increasing the number of NB death emerges to design a new strategy for NB treatment. Nowadays, the development of natural compounds has gradually increased due to their ability to apoptosis induction. Tea catechin, a flavonoid compound, is one of the natural combinations which inhibit tumor growth and enhance tumor cell apoptosis. Objectives: In the current study, the effects of pure catechin, doxorubicin (DOX), and their combination on a cellular model of NB [BE(2)C cells] are perused. Methods: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was done to assess a response dose for each drug. Fluorescent Microscopic and cell cycle analyses were performed for apoptosis detection. Finally, Colony formation was performed to examine cell migration and invasion. Results: The MTT assay showed that catechin and DOX treatment inhibited the viability of the cells while the combination of their ineffective doses had more cytotoxic effects. However, these treatments could not inhibit the cell growth of the normal human fibroblast. Moreover, this combination reduced cell attachment, chromatin fragmentation, and G/S arrest in the cell cycle. The clonogenic assay demonstrated that colony size and numbers obviously reduced after ten days; therefore, Catchin and its combination with DOX suppressed cell capacities of clone formation and migration. Conclusions: These results suggest that catechin, DOX, and their combination may inhibit the proliferation, invasion, and migration of BE(2)C neuroblastoma cells in vitro while inducing cell apoptosis by arresting the cell cycle.
Collapse
|
2
|
Pucci C, De Pasquale D, Marino A, Martinelli C, Lauciello S, Ciofani G. Hybrid Magnetic Nanovectors Promote Selective Glioblastoma Cell Death through a Combined Effect of Lysosomal Membrane Permeabilization and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29037-29055. [PMID: 32459082 PMCID: PMC7343532 DOI: 10.1021/acsami.0c05556] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glioblastoma multiforme is the most aggressive brain tumor, due to its high invasiveness and genetic heterogeneity. Moreover, the blood-brain barrier prevents many drugs from reaching a therapeutic concentration at the tumor site, and most of the chemotherapeutics lack in specificity toward cancer cells, accumulating in both healthy and diseased tissues, with severe side effects. Here, we present in vitro investigations on lipid-based nanovectors encapsulating a drug, nutlin-3a, and superparamagnetic iron oxide nanoparticles, to combine the proapoptotic action of the drug and the hyperthermia mediated by superparamagnetic iron oxide nanoparticles stimulated with an alternating magnetic field. The nanovectors are functionalized with the peptide angiopep-2 to induce receptor-mediated transcytosis through the blood-brain barrier and to target a receptor overexpressed by glioma cells. The glioblastoma multiforme targeting efficiency and the blood-brain barrier crossing abilities were tested through in vitro fluidic models, where different human cell lines were placed to mimic the tumor microenvironment. These nanovectors successfully cross the blood-brain barrier model, maintaining their targeting abilities for glioblastoma multiforme with minimal interaction with healthy cells. Moreover, we showed that nanovector-assisted hyperthermia induces a lysosomal membrane permeabilization that not only initiates a caspase-dependent apoptotic pathway, but also enhances the anticancer efficacy of the drug.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Scuola
Superiore Sant’Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Chiara Martinelli
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Simone Lauciello
- Istituto
Italiano di Tecnologia, Electron Microscopy Facility, Via Morego 30, 16163 Genova, Italy
| | - Gianni Ciofani
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
3
|
Mirzaei SA, Safari Kavishahi M, Keshavarz Z, Elahian F. Unlike Butylcycloheptylprodigiosin, Isolated Undecylprodigiosin from Streptomyces parvulus Is Not a MDR1 and BCRP Substrate in Multidrug-Resistant Cancers. DNA Cell Biol 2018; 37:535-542. [PMID: 29672160 DOI: 10.1089/dna.2018.4161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The search for new chemotherapeutics unaffected by efflux pumps would significantly increase life expectancy in patients with malignant cancers. In this study, butylcycloheptylprodigiosin and undecylprodigiosin were HPLC-purified and verified, using nuclear magnetic resonance spectroscopy. Cell cytotoxicity and transportation kinetics on multiple-drug resistance (MDR) cells were evaluated. Daunorubicin and butylcycloheptylprodigiosin were less toxic in the MDR1 overexpressing line, but undecylprodigiosin revealed potent toxicity toward MDR1 and BCRP expressing malignant cells. There was no noticeable change in MDR1 and BCRP transcripts during 3 days of treatment with prodiginines. While daunorubicin and mitoxantrone uptake from the cell environment significantly decreased with increasing multidrug resistance up to 46% and 62%, respectively, the accumulation of undecylprodigiosin and to a lesser extent butylcycloheptylprodigiosin in the resistance cells occurred cell- and dose-dependently via a passive diffusion process and were almost equally sensitive to the parent lines. The efflux of xenobiotics commenced immediately with different kinetics in various cells. A greater amount of daunorubicin and mitoxantrone were rapidly thrown out of their corresponding MDR cells in the absence of the specific inhibitor (3.01 and 1.81 dF/min, respectively) and represented functional efflux pumps. MDR pumps did not apparently influence undecylprodigiosin efflux patterns; but butylcycloheptylprodigiosin was partially removed from EPG85.257RDB cells at the rate of 2.66 and 1.41 dF/min in the absence and presence of verapamil, respectively.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran .,2 Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Mansureh Safari Kavishahi
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Zhila Keshavarz
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran
| | - Fatemeh Elahian
- 1 Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences , Shahrekord, Iran .,2 Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord, Iran
| |
Collapse
|
4
|
Ufuk A, Assmus F, Francis L, Plumb J, Damian V, Gertz M, Houston JB, Galetin A. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages. Mol Pharm 2017; 14:1033-1046. [PMID: 28252969 DOI: 10.1021/acs.molpharmaceut.6b00908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (Kp,cell) of all drugs (5 μM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH4Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro Kp,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in Kp,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean Kp,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH4Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Frauke Assmus
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Laura Francis
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Jonathan Plumb
- Respiratory and Allergy Clinical Research Facility, University Hospital of South Manchester , Manchester, U.K
| | - Valeriu Damian
- Computational Modeling Sciences, DDS, GlaxoSmithKline , Upper Merion, Pennsylvania 19406, United States
| | - Michael Gertz
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K.,Pharmaceutical Sciences, pRED, Roche Innovation Center , Basel, Switzerland
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| |
Collapse
|
5
|
Min KA, Zhang X, Yu JY, Rosania GR. Computational approaches to analyse and predict small molecule transport and distribution at cellular and subcellular levels. Biopharm Drug Dispos 2013; 35:15-32. [PMID: 24218242 DOI: 10.1002/bdd.1879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/15/2013] [Accepted: 11/01/2013] [Indexed: 12/31/2022]
Abstract
Quantitative structure-activity relationship (QSAR) studies and mechanistic mathematical modeling approaches have been independently employed for analysing and predicting the transport and distribution of small molecule chemical agents in living organisms. Both of these computational approaches have been useful for interpreting experiments measuring the transport properties of small molecule chemical agents, in vitro and in vivo. Nevertheless, mechanistic cell-based pharmacokinetic models have been especially useful to guide the design of experiments probing the molecular pathways underlying small molecule transport phenomena. Unlike QSAR models, mechanistic models can be integrated from microscopic to macroscopic levels, to analyse the spatiotemporal dynamics of small molecule chemical agents from intracellular organelles to whole organs, well beyond the experiments and training data sets upon which the models are based. Based on differential equations, mechanistic models can also be integrated with other differential equations-based systems biology models of biochemical networks or signaling pathways. Although the origin and evolution of mathematical modeling approaches aimed at predicting drug transport and distribution has occurred independently from systems biology, we propose that the incorporation of mechanistic cell-based computational models of drug transport and distribution into a systems biology modeling framework is a logical next step for the advancement of systems pharmacology research.
Collapse
Affiliation(s)
- Kyoung Ah Min
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
6
|
Kornhuber J, Henkel AW, Groemer TW, Städtler S, Welzel O, Tripal P, Rotter A, Bleich S, Trapp S. Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system. J Cell Physiol 2010; 224:152-64. [PMID: 20301195 DOI: 10.1002/jcp.22112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lysosomes accumulate many drugs several fold higher compared to their extracellular concentration. This mechanism is believed to be responsible for many pharmacological effects. So far, uptake and release kinetics are largely unknown and interactions between concomitantly administered drugs often provoke mutual interference. In this study, we addressed these questions in a cell culture model. The molecular mechanism for lysosomal uptake kinetics was analyzed by live cell fluorescence microscopy in SY5Y cells using four drugs (amantadine, amitriptyline, cinnarizine, flavoxate) with different physicochemical properties. Drugs with higher lipophilicity accumulated more extensively within lysosomes, whereas a higher pK(a) value was associated with a more rapid uptake. The drug-induced displacement of LysoTracker was neither caused by elevation of intra-lysosomal pH, nor by increased lysosomal volume. We extended our previously developed numerical single cell model by introducing a dynamic feedback mechanism. The empirical data were in good agreement with the results obtained from the numerical model. The experimental data and results from the numerical model lead to the conclusion that intra-lysosomal accumulation of lipophilic xenobiotics enhances lysosomal membrane permeability. Manipulation of lysosomal membrane permeability might be useful to overcome, for example, multi-drug resistance by altering subcellular drug distribution.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Xie T, Nguyen T, Hupe M, Wei ML. Multidrug resistance decreases with mutations of melanosomal regulatory genes. Cancer Res 2009; 69:992-9. [PMID: 19155314 DOI: 10.1158/0008-5472.can-08-0506] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whereas resistance to chemotherapy has long impeded effective treatment of metastatic melanoma, the mechanistic basis of this resistance remains unknown. One possible mechanism of drug resistance is alteration of intracellular drug distribution either by drug efflux or sequestration into intracellular organelles. Melanomas, as well as primary melanocytes from which they arise, have intracellular organelles, called melanosomes, wherein the synthesis and storage of the pigment melanin takes place. In this study, comparisons of congenic cells with and without functional molecules regulating melanosome formation show that sensitivity to the chemotherapeutic agent cis-diaminedichloroplatinum II (cis-platin) significantly increases with the mutation of genes regulating melanosome formation, concomitant disruption of melanosome morphology, and loss of mature melanosomes. Absence of the melanosomal structural protein gp100/Pmel17 causes increased cis-platin sensitivity. Independent mutations in three separate genes that regulate melanosome biogenesis (Dtnbp1, Pldn, Vps33a) also result in increased cis-platin sensitivity. In addition, a mutation of the gene encoding the integral melanosomal protein tyrosinase, resulting in aberrant melanosome formation, also causes increased cis-platin sensitivity. Furthermore, sensitivity to agents in other chemotherapeutic classes (e.g., vinblastine and etoposide) also increased with the mutation of Pldn. In contrast, a mutation in another melanosomal regulatory gene, Hps1, minimally affects melanosome biogenesis, preserves the formation of mature melanosomes, and has no effect on cis-platin or vinblastine response. Together, these data provide the first direct evidence that melanosomal regulatory genes influence drug sensitivity and that the presence of mature melanosomes likely contributes to melanoma resistance to therapy.
Collapse
Affiliation(s)
- Tong Xie
- Department of Dermatology, University of California-San Francisco, San Francisco, California, USA
| | | | | | | |
Collapse
|
8
|
Quantitative modeling of selective lysosomal targeting for drug design. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1317-28. [PMID: 18504571 DOI: 10.1007/s00249-008-0338-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/15/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick-Nernst-Planck equation. The cell model considers the diffusion of neutral and ionic molecules across biomembranes, protonation to mono- or bivalent ions, adsorption to lipids, and electrical attraction or repulsion. Based on simulation results, high and selective accumulation in lysosomes was found for weak mono- and bivalent bases with intermediate to high log K (ow). These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the optimum range predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation. This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions.
Collapse
|
9
|
Chen VY, Posada MM, Zhao L, Rosania GR. Rapid doxorubicin efflux from the nucleus of drug-resistant cancer cells following extracellular drug clearance. Pharm Res 2007; 24:2156-67. [PMID: 17668300 DOI: 10.1007/s11095-007-9369-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Following extracellular drug clearance, we analyzed the rate of doxorubicin efflux from the nucleus of three human leukemic cells (K562, Molt4 and CCRF-CEM) and related it to their differential sensitivity to this drug, after a short drug pulse. RESULTS For many pulse-chase regimes, K562 cell viability was least affected by doxorubicin. In K562 cells, nuclear drug accumulation was greatest, but nuclear drug egress was also greatest. P-glycoprotein over-expression in a doxorubicin-resistant, K562/DOX sub-line did not facilitate doxorubicin efflux from the nucleus. In K562 cells, doxorubicin accumulated in multivesicular bodies (MVBs) through a pH-dependent mechanism. Inhibiting drug sequestration in MVBs did not affect nuclear efflux. The rates of doxorubicin efflux from the nuclei of live and digitonin-permeabilized K562 cells were similar. However, extracting cytoplasmic membranes with Triton X-100 significantly inhibited nuclear drug efflux following extracellular drug clearance. CONCLUSION Our results are consistent with drug efflux from the nucleus being primarily mediated by an ATP-independent, passive diffusion mechanism. The effect of membrane extraction suggests that nonspecific drug absorption to cytoplasmic membranes plays a role in facilitating nuclear efflux in K562 cells, perhaps by lowering the concentration of free doxorubicin from a perinuclear diffusion boundary layer.
Collapse
Affiliation(s)
- Vivien Y Chen
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church St., Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
10
|
Temperini C, Winum JY, Montero JL, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: The X-ray crystal structure of the adduct of N-hydroxysulfamide with isozyme II explains why this new zinc binding function is effective in the design of potent inhibitors. Bioorg Med Chem Lett 2007; 17:2795-801. [PMID: 17346964 DOI: 10.1016/j.bmcl.2007.02.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 02/23/2007] [Accepted: 02/23/2007] [Indexed: 11/19/2022]
Abstract
N-Hydroxysulfamide is a 2000-fold more potent inhibitor of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) as compared to sulfamide. It also inhibits other physiologically relevant isoforms, such as the tumor-associated CA IX and XII (K(I)s in the range of 0.865-1.34microM). In order to understand the binding of this inhibitor to the enzyme active site, the X-ray crystal structure of the human hCA II-N-hydroxysulfamide adduct was resolved. The inhibitor coordinates to the active site zinc ion by the ionized primary amino group, participating in an extended network of hydrogen bonds with amino acid residues Thr199, Thr200 and two water molecules. The additional two hydrogen bonds in which N-hydroxysulfamide bound to hCA II is involved as compared to the corresponding adduct of sulfamide may explain its higher affinity for the enzyme, also providing hints for the design of tight-binding CA inhibitors possessing an organic moiety substituting the NH group in the N-hydroxysulfamide structure.
Collapse
Affiliation(s)
- Claudia Temperini
- Università degli Studi di Firenze, Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | | | | | | | | |
Collapse
|
11
|
Rosania GR, Crippen G, Woolf P, States D, Shedden K. A Cheminformatic Toolkit for Mining Biomedical Knowledge. Pharm Res 2007; 24:1791-802. [PMID: 17385012 DOI: 10.1007/s11095-007-9285-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 02/27/2007] [Indexed: 01/31/2023]
Abstract
PURPOSE Cheminformatics can be broadly defined to encompass any activity related to the application of information technology to the study of properties, effects and uses of chemical agents. One of the most important current challenges in cheminformatics is to allow researchers to search databases of biomedical knowledge, using chemical structures as input. MATERIALS AND METHODS An important step towards this goal was the establishment of PubChem, an open, centralized database of small molecules accessible through the World Wide Web. While PubChem is primarily intended to serve as a repository for high throughput screening data from federally-funded screening centers and academic research laboratories, the major impact of PubChem could also reside in its ability to serve as a chemical gateway to biomedical databases such as PubMed. CONCLUSION This article will review cheminformatic tools that can be applied to facilitate annotation of PubChem through links to the scientific literature; to integrate PubChem with transcriptomic, proteomic, and metabolomic datasets; to incorporate results of numerical simulations of physiological systems into PubChem annotation; and ultimately, to translate data of chemical genomics screening efforts into information that will benefit biomedical researchers and physician scientists across all therapeutic areas.
Collapse
Affiliation(s)
- Gus R Rosania
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|