1
|
Protein Catalyzed Capture (PCC) Agents for Antigen Targeting. Methods Mol Biol 2021. [PMID: 34596849 DOI: 10.1007/978-1-0716-1689-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The protein catalyzed capture agent (PCC) method is a powerful combinatorial screening strategy for discovering synthetic macrocyclic peptide ligands, called PCCs, to designated protein epitopes. The foundational concept of the PCC method is the use of in situ click chemistry to survey large combinatorial libraries of peptides for ligands to designated biological targets. State-of-the-art PCC screens integrate synthetic libraries of constrained macrocyclic peptides with epitope-specific targeting strategies to identify high-affinity (<100 nM) binders de novo. Automated instrumentation can accelerate PCC discovery to a rapid 2-week timeframe. Here, we describe methods to perform combinatorial screens that yield epitope-targeted PCCs.
Collapse
|
2
|
Narayanam MK, Lai BT, Loredo JM, Wilson JA, Eliasen AM, LaBerge NA, Nason M, Cantu AL, Luton BK, Xu S, Agnew HD, Murphy JM. Positron Emission Tomography Tracer Design of Targeted Synthetic Peptides via 18F-Sydnone Alkyne Cycloaddition. Bioconjug Chem 2021; 32:2073-2082. [PMID: 34415731 DOI: 10.1021/acs.bioconjchem.1c00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemically synthesized, small peptides that bind with high affinity and specificity to CD8-expressing (CD8+) tumor-infiltrating T cells, yet retain the desirable characteristics of small molecules, hold valuable potential for diagnostic molecular imaging of immune response. Here, we report the development of 18F-labeled peptides targeting human CD8α with nanomolar affinity via the strain-promoted sydnone-alkyne cycloaddition with 4-[18F]fluorophenyl sydnone. The 18F-sydnone is produced in one step, in high radiochemical yield, and the peptide labeling proceeds rapidly. A hydrophilic chemical linker results in a tracer with favorable pharmacokinetic properties and improved image contrast, as demonstrated by in vivo PET imaging studies.
Collapse
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Bert T Lai
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Jacquie Malette Loredo
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Jeré A Wilson
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Anders M Eliasen
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Nicole A LaBerge
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Malley Nason
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Annabelle L Cantu
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Breanna K Luton
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Shili Xu
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Heather D Agnew
- Indi Molecular, Inc., 6162 Bristol Parkway, Culver City, California 90230, United States
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Chan KH, Lim J, Jee JE, Aw JH, Lee SS. Peptide-Peptide Co-Assembly: A Design Strategy for Functional Detection of C-peptide, A Biomarker of Diabetic Neuropathy. Int J Mol Sci 2020; 21:ijms21249671. [PMID: 33352955 PMCID: PMC7766332 DOI: 10.3390/ijms21249671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetes-related neuropathy is a debilitating condition that may be averted if it can be detected early. One possible way this can be achieved at low cost is to utilise peptides to detect C-peptide, a biomarker of diabetic neuropathy. This depends on peptide-peptide co-assembly, which is currently in a nascent stage of intense study. Instead, we propose a bead-based triple-overlay combinatorial strategy that can preserve inter-residue information during the screening process for a suitable complementary peptide to co-assemble with C-peptide. The screening process commenced with a pentapeptide general library, which revealed histidine to be an essential residue. Further screening with seven tetrapeptide focused libraries led to a table of self-consistent peptide sequences that included tryptophan and lysine at high frequencies. Three complementary nonapeptides (9mer com-peptides), wpkkhfwgq (Trp-D), kwkkhfwgq (Lys-D), and KWKKHFWGQ (Lys-L) (as a negative control) were picked from this table for co-assembly studies with C-peptide. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopies were utilized to study inter-peptide interactions and changes in secondary structures respectively. ATR-FTIR studies showed that there is indeed inter-peptide interaction between C-peptide and the tryptophan residues of the 9mer com-peptides. CD studies of unaggregated and colloidal C-peptide with the 9mer com-peptides suggest that the extent of co-assembly of C-peptide with Trp-D is greatest, followed by Lys-D and Lys-L. These results are promising and indicate that the presented strategy is viable for designing and evaluating longer complementary peptides, as well as complementary peptides for co-assembly with other polypeptides of interest and importance. We discuss the possibility of designing complementary peptides to inhibit toxic amyloidosis with this approach.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
- Correspondence: (K.H.C.); (S.S.L.)
| | - Jaehong Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; (J.L.); (J.E.J.)
| | - Joo Eun Jee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; (J.L.); (J.E.J.)
| | - Jia Hui Aw
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore; (J.L.); (J.E.J.)
- Correspondence: (K.H.C.); (S.S.L.)
| |
Collapse
|
4
|
Sarkar P, Li Z, Ren W, Wang S, Shao S, Sun J, Ren X, Perkins NG, Guo Z, Chang CEA, Song J, Xue M. Inhibiting Matrix Metalloproteinase-2 Activation by Perturbing Protein-Protein Interactions Using a Cyclic Peptide. J Med Chem 2020; 63:6979-6990. [PMID: 32491863 DOI: 10.1021/acs.jmedchem.0c00180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report on a cyclic peptide that inhibits matrix metalloproteinase-2 (MMP2) activation with a low-nM-level potency. This inhibitor specifically binds to the D570-A583 epitope on proMMP2 and interferes with the protein-protein interaction (PPI) between proMMP2 and tissue inhibitor of metalloproteinases-2 (TIMP2), thereby preventing the TIMP2-assisted proMMP2 activation process. We developed this cyclic peptide inhibitor through an epitope-targeted library screening process and validated its binding to proMMP2. Using a human melanoma cell line, we demonstrated the cyclic peptide's ability to modulate cellular MMP2 activities and inhibit cell migration. These results provide the first successful example of targeting the PPI between proMMP2 and TIMP2, confirming the feasibility of an MMP2 inhibition strategy that has been sought after for 2 decades.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Wendan Ren
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Siwen Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Shiqun Shao
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jianan Sun
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nicole G Perkins
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Min Xue
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
5
|
Idso MN, Akhade AS, Arrieta-Ortiz ML, Lai BT, Srinivas V, Hopkins JP, Gomes AO, Subramanian N, Baliga N, Heath JR. Antibody-recruiting protein-catalyzed capture agents to combat antibiotic-resistant bacteria. Chem Sci 2020; 11:3054-3067. [PMID: 34122810 PMCID: PMC8157486 DOI: 10.1039/c9sc04842a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistant infections are projected to cause over 10 million deaths by 2050, yet the development of new antibiotics has slowed. This points to an urgent need for methodologies for the rapid development of antibiotics against emerging drug resistant pathogens. We report on a generalizable combined computational and synthetic approach, called antibody-recruiting protein-catalyzed capture agents (AR-PCCs), to address this challenge. We applied the combinatorial protein catalyzed capture agent (PCC) technology to identify macrocyclic peptide ligands against highly conserved surface protein epitopes of carbapenem-resistant Klebsiella pneumoniae, an opportunistic Gram-negative pathogen with drug resistant strains. Multi-omic data combined with bioinformatic analyses identified epitopes of the highly expressed MrkA surface protein of K. pneumoniae for targeting in PCC screens. The top-performing ligand exhibited high-affinity (EC50 ∼50 nM) to full-length MrkA, and selectively bound to MrkA-expressing K. pneumoniae, but not to other pathogenic bacterial species. AR-PCCs that bear a hapten moiety promoted antibody recruitment to K. pneumoniae, leading to enhanced phagocytosis and phagocytic killing by macrophages. The rapid development of this highly targeted antibiotic implies that the integrated computational and synthetic toolkit described here can be used for the accelerated production of antibiotics against drug resistant bacteria.
Collapse
Affiliation(s)
- Matthew N Idso
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Bert T Lai
- Indi Molecular, Inc. 6162 Bristol Parkway Culver City CA 90230 USA
| | - Vivek Srinivas
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James P Hopkins
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Nitin Baliga
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James R Heath
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| |
Collapse
|
6
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
7
|
Jee JE, Lim J, Ong YS, Oon J, Gao L, Choi HS, Lee SS. An efficient strategy to enhance binding affinity and specificity of a known isozyme inhibitor. Org Biomol Chem 2016; 14:6833-9. [PMID: 27339902 PMCID: PMC4942345 DOI: 10.1039/c6ob01104g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding profile of a known inhibitor, benzenesulfonamide, against a family of carbonic anhydrase isozymes was efficiently enhanced via high-throughput screening of customized combinatorial one-bead-one-compound peptide libraries modified with the inhibitor molecule. The screening of the conjugate libraries recognized subtle variations in the microenvironments of the target enzyme and thus facilitated the identification of short peptide sequences that bind selectively to a close proximity of the active site. The identified peptide portions contributed significantly to the overall binding of the conjugate peptides with greatly enhanced affinity as well as improved specificity towards the target isozyme. The interactions between the inhibitors and the isozymes were validated by surface plasmon resonance (SPR), pull-down assay and enzymatic activity measurement. This high-throughput approach proved useful and efficient to enhance the binding profile of known inhibitors and may apply to developing effective inhibitors for a wide range of isozyme families.
Collapse
Affiliation(s)
- Joo-Eun Jee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Jaehong Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Yong Siang Ong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Jessica Oon
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Liqian Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, White 427, Boston, MA 02114, USA.
| | - Su Seong Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| |
Collapse
|
8
|
Leung NY, Wai CY, Ho MH, Liu R, Lam KS, Wang JJ, Shu SA, Chu KH, Leung PS. Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries. Cell Mol Immunol 2015; 14:308-318. [PMID: 26364917 DOI: 10.1038/cmi.2015.83] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022] Open
Abstract
The one-bead-one-compound (OBOC) combinatorial peptide library is a powerful tool to identify ligand and receptor interactions. Here, we applied the OBOC library technology to identify mimotopes specific to the immunoglobulin E (IgE) epitopes of the major shellfish allergen tropomyosin. OBOC peptide libraries with 8-12 amino acid residues were screened with serum samples from patients with shellfish allergy for IgE mimotopes of tropomyosin. Twenty-five mimotopes were identified from the screening and their binding reactivity to tropomyosin-specific IgE was confirmed by peptide ELISA. These mimotopes could be divided into seven clusters based on sequence homology, and epitope mapping by EpiSearch of the clustered mimotopes was performed to characterize and confirm the validity of mimotopes. Five out of six of the predicted epitopes were found to overlap with previously identified epitopes of tropomyosin. To further confirm the mimicry potential of mimotopes, BALB/c mice were immunized with mimotopes conjugated to keyhole limpet hemocyanin and assayed for their capacity to induce tropomyosin-specific antibodies. BALB/c mice that received mimotope immunization were found to have an elevated level of tropomyosin-specific immunoglobulin G, but not mice that received an irrelevant mimotope. This study pioneers the successful application of the OBOC libraries using whole sera to screen and identify multiple shrimp allergen mimotopes and validates their mimicry potential using in vitro, in vivo, and in silico methods.Cellular & Molecular Immunology advance online publication, 14 september 2015; doi:10.1038/cmi.2015.83.
Collapse
Affiliation(s)
- Nicki Yh Leung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Christine Yy Wai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Marco Hk Ho
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Jin Jun Wang
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Shang An Shu
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Patrick Sc Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Bąchor R, Cydzik M, Rudowska M, Kluczyk A, Stefanowicz P, Szewczuk Z. Sensitive electrospray mass spectrometry analysis of one-bead-one-compound peptide libraries labeled by quaternary ammonium salts. Mol Divers 2012; 16:613-8. [PMID: 22740104 DOI: 10.1007/s11030-012-9377-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
Abstract
A rapid and straightforward method for high-throughput analysis of single resin beads from one-bead-one-compound combinatorial libraries with high resolution electrospray ionization tandem mass spectrometry (HR ESI-MS/MS) is presented. The application of an efficient method of peptide derivatization by quaternary ammonium salts (QAS) formation increases ionization efficiency and reduces the detection limit, allowing analysis of trace amounts of compounds by ESI-MS. Peptides, synthesized on solid support, contain a new cleavable linker composed of a Peg spacer (9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid), lysine with ɛ-amino group marked by the N,N,N-triethylglycine salt, and methionine, which makes possible the selective cleavage by cyanogen bromide. Even a small portion of peptides derivatized by QAS cleaved from a single resin bead is sufficient for sequencing by HR ESI-MS/MS experiments. The developed strategy was applied to a small training library of α chymotrypsin substrates. The obtained results confirm the applicability of the proposed method in combinatorial chemistry.
Collapse
Affiliation(s)
- Remigiusz Bąchor
- University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
10
|
Cha J, Lim J, Zheng Y, Tan S, Ang YL, Oon J, Ang MW, Ling J, Bode M, Lee SS. Process Automation toward Ultra-High-Throughput Screening of Combinatorial One-Bead-One-Compound (OBOC) Peptide Libraries. ACTA ACUST UNITED AC 2012; 17:186-200. [DOI: 10.1177/2211068211433503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Lee SS, Lim J, Tan S, Cha J, Yeo SY, Agnew HD, Heath JR. Accurate MALDI-TOF/TOF sequencing of one-bead-one-compound peptide libraries with application to the identification of multiligand protein affinity agents using in situ click chemistry screening. Anal Chem 2010; 82:672-9. [PMID: 20000699 PMCID: PMC2829877 DOI: 10.1021/ac902195y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Combinatorial one-bead-one-compound (OBOC) peptide libraries are widely used for affinity screening, and the sequencing of peptides from hit beads is a key step in the process. For rapid sequencing, CNBr cleavage of the peptides from the beads, followed by de novo sequencing by MALDI-TOF/TOF, is explored. We report on a semiautomated sequencing algorithm and validate it through comparison against Edman degradation sequencing. The initial 44% sequencing success rate of the standard de novo sequencing software was improved to nearly 100%. The sequencing algorithm incorporates existing knowledge of amino acid chemistry and a new strategy for differentiating isobaric amino acids. We tested the algorithm by using MALDI-TOF/TOF to identify a peptide biligand affinity agent against the protein bovine carbonic anhydrase II, starting from comprehensive one-bead-one-compound peptide libraries comprised of non-natural and artificial amino acid components and using the strategy of in situ click/OBOC library screening.
Collapse
Affiliation(s)
- Su Seong Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Jaehong Lim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Sylvia Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Junhoe Cha
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Shi Yun Yeo
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Heather D. Agnew
- Division of Chemistry and Chemical Engineering, Caltech. MC 127-72, Pasadena, CA 911125
| | - James R. Heath
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669
- Division of Chemistry and Chemical Engineering, Caltech. MC 127-72, Pasadena, CA 911125
| |
Collapse
|
12
|
One-bead, one-compound peptide library sequencing via high-pressure ammonia cleavage coupled to nanomanipulation/nanoelectrospray ionization mass spectrometry. Anal Biochem 2009; 398:7-14. [PMID: 19891951 DOI: 10.1016/j.ab.2009.10.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/12/2009] [Accepted: 10/30/2009] [Indexed: 02/02/2023]
Abstract
Biological screening of one-bead, one-compound (OBOC) combinatorial peptide libraries is routinely carried out with the peptide remaining bound to the resin bead during screening. After a hit is identified, the bead is isolated, the peptide is cleaved from the bead, and its sequence is determined. We have developed a new technique for cleavage of peptides from resin beads whereby exposure of a 4-hydroxymethyl benzoic acid (HMBA)-linked peptide to high-pressure ammonia gas led to efficient cleavage in as little as 5min. Here we also report a new method of extracting peptide from individual library beads for its introduction into a mass spectrometer that uses nanomanipulation combined with nanoelectrospray ionization mass spectrometry (NSI MS). Single beads analyzed by nanomanipulation/NSI MS were found to give identical MS results to those of bulk samples. Detection of 18 unique cleaved peptides 1 to 8 amino acids in length, and sequencing of 14 different peptide sequences 4 to 8 amino acids in length, was demonstrated on a combination of bulk samples and ones from individual beads of an OBOC library. The method was highly reproducible, with 100% of attempts to extract peptide resulting in high-quality MS data. This new collection of techniques allows rapid, reliable, environmentally responsible sequencing of hit beads from combinatorial peptide libraries.
Collapse
|