1
|
Two Decades of 4D-QSAR: A Dying Art or Staging a Comeback? Int J Mol Sci 2021; 22:ijms22105212. [PMID: 34069090 PMCID: PMC8156896 DOI: 10.3390/ijms22105212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
A key question confronting computational chemists concerns the preferable ligand geometry that fits complementarily into the receptor pocket. Typically, the postulated ‘bioactive’ 3D ligand conformation is constructed as a ‘sophisticated guess’ (unnecessarily geometry-optimized) mirroring the pharmacophore hypothesis—sometimes based on an erroneous prerequisite. Hence, 4D-QSAR scheme and its ‘dialects’ have been practically implemented as higher level of model abstraction that allows the examination of the multiple molecular conformation, orientation and protonation representation, respectively. Nearly a quarter of a century has passed since the eminent work of Hopfinger appeared on the stage; therefore the natural question occurs whether 4D-QSAR approach is still appealing to the scientific community? With no intention to be comprehensive, a review of the current state of art in the field of receptor-independent (RI) and receptor-dependent (RD) 4D-QSAR methodology is provided with a brief examination of the ‘mainstream’ algorithms. In fact, a myriad of 4D-QSAR methods have been implemented and applied practically for a diverse range of molecules. It seems that, 4D-QSAR approach has been experiencing a promising renaissance of interests that might be fuelled by the rising power of the graphics processing unit (GPU) clusters applied to full-atom MD-based simulations of the protein-ligand complexes.
Collapse
|
2
|
Design, Synthesis, and Evaluation of Novel 3-Carboranyl-1,8-Naphthalimide Derivatives as Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22052772. [PMID: 33803403 PMCID: PMC7967199 DOI: 10.3390/ijms22052772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
We synthesized a series of novel 3-carboranyl-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, using click chemistry, reductive amination and amidation reactions and investigated their in vitro effects on cytotoxicity, cell death, cell cycle, and the production of reactive oxygen species in a HepG2 cancer cell line. The analyses showed that modified naphthalic anhydrides and naphthalimides bearing ortho- or meta-carboranes exhibited diversified activity. Naphthalimides were more cytotoxic than naphthalic anhydrides, with the highest IC50 value determined for compound 9 (3.10 µM). These compounds were capable of inducing cell cycle arrest at G0/G1 or G2M phase and promoting apoptosis, autophagy or ferroptosis. The most promising conjugate 35 caused strong apoptosis and induced ROS production, which was proven by the increased level of 2′-deoxy-8-oxoguanosine in DNA. The tested conjugates were found to be weak topoisomerase II inhibitors and classical DNA intercalators. Compounds 33, 34, and 36 fluorescently stained lysosomes in HepG2 cells. Additionally, we performed a similarity-based assessment of the property profile of the conjugates using the principal component analysis. The creation of an inhibitory profile and descriptor-based plane allowed forming a structure–activity landscape. Finally, a ligand-based comparative molecular field analysis was carried out to specify the (un)favorable structural modifications (pharmacophoric pattern) that are potentially important for the quantitative structure–activity relationship modeling of the carborane–naphthalimide conjugates.
Collapse
|
3
|
Consensus-Based Pharmacophore Mapping for New Set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. Int J Mol Sci 2020; 21:ijms21186583. [PMID: 32916824 PMCID: PMC7555178 DOI: 10.3390/ijms21186583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
A series of twenty-two novel N-(disubstituted-phenyl)-3-hydroxynaphthalene- 2-carboxamide derivatives was synthesized and characterized as potential antimicrobial agents. N-[3,5-bis(trifluoromethyl)phenyl]- and N-[2-chloro-5-(trifluoromethyl)phenyl]-3-hydroxy- naphthalene-2-carboxamide showed submicromolar (MICs 0.16–0.68 µM) activity against methicillin-resistant Staphylococcus aureus isolates. N-[3,5-bis(trifluoromethyl)phenyl]- and N-[4-bromo-3-(trifluoromethyl)phenyl]-3-hydroxynaphthalene-2-carboxamide revealed activity against M. tuberculosis (both MICs 10 µM) comparable with that of rifampicin. Synergistic activity was observed for the combinations of ciprofloxacin with N-[4-bromo-3-(trifluoromethyl)phenyl]- and N-(4-bromo-3-fluorophenyl)-3-hydroxynaphthalene-2-carboxamides against MRSA SA 630 isolate. The similarity-related property space assessment for the congeneric series of structurally related carboxamide derivatives was performed using the principal component analysis. Interestingly, different distribution of mono-halogenated carboxamide derivatives with the –CF3 substituent is accompanied by the increased activity profile. A symmetric matrix of Tanimoto coefficients indicated the structural dissimilarities of dichloro- and dimetoxy-substituted isomers from the remaining ones. Moreover, the quantitative sampling of similarity-related activity landscape provided a subtle picture of favorable and disallowed structural modifications that are valid for determining activity cliffs. Finally, the advanced method of neural network quantitative SAR was engaged to illustrate the key 3D steric/electronic/lipophilic features of the ligand-site composition by the systematic probing of the functional group.
Collapse
|
4
|
Michnová H, Pospíšilová Š, Goněc T, Kapustíková I, Kollár P, Kozik V, Musioł R, Jendrzejewska I, Vančo J, Trávníček Z, Čížek A, Bąk A, Jampílek J. Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis. Molecules 2019; 24:molecules24162991. [PMID: 31426567 PMCID: PMC6720605 DOI: 10.3390/molecules24162991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/11/2023] Open
Abstract
A series of twenty-six methoxylated and methylated N-aryl-1-hydroxynaphthalene- 2-carboxanilides was prepared and characterized as potential anti-invasive agents. The molecular structure of N-(2,5-dimethylphenyl)-1-hydroxynaphthalene-2-carboxamide as a model compound was determined by single-crystal X-ray diffraction. All the analysed compounds were tested against the reference strain Staphylococcus aureus and three clinical isolates of methicillin-resistant S.aureus as well as against Mycobacterium tuberculosis and M. kansasii. In addition, the inhibitory profile of photosynthetic electron transport in spinach (Spinacia oleracea L.) chloroplasts was specified. In vitro cytotoxicity of the most effective compounds was tested on the human monocytic leukaemia THP-1 cell line. The activities of N-(3,5-dimethylphenyl)-, N-(3-fluoro-5-methoxy-phenyl)- and N-(3,5-dimethoxyphenyl)-1-hydroxynaphthalene-2-carbox- amide were comparable with or even better than the commonly used standards ampicillin and isoniazid. All promising compounds did not show any cytotoxic effect at the concentration >30 µM. Moreover, an in silico evaluation of clogP features was performed for the entire set of the carboxamides using a range of software lipophilicity predictors, and cross-comparison with the experimentally determined lipophilicity (log k), in consensus lipophilicity estimation, was conducted as well. Principal component analysis was employed to illustrate noticeable variations with respect to the molecular lipophilicity (theoretical/experimental) and rule-of-five violations. Additionally, ligand-oriented studies for the assessment of the three-dimensional quantitative structure–activity relationship profile were carried out with the comparative molecular surface analysis to determine electron and/or steric factors that potentially contribute to the biological activities of the investigated compounds.
Collapse
Affiliation(s)
- Hana Michnová
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1/3, 61242 Brno, Czech Republic
| | - Šárka Pospíšilová
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1/3, 61242 Brno, Czech Republic
| | - Tomáš Goněc
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1/3, 61242 Brno, Czech Republic.
| | - Iva Kapustíková
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Peter Kollár
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1/3, 61242 Brno, Czech Republic
| | - Violetta Kozik
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland
| | | | - Ján Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Alois Čížek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého třída 1/3, 61242 Brno, Czech Republic
| | - Andrzej Bąk
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Josef Jampílek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia.
| |
Collapse
|
5
|
Bak A, Kozik V, Malik I, Jampilek J, Smolinski A. Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:801-821. [PMID: 30230355 DOI: 10.1080/1062936x.2018.1517278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The current study examines in silico characterization of the structure-inhibitory potency for a set of phenylcarbamic acid derivatives containing an N-arylpiperazine scaffold, considering the electronic, steric and lipophilic properties. The main objective of the ligand-based modelling was the systematic study of classical comparative molecular field analysis (CoMFA)/comparative molecular surface analysis (CoMSA) performance for the modelling of in vitro efficiency observed for these phenylcarbamates, revealing their inhibitory activities against a virulent Mycobacterium tuberculosis H37Rv strain. We compared the findings of efficiency modelling produced by a standard 3D methodology (CoMFA) and its neural counterparts (CoMSA) regarding multiple training/test subsets and variables used. Moreover, systematic space inspection, splitting values into the analysed training/test subsets, was performed to monitor statistical estimator performance while mapping the probability-driven pharmacophore pattern. Consequently, a 'pseudo-consensus' 3D-quantitative structure-activity relationship (3D-QSAR) approach was applied to retrieve an 'average' pharmacophore hypothesis by the investigation of the most densely populated training/test subpopulations to specify the potentially important factors contributing to the inhibitory activity of phenylcarbamic acid analogues. In addition, examination of descriptor-based similarity with a principal component analysis (PCA) procedure was employed to visualize noticeable variations in the performance of these molecules with respect to their structure and activity profiles.
Collapse
Affiliation(s)
- A Bak
- a Department of Synthesis Chemistry , Institute of Chemistry, University of Silesia , Katowice , Poland
| | - V Kozik
- a Department of Synthesis Chemistry , Institute of Chemistry, University of Silesia , Katowice , Poland
| | - I Malik
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Comenius University , Bratislava , Slovakia
| | - J Jampilek
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Comenius University , Bratislava , Slovakia
| | - A Smolinski
- c Department of Energy Saving and Air Protection , Central Mining Institute , Katowice , Poland
| |
Collapse
|
6
|
Towards Intelligent Drug Design System: Application of Artificial Dipeptide Receptor Library in QSAR-Oriented Studies. Molecules 2018; 23:molecules23081964. [PMID: 30082652 PMCID: PMC6222794 DOI: 10.3390/molecules23081964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/29/2018] [Accepted: 08/05/2018] [Indexed: 12/23/2022] Open
Abstract
The pharmacophore properties of a new series of potential purinoreceptor (P2X) inhibitors determined using a coupled neural network and the partial least squares method with iterative variable elimination (IVE-PLS) are presented in a ligand-based comparative study of the molecular surface by comparative molecular surface analysis (CoMSA). Moreover, we focused on the interpretation of noticeable variations in the potential selectiveness of interactions of individual inhibitor-receptors due to their physicochemical properties; therefore, the library of artificial dipeptide receptors (ADP) was designed and examined. The resulting library response to individual inhibitors was arranged in the array, preprocessed and transformed by the principal component analysis (PCA) and PLS procedures. A dominant absolute contribution to PC1 of the Glu attached to heptanoic gating acid and Phe bonded to the linker m-phenylenediamine/triazine scaffold was revealed by the PCA. The IVE-PLS procedure indicated the receptor systems with predominant Pro bonded to the linker and Glu, Gln, Cys and Val directly attached to the gating acid. The proposed comprehensive ligand-based and simplified structure-based methodology allows the in-depth study of the performance of peptide receptors against the tested set of compounds.
Collapse
|
7
|
Ataide Martins JP, Rougeth de Oliveira MA, Oliveira de Queiroz MS. Web-4D-QSAR: A web-based application to generate 4D-QSAR descriptors. J Comput Chem 2018; 39:917-924. [DOI: 10.1002/jcc.25166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022]
|
8
|
Receptor independent and receptor dependent CoMSA modeling with IVE-PLS: application to CBG benchmark steroids and reductase activators. J Mol Model 2008; 15:41-51. [PMID: 18936985 DOI: 10.1007/s00894-008-0373-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
Abstract
Comparative molecular surface analysis (CoMSA) with robust IVE-PLS variable elimination if tested for the benchmark CBG steroid series provides highly predictive RI 3D QSAR models, but failed however to model the activity of sulforaphane (SP) activators of quinone reductase. The application of the SP poses obtained from multipose molecular docking to model the RD IVE-PLS CoMSA resulted in a predictive form. This model indicated lipophilic potential as the activity determinant. The individual molecular surface areas of the highest contribution to the SP activity was identified and visualized by CoMSA contour plots.
Collapse
|
9
|
Abstract
Quantitative Structure Activity Relationship (QSAR) is a term describing a variety of approaches that are of substantial interest for chemistry. This method can be defined as indirect molecular design by the iterative sampling of the chemical compounds space to optimize a certain property and thus indirectly design the molecular structure having this property. However, modeling the interactions of chemical molecules in biological systems provides highly noisy data, which make predictions a roulette risk. In this paper we briefly review the origins for this noise, particularly in multidimensional QSAR. This was classified as the data, superimposition, molecular similarity, conformational, and molecular recognition noise. We also indicated possible robust answers that can improve modeling and predictive ability of QSAR, especially the self-organizing mapping of molecular objects, in particular, the molecular surfaces, a method that was brought into chemistry by Gasteiger and Zupan.
Collapse
Affiliation(s)
- Jaroslaw Polanski
- Department of Organic Chemistry, Institute of Chemistry, University of Silesia, PL-40-006 Katowice, Poland.
| | | | | | | |
Collapse
|