1
|
Zhang Y, Chen HF. Allosteric mechanism of an oximino-piperidino-piperidine antagonist for the CCR5 chemokine receptor. Chem Biol Drug Des 2019; 95:113-123. [PMID: 31571405 DOI: 10.1111/cbdd.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022]
Abstract
The first step for the HIV-1 virus infecting host cell is bound with the CCR5 chemokine receptor. A set of allosteric inhibitors of oximino-piperidino-piperidine antagonists for CCR5 chemokine receptor was discovered. However, the allosteric mechanism of these inhibitors is still unsolved. Therefore, residue-level dynamics correlation network combining with on molecular dynamics simulation was used to investigate the allosteric mechanism. The dynamics correlation network of bound CCR5 is significantly different from that of free CCR5. The community of the most active complex suggests that the allosteric information can freely transfer from the allosteric site to the effector site of the second extracellular loop, while the information transfers bottleneck for the less active one. Here, a hypothesis was proposed that "binding-induced allosteric mechanism" was used to reveal the allosteric regulation of antagonists and the network perturbation confirmed it. Finally, the shortest path algorithm was used to identify the possible allosteric pathway with Gly173-Lys171-Thr177-Tyr89-LIG which was evaluated by the network perturbation of key residue. Furthermore, the efficiency of allostery for the most active system is the highest among these antagonist complexes. The strategy targeting the allosteric pathway can be used to design novel inhibitors of HIV-1 virus.
Collapse
Affiliation(s)
- Yangpeng Zhang
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| |
Collapse
|
2
|
Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies. Antimicrob Agents Chemother 2015; 60:437-50. [PMID: 26525792 DOI: 10.1128/aac.02285-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other.
Collapse
|
3
|
Surdo M, Alteri C, Puertas MC, Saccomandi P, Parrotta L, Swenson L, Chapman D, Costa G, Artese A, Balestra E, Aquaro S, Alcaro S, Lewis M, Clotet B, Harrigan R, Valdez H, Svicher V, Perno CF, Martinez-Picado J, Ceccherini-Silberstein F. Effect of maraviroc on non-R5 tropic HIV-1: refined analysis of subjects from the phase IIb study A4001029. Clin Microbiol Infect 2014; 21:103.e1-6. [PMID: 25636934 DOI: 10.1016/j.cmi.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/31/2014] [Accepted: 08/29/2014] [Indexed: 12/26/2022]
Abstract
We characterized maraviroc susceptibility of dual/mixed tropic viruses from subjects enrolled onto phase IIb study A4001029. Maraviroc baseline plasma samples from 13 multidrug-experienced subjects were sequenced and the HIV-1-env gene cloned into pNL4.3Δenv to obtain recombinant viruses. The V3 region was sequenced by the Sanger method and ultradeep sequencing. By analysing subjects having a weighted optimized background therapy susceptibility (wOBT) score of <1, 3/7 subjects were characterized by good in vivo and in vitro response to maraviroc therapy. Molecular docking simulations allowed us to rationalize the maraviroc susceptibility of dual/mixed tropic viruses. A subset of subjects with dual/mixed tropic viruses responded to maraviroc. Further investigations are warranted of CCR5 antagonists in subjects carrying dual/mixed tropic virus that explore the feasible use of maraviroc in subjects that is potentially larger than those infected with a pure R5 virus.
Collapse
Affiliation(s)
- M Surdo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - C Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - M C Puertas
- Institut de Recerca de la SIDA irsiCaixa, Hospital Universitari 'Germans Trias i Pujol', Badalona, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain
| | - P Saccomandi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - L Parrotta
- Department of Pharmacobiological Sciences, University of Catanzaro 'Magna Græcia', Catanzaro, Italy
| | - L Swenson
- BC Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | - G Costa
- Department of Pharmacobiological Sciences, University of Catanzaro 'Magna Græcia', Catanzaro, Italy
| | - A Artese
- Department of Pharmacobiological Sciences, University of Catanzaro 'Magna Græcia', Catanzaro, Italy
| | - E Balestra
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - S Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - S Alcaro
- Department of Pharmacobiological Sciences, University of Catanzaro 'Magna Græcia', Catanzaro, Italy
| | | | - B Clotet
- Institut de Recerca de la SIDA irsiCaixa, Hospital Universitari 'Germans Trias i Pujol', Badalona, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain; Universitat de Vic (UVic), Catalonia, Spain
| | - R Harrigan
- BC Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | - V Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - C F Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - J Martinez-Picado
- Institut de Recerca de la SIDA irsiCaixa, Hospital Universitari 'Germans Trias i Pujol', Badalona, Universitat Autònoma de Barcelona (UAB), Catalonia, Spain; Universitat de Vic (UVic), Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | |
Collapse
|
4
|
Tamamis P, Floudas CA. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop. PLoS One 2014; 9:e95767. [PMID: 24763408 PMCID: PMC3999033 DOI: 10.1371/journal.pone.0095767] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/29/2014] [Indexed: 12/04/2022] Open
Abstract
The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13-21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Christodoulos A. Floudas
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
5
|
Modeling the allosteric modulation of CCR5 function by Maraviroc. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e297-305. [PMID: 24050281 DOI: 10.1016/j.ddtec.2012.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Maraviroc is a non-peptidic, low molecular weight CC chemokine receptor 5 (CCR5) ligand that has recently been marketed for the treatment of HIV infected individuals. This review discusses recent molecular modeling studies of CCR5 by homology to CXC chemokine receptor 4, their contribution to the understanding of the allosteric mode of action of the inhibitor and their potential for the development of future drugs with improved efficiency and preservation of CCR5 biological functions.
Collapse
|
6
|
López de Victoria A, Tamamis P, Kieslich CA, Morikis D. Insights into the structure, correlated motions, and electrostatic properties of two HIV-1 gp120 V3 loops. PLoS One 2012; 7:e49925. [PMID: 23185486 PMCID: PMC3501474 DOI: 10.1371/journal.pone.0049925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022] Open
Abstract
The V3 loop of the glycoprotein 120 (gp120) is a contact point for cell entry of HIV-1 leading to infection. Despite sequence variability and lack of specific structure, the highly flexible V3 loop possesses a well-defined role in recognizing and selecting cell-bound coreceptors CCR5 and CXCR4 through a mechanism of charge complementarity. We have performed two independent molecular dynamics (MD) simulations to gain insights into the dynamic character of two V3 loops with slightly different sequences, but significantly different starting crystallographic structures. We have identified highly populated trajectory-specific salt bridges between oppositely charged stem residues Arg9 and Glu25 or Asp29. The two trajectories share nearly identical correlated motions within the simulations, despite their different overall structures. High occupancy salt bridges play a key role in the major cross-correlated motions in both trajectories, and may be responsible for transient structural stability in preparation for coreceptor binding. In addition, the two V3 loops visit conformations with similarities in spatial distributions of electrostatic potentials, despite their inherent flexibility, which may play a role in coreceptor recognition. It is plausible that cooperativity between overall electrostatic potential, charged residue interactions, and correlated motions could be associated with a coreceptor selection and binding.
Collapse
Affiliation(s)
- Aliana López de Victoria
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Phanourios Tamamis
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Chris A. Kieslich
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| | - Dimitrios Morikis
- Department of Bioengineering, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
7
|
HIV-1 resistance to maraviroc conferred by a CD4 binding site mutation in the envelope glycoprotein gp120. J Virol 2012; 87:923-34. [PMID: 23135713 DOI: 10.1128/jvi.01863-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maraviroc (MVC) is a CCR5 antagonist that inhibits HIV-1 entry by binding to the coreceptor and inducing structural alterations in the extracellular loops. In this study, we isolated MVC-resistant variants from an HIV-1 primary isolate that arose after 21 weeks of tissue culture passage in the presence of inhibitor. gp120 sequences from passage control and MVC-resistant cultures were cloned into NL4-3 via yeast-based recombination followed by sequencing and drug susceptibility testing. Using 140 clones, three mutations were linked to MVC resistance, but none appeared in the V3 loop as was the case with previous HIV-1 strains resistant to CCR5 antagonists. Rather, resistance was dependent upon a single mutation in the C4 region of gp120. Chimeric clones bearing this N425K mutation replicated at high MVC concentrations and displayed significant shifts in 50% inhibitory concentrations (IC(50)s), characteristic of resistance to all other antiretroviral drugs but not typical of MVC resistance. Previous reports on MVC resistance describe an ability to use a drug-bound form of the receptor, leading to reduction in maximal drug inhibition. In contrast, our structural models on K425 gp120 suggest that this resistant mutation impacts CD4 interactions and highlights a novel pathway for MVC resistance.
Collapse
|
8
|
Uttekar MM, Das T, Pawar RS, Bhandari B, Menon V, Nutan, Gupta SK, Bhat SV. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur J Med Chem 2012; 56:368-74. [PMID: 22858223 DOI: 10.1016/j.ejmech.2012.07.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 12/29/2022]
Abstract
Andrographolide, a diterpene lactone of the Andrographis paniculata, displays anti-HIV activity in vitro. A series of andrographolide derivatives have been synthesized and evaluated for their anti-HIV activity in a cell-free virus infectivity assay using TZM-bl cells. As compared to andrographolide, 3-nitrobenzylidene derivative 6 showed higher in vitro anti-HIV activity, whereas 2',6'-dichloro-nicotinoyl ester derivative 9 showed higher Therapeutic Index. The andrographolide and its derivatives, 6 and 9, inhibited gp120-mediated cell fusion of HL2/3 cells (expressing gp120 on its surface) with TZM-bl cells (expressing CD4 and co-receptors CCR5 & CXCR4). Further, computational studies revealed that these molecules bind to the important residues of V3 loop of gp120. These results suggest that andrographolide derivatives may be promising candidates for prevention of HIV infection.
Collapse
Affiliation(s)
- Mayur M Uttekar
- Laboratory for Advanced Research in Natural and Synthetic Chemistry, V. G. Vaze College, Mumbai University, Mithagar Road, Mulund (East), Mumbai 400 081, India
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ode H, Nakashima M, Kitamura S, Sugiura W, Sato H. Molecular dynamics simulation in virus research. Front Microbiol 2012; 3:258. [PMID: 22833741 PMCID: PMC3400276 DOI: 10.3389/fmicb.2012.00258] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/02/2012] [Indexed: 01/24/2023] Open
Abstract
Virus replication in the host proceeds by chains of interactions between viral and host proteins. The interactions are deeply influenced by host immune molecules and anti-viral compounds, as well as by mutations in viral proteins. To understand how these interactions proceed mechanically and how they are influenced by mutations, one needs to know the structures and dynamics of the proteins. Molecular dynamics (MD) simulation is a powerful computational method for delineating motions of proteins at an atomic-scale via theoretical and empirical principles in physical chemistry. Recent advances in the hardware and software for biomolecular simulation have rapidly improved the precision and performance of this technique. Consequently, MD simulation is quickly extending the range of applications in biology, helping to reveal unique features of protein structures that would be hard to obtain by experimental methods alone. In this review, we summarize the recent advances in MD simulations in the study of virus–host interactions and evolution, and present future perspectives on this technique.
Collapse
Affiliation(s)
- Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
10
|
Dogo-Isonagie C, Lam S, Gustchina E, Acharya P, Yang Y, Shahzad-ul-Hussan S, Clore GM, Kwong PD, Bewley CA. Peptides from second extracellular loop of C-C chemokine receptor type 5 (CCR5) inhibit diverse strains of HIV-1. J Biol Chem 2012; 287:15076-86. [PMID: 22403408 DOI: 10.1074/jbc.m111.332361] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To initiate HIV entry, the HIV envelope protein gp120 must engage its primary receptor CD4 and a coreceptor CCR5 or CXCR4. In the absence of a high resolution structure of a gp120-coreceptor complex, biochemical studies of CCR5 have revealed the importance of its N terminus and second extracellular loop (ECL2) in binding gp120 and mediating viral entry. Using a panel of synthetic CCR5 ECL2-derived peptides, we show that the C-terminal portion of ECL2 (2C, comprising amino acids Cys-178 to Lys-191) inhibit HIV-1 entry of both CCR5- and CXCR4-using isolates at low micromolar concentrations. In functional viral assays, these peptides inhibited HIV-1 entry in a CD4-independent manner. Neutralization assays designed to measure the effects of CCR5 ECL2 peptides when combined with either with the small molecule CD4 mimetic NBD-556, soluble CD4, or the CCR5 N terminus showed additive inhibition for each, indicating that ECL2 binds gp120 at a site distinct from that of N terminus and acts independently of CD4. Using saturation transfer difference NMR, we determined the region of CCR5 ECL2 used for binding gp120, showed that it can bind to gp120 from both R5 and X4 isolates, and demonstrated that the peptide interacts with a CD4-gp120 complex in a similar manner as to gp120 alone. As the CCR5 N terminus-gp120 interactions are dependent on CD4 activation, our data suggest that gp120 has separate binding sites for the CCR5 N terminus and ECL2, the ECL2 binding site is present prior to CD4 engagement, and it is conserved across CCR5- and CXCR4-using strains. These peptides may serve as a starting point for the design of inhibitors with broad spectrum anti-HIV activity.
Collapse
Affiliation(s)
- Cajetan Dogo-Isonagie
- Laboratory of Bioorganic Chemistry, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
[Bioinformatics studies on drug resistance against anti-HIV-1 drugs]. Uirusu 2011; 61:35-47. [PMID: 21972554 DOI: 10.2222/jsv.61.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
More than 20 drugs have been available for anti-HIV-1 treatment in Japan. Combination therapy with these drugs dramatically decreases in morbidity and mortality of AIDS. However, due to high mutation rate of HIV-1, treatment with ineffective drugs toward patients infected with HIV-1 causes accumulation of mutations in the virus, and emergence of drug resistant viruses. Thus, to achieve appropriate application of the drugs toward the respective patients living with HIV-1, methods for predicting the level of drug-resistance using viral sequence information has been developed on the basis of bioinformatics. Furthermore, ultra-deep sequencing by next-generation sequencer whose data analysis is also based on bioinformatics, or in silico structural modeling have been achieved to understand drug resistant mechanisms. In this review, I overview the bioinformatics studies about drug resistance against anti-HIV-1 drugs.
Collapse
|