1
|
Oney-Hawthorne SD, Barondeau DP. Fe-S cluster biosynthesis and maturation: Mass spectrometry-based methods advancing the field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119784. [PMID: 38908802 DOI: 10.1016/j.bbamcr.2024.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Iron‑sulfur (FeS) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of FeS cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these FeS protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate FeS cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in FeS protein studies made possible by MS methodology and contribute an outlook for its role in the field.
Collapse
Affiliation(s)
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA.
| |
Collapse
|
2
|
Abstract
Zinc is an essential element for human health. Among its many functions, zinc(II) modulates the immune response to infections and, at high concentrations or in the presence of ionophores, inhibits the replication of various RNA viruses. Structural biology studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed that zinc(II) is the most common metal ion that binds to viral proteins. However, the number of zinc(II)-binding sites identified by experimental methods is far from exhaustive, as metal ions may be lost during protein purification protocols. To better define the zinc(II)-binding proteome of coronavirus, we leveraged the wealth of deposited structural data and state-of-the-art bioinformatics methods. Through this in silico approach, 15 experimental zinc(II) sites were identified and a further 22 were predicted in Spike, open reading frame (ORF)3a/d, ORF8, and several nonstructural proteins, highlighting an essential role of zinc(II) in viral replication. Furthermore, the structural relationships between viral and eukaryotic sites (typically zinc fingers) indicate that SARS-CoV-2 can compete with human proteins for zinc(II) binding. Given the double-edged effect of zinc(II) ions, both essential and toxic to coronavirus, only the complete elucidation of the structural and regulatory zinc(II)-binding sites can guide selective antiviral strategies based on zinc supplementation.
Collapse
Affiliation(s)
- Claudia Andreini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari “Aldo Moro,” Via Orabona 4, 70125 Bari, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Lénon M, Arias-Cartín R, Barras F. The Fe-S proteome of Escherichia coli: prediction, function and fate. Metallomics 2022; 14:6555457. [PMID: 35349713 DOI: 10.1093/mtomcs/mfac022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic ubiquitous and ancient cofactors. Fe-S bound proteins contribute to most cellular processes, including DNA replication and integrity, genetic expression and regulation, metabolism, biosynthesis and most bioenergetics systems. Also, Fe-S proteins hold a great biotechnological potential in metabolite and chemical production, including antibiotics. From classic biophysics and spectroscopy methodologies to recent development in bioinformatics, including structural modeling and chemoproteomics, our capacity to predict and identify Fe-S proteins has spectacularly increased over the recent years. Here, these developments are presented and collectively used to update the composition of Escherichia coli Fe-S proteome, for which we predict 181 occurrences, i.e. 40 more candidates than in our last catalog (Py and Barras, 2010), and equivalent to 4% of its total proteome. Besides, Fe-S clusters can be targeted by redox active compounds or reactive oxygen and nitrosative species, and even be destabilized by contaminant metals. Accordingly, we discuss how cells handle damaged Fe-S proteins, i.e. degradation, recycling or repair.
Collapse
Affiliation(s)
- Marine Lénon
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| | - Rodrigo Arias-Cartín
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| | - Frédéric Barras
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| |
Collapse
|
4
|
Chasapis CT, Kelaidonis K, Ridgway H, Apostolopoulos V, Matsoukas JM. The Human Myelin Proteome and Sub-Metalloproteome Interaction Map: Relevance to Myelin-Related Neurological Diseases. Brain Sci 2022; 12:brainsci12040434. [PMID: 35447967 PMCID: PMC9029312 DOI: 10.3390/brainsci12040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Myelin in humans is composed of about 80% lipids and 20% protein. Initially, myelin protein composition was considered low, but various recent proteome analyses have identified additional myelin proteins. Although, the myelin proteome is qualitatively and quantitatively identified through complementary proteomic approaches, the corresponding Protein–Protein Interaction (PPI) network of myelin is not yet available. In the present work, the PPI network was constructed based on available experimentally supported protein interactions of myelin in PPI databases. The network comprised 2017 PPIs between 567 myelin proteins. Interestingly, structure-based in silico analysis revealed that 20% of the myelin proteins that are interconnected in the proposed PPI network are metal-binding proteins/enzymes that construct the main sub-PPI network of myelin proteome. Finally, the PPI networks of the myelin proteome and sub-metalloproteome were analyzed ontologically to identify the biochemical processes of the myelin proteins and the interconnectivity of myelin-associated diseases in the interactomes. The presented PPI dataset could provide a useful resource to the scientific community to further our understanding of human myelin biology and serve as a basis for future studies of myelin-related neurological diseases and particular autoimmune diseases such as multiple sclerosis where myelin epitopes are implicated.
Collapse
Affiliation(s)
- Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Correspondence: (C.T.C.); (J.M.M.)
| | | | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 3030, Australia;
- AquaMem Scientific Consultants, Rodeo, NM 88056, USA
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence: (C.T.C.); (J.M.M.)
| |
Collapse
|
5
|
Chasapis CT, Peana M, Bekiari V. Structural Identification of Metalloproteomes in Marine Diatoms, an Efficient Algae Model in Toxic Metals Bioremediation. Molecules 2022; 27:378. [PMID: 35056698 PMCID: PMC8779346 DOI: 10.3390/molecules27020378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The biosorption of pollutants using microbial organisms has received growing interest in the last decades. Diatoms, the most dominant group of phytoplankton in oceans, are (i) pollution tolerant species, (ii) excellent biological indicators of water quality, and (iii) efficient models in assimilation and detoxification of toxic metal ions. Published research articles connecting proteomics with the capacity of diatoms for toxic metal removal are very limited. In this work, we employed a structural based systematic approach to predict and analyze the metalloproteome of six species of marine diatoms: Thalassiosira pseudonana, Phaeodactylum tricornutum, Fragilariopsis cylindrus, Thalassiosira oceanica, Fistulifera solaris, and Pseudo-nitzschia multistriata. The results indicate that the metalloproteome constitutes a significant proportion (~13%) of the total diatom proteome for all species investigated, and the proteins binding non-essential metals (Cd, Hg, Pb, Cr, As, and Ba) are significantly more than those identified for essential metals (Zn, Cu, Fe, Ca, Mg, Mn, Co, and Ni). These findings are most likely related to the well-known toxic metal tolerance of diatoms. In this study, metalloproteomes that may be involved in metabolic processes and in the mechanisms of bioaccumulation and detoxification of toxic metals of diatoms after exposure to toxic metals were identified and described.
Collapse
Affiliation(s)
- Christos T. Chasapis
- Department of Animal Production, Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece;
| |
Collapse
|
6
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
7
|
A SARS-CoV-2 -human metalloproteome interaction map. J Inorg Biochem 2021; 219:111423. [PMID: 33813307 PMCID: PMC7955571 DOI: 10.1016/j.jinorgbio.2021.111423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
The recent pandemic caused by the novel coronavirus resulted in the greatest global health crisis since the Spanish flu pandemic of 1918. There is limited knowledge of whether SARS-CoV-2 is physically associated with human metalloproteins. Recently, high-confidence, experimentally supported protein-protein interactions between SARS-CoV-2 and human proteins were reported. In this work, 58 metalloproteins among these human targets have been identified by a structure-based approach. This study reveals that most human metalloproteins interact with the recently discovered SARS-CoV-2 orf8 protein, whose antibodies are one of the principal markers of SARS-CoV-2 infections. Furthermore, this work provides sufficient evidence to conclude that Zn2+ plays an important role in the interplay between the novel coronavirus and humans. First, the content of Zn-binding proteins in the involved human metalloproteome is significantly higher than that of the other metal ions. Second, a molecular linkage between the identified human Zn-binding proteome with underlying medical conditions, that might increase the risk of severe illness from the SARS-CoV-2 virus, has been found. Likely perturbations of host cellular metal homeostasis by SARS-CoV-2 infection are highlighted.
Collapse
|
8
|
Zhang Y, Zheng J. Bioinformatics of Metalloproteins and Metalloproteomes. Molecules 2020; 25:molecules25153366. [PMID: 32722260 PMCID: PMC7435645 DOI: 10.3390/molecules25153366] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
Trace metals are inorganic elements that are required for all organisms in very low quantities. They serve as cofactors and activators of metalloproteins involved in a variety of key cellular processes. While substantial effort has been made in experimental characterization of metalloproteins and their functions, the application of bioinformatics in the research of metalloproteins and metalloproteomes is still limited. In the last few years, computational prediction and comparative genomics of metalloprotein genes have arisen, which provide significant insights into their distribution, function, and evolution in nature. This review aims to offer an overview of recent advances in bioinformatic analysis of metalloproteins, mainly focusing on metalloprotein prediction and the use of different metals across the tree of life. We describe current computational approaches for the identification of metalloprotein genes and metal-binding sites/patterns in proteins, and then introduce a set of related databases. Furthermore, we discuss the latest research progress in comparative genomics of several important metals in both prokaryotes and eukaryotes, which demonstrates divergent and dynamic evolutionary patterns of different metalloprotein families and metalloproteomes. Overall, bioinformatic studies of metalloproteins provide a foundation for systematic understanding of trace metal utilization in all three domains of life.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-755-2692-2024
| | - Junge Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
9
|
Abstract
Organisms from all kingdoms of life use iron-proteins in a multitude of functional processes. We applied a bioinformatics approach to investigate the human portfolio of iron-proteins. We separated iron-proteins based on the chemical nature of their metal-containing cofactors: individual iron ions, heme cofactors and iron-sulfur clusters. We found that about 2% of human genes encode an iron-protein. Of these, 35% are proteins binding individual iron ions, 48% are heme-binding proteins and 17% are iron-sulfur proteins. More than half of the human iron-proteins have a catalytic function. Indeed, we predict that 6.5% of all human enzymes are iron-dependent. This percentage is quite different for the various enzyme classes. Human oxidoreductases feature the largest fraction of iron-dependent family members (about 37%). The distribution of iron proteins in the various cellular compartments is uneven. In particular, the mitochondrion and the endoplasmic reticulum are enriched in iron-proteins with respect to the average content of the cell. Finally, we observed that genes encoding iron-proteins are more frequently associated to pathologies than the all other human genes on average. The present research provides an extensive overview of iron usage by the human proteome, and highlights several specific features of the physiological role of iron ions in human cells.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy.
| | | | | | | |
Collapse
|
10
|
Peana M, Chasapis CT, Simula G, Medici S, Zoroddu MA. A Model for Manganese interaction with Deinococcus radiodurans proteome network involved in ROS response and defense. J Trace Elem Med Biol 2018; 50:465-473. [PMID: 29449107 DOI: 10.1016/j.jtemb.2018.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 01/28/2023]
Abstract
A complex network of regulatory proteins takes part in the mechanism underlying the radioresistance of Deinoccocus radiodurans bacterium (DR). The interaction of Mn(II) ions with DR-proteins and peptides seems to be responsible for proteins protection from oxidative damage induced by Reactive Oxygen Species during irradiation. In the present work we describe a combined approach of bioinformatic strategies based on structural data and annotation to predict the Mn(II)-binding proteins encoded by the genome of DR and, in parallel, the same predictions for other bacteria were performed; the comparison revealed that, in most of the cases, the content of Mn(II)-binding proteins is significantly higher in radioresistant than in radiosensitive bacteria. Moreover, we report the in silico protein-protein interaction network of the putative Mn(II)-proteins, remodeled in order to enhance the knowledge about the impact of Mn-binding proteins in DR ability to protect also DNA from various damaging agents such as ionizing radiation, UV radiation and oxidative stress.
Collapse
Affiliation(s)
- M Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| | - C T Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), 26504, Patras, Greece.
| | - G Simula
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - S Medici
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - M A Zoroddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
Maret W. Metallomics: The Science of Biometals and Biometalloids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:1-20. [PMID: 29884959 DOI: 10.1007/978-3-319-90143-5_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallomics, a discipline integrating sciences that address the biometals and biometalloids, provides new opportunities for discoveries. As part of a systems biology approach, it draws attention to the importance of many chemical elements in biochemistry. Traditionally, biochemistry has treated life as organic chemistry, separating it from inorganic chemistry, considered a field reserved for investigating the inanimate world. However, inorganic chemistry is part of the chemistry of life, and metallomics contributes by showing the importance of a neglected fifth branch of building blocks in biochemistry. Metallomics adds chemical elements/metals to the four building blocks of biomolecules and the fields of their studies: carbohydrates (glycome), lipids (lipidome), proteins (proteome), and nucleotides (genome). The realization that non-essential elements are present in organisms in addition to essential elements represents a certain paradigm shift in our thinking, as it stipulates inquiries into the functional implications of virtually all the natural elements. This article discusses opportunities arising from metallomics for a better understanding of human biology and health. It looks at a biological periodic system of the elements as a sum of metallomes and focuses on the major roles of metals in about 30-40% of all proteins, the metalloproteomes. It emphasizes the importance of zinc and iron biology and discusses why it is important to investigate non-essential metal ions, what bioinformatics approaches can contribute to understanding metalloproteins, and why metallomics has a bright future in the many dimensions it covers.
Collapse
Affiliation(s)
- Wolfgang Maret
- Metal Metabolism Group, Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
12
|
Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment. Front Microbiol 2018; 9:2038. [PMID: 30233524 PMCID: PMC6129605 DOI: 10.3389/fmicb.2018.02038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Desulfatiglans-related organisms comprise one of the most abundant deltaproteobacterial lineages in marine sediments where they occur throughout the sediment column in a gradient of increasing sulfate and organic carbon limitation with depth. Characterized Desulfatiglans isolates are dissimilatory sulfate reducers able to grow by degrading aromatic hydrocarbons. The ecophysiology of environmental Desulfatiglans-populations is poorly understood, however, possibly utilization of aromatic compounds may explain their predominance in marine subsurface sediments. We sequenced and analyzed seven Desulfatiglans-related single-cell genomes (SAGs) from Aarhus Bay sediments to characterize their metabolic potential with regard to aromatic compound degradation and energy metabolism. The average genome assembly size was 1.3 Mbp and completeness estimates ranged between 20 and 50%. Five of the SAGs (group 1) originated from the sulfate-rich surface part of the sediment while two (group 2) originated from sulfate-depleted subsurface sediment. Based on 16S rRNA gene amplicon sequencing group 2 SAGs represent the more frequent types of Desulfatiglans-populations in Aarhus Bay sediments. Genes indicative of aromatic compound degradation could be identified in both groups, but the two groups were metabolically distinct with regard to energy conservation. Group 1 SAGs carry a full set of genes for dissimilatory sulfate reduction, whereas the group 2 SAGs lacked any genetic evidence for sulfate reduction. The latter may be due to incompleteness of the SAGs, but as alternative energy metabolisms group 2 SAGs carry the genetic potential for growth by acetogenesis and fermentation. Group 1 SAGs encoded reductive dehalogenase genes, allowing them to access organohalides and possibly conserve energy by their reduction. Both groups possess sulfatases unlike their cultured relatives allowing them to utilize sulfate esters as source of organic carbon and sulfate. In conclusion, the uncultivated marine Desulfatiglans populations are metabolically diverse, likely reflecting different strategies for coping with energy and sulfate limitation in the subsurface seabed.
Collapse
Affiliation(s)
- Lara M Jochum
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Ian P G Marshall
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Chasapis CT. Interactions between metal binding viral proteins and human targets as revealed by network-based bioinformatics. J Inorg Biochem 2018; 186:157-161. [DOI: 10.1016/j.jinorgbio.2018.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/24/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
|
14
|
Valasatava Y, Rosato A, Furnham N, Thornton JM, Andreini C. To what extent do structural changes in catalytic metal sites affect enzyme function? J Inorg Biochem 2018; 179:40-53. [PMID: 29161638 PMCID: PMC5760197 DOI: 10.1016/j.jinorgbio.2017.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/09/2023]
Abstract
About half of known enzymatic reactions involve metals. Enzymes belonging to the same superfamily often evolve to catalyze different reactions on the same structural scaffold. The work presented here investigates how functional differentiation, within superfamilies that contain metalloenzymes, relates to structural changes at the catalytic metal site. In general, when the catalytic metal site is unchanged across the enzymes of a superfamily, the functional differentiation within the superfamily tends to be low and the mechanism conserved. Conversely, all types of structural changes in the metal binding site are observed for superfamilies with high functional differentiation. Overall, the catalytic role of the metal ions appears to be one of the most conserved features of the enzyme mechanism within metalloenzyme superfamilies. In particular, when the catalytic role of the metal ion does not involve a redox reaction (i.e. there is no exchange of electrons with the substrate), this role is almost always maintained even when the site undergoes significant structural changes. In these enzymes, functional diversification is most often associated with modifications in the surrounding protein matrix, which has changed so much that the enzyme chemistry is significantly altered. On the other hand, in more than 50% of the examples where the metal has a redox role in catalysis, changes at the metal site modify its catalytic role. Further, we find that there are no examples in our dataset where metal sites with a redox role are lost during evolution. SYNOPSIS In this paper we investigate how functional diversity within superfamilies of metalloenzymes relates to structural changes at the catalytic metal site. Evolution tends to strictly conserve the metal site. When changes occur, they do not modify the catalytic role of non-redox metals whereas they affect the role of redox-active metals.
Collapse
Affiliation(s)
- Yana Valasatava
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Janet M Thornton
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Claudia Andreini
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
15
|
Chasapis CT. Shared gene-network signatures between the human heavy metal proteome and neurological disorders and cancer types. Metallomics 2018; 10:1678-1686. [DOI: 10.1039/c8mt00271a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, for the first time, the human heavy metal proteome was predicted.
Collapse
Affiliation(s)
- Christos T. Chasapis
- Institute of Chemical Engineering Sciences
- Foundation for Research & Technology – Hellas (FORTH/ICE-HT)
- Patras
- Greece
| |
Collapse
|
16
|
Zhan Z, Li L, Tian S, Zhen X, Li Y. Prediction of chemical biodegradability using computational methods. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1328556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhixiong Zhan
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, P.R. China
| | - Linlang Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Sheng Tian
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, P.R. China
| |
Collapse
|
17
|
Chasapis CT, Andreini C, Georgiopolou AK, Stefanidou ME, Vlamis-Gardikas A. Identification of the zinc, copper and cadmium metalloproteome of the protozoon Tetrahymena thermophila by systematic bioinformatics. Arch Microbiol 2017; 199:1141-1149. [DOI: 10.1007/s00203-017-1385-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022]
|
18
|
Andreini C, Rosato A, Banci L. The Relationship between Environmental Dioxygen and Iron-Sulfur Proteins Explored at the Genome Level. PLoS One 2017; 12:e0171279. [PMID: 28135316 PMCID: PMC5279795 DOI: 10.1371/journal.pone.0171279] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022] Open
Abstract
About 2 billion years ago, the atmosphere of the Earth experienced a great change due to the buildup of dioxygen produced by photosynthetic organisms. This transition caused a reduction of iron bioavailability and at the same time exposed living organisms to the threat of oxidative stress. Iron-sulfur (Fe-S) clusters require iron ions for their biosynthesis and are labile if exposed to reactive oxygen species. To assess how the above transition influenced the usage of Fe-S clusters by organisms, we compared the distribution of the Fe-S proteins encoded by the genomes of more than 400 prokaryotic organisms as a function of their dioxygen requirements. Aerobic organisms use less Fe-S proteins than the majority of anaerobic organisms with a similar genome size. Furthermore, aerobes have evolved specific Fe-S proteins that bind the less iron-demanding and more chemically stable Fe2S2 clusters while reducing the number of Fe4S4-binding proteins in their genomes. However, there is a shared core of Fe-S protein families composed mainly by Fe4S4-binding proteins. Members of these families are present also in humans. The distribution of human Fe-S proteins within cell compartments shows that mitochondrial proteins are inherited from prokaryotic proteins of aerobes, whereas nuclear and cytoplasmic Fe-S proteins are inherited from anaerobic organisms.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center, University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Valasatava Y, Rosato A, Banci L, Andreini C. MetalPredator: a web server to predict iron-sulfur cluster binding proteomes. Bioinformatics 2016; 32:2850-2. [PMID: 27273670 DOI: 10.1093/bioinformatics/btw238] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The prediction of the iron-sulfur proteome is highly desirable for biomedical and biological research but a freely available tool to predict iron-sulfur proteins has not been developed yet. RESULTS We developed a web server to predict iron-sulfur proteins from protein sequence(s). This tool, called MetalPredator, is able to process complete proteomes rapidly with high recall and precision. AVAILABILITY AND IMPLEMENTATION The web server is freely available at: http://metalweb.cerm.unifi.it/tools/metalpredator/ CONTACT andreini@cerm.unifi.it SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Antonio Rosato
- Magnetic Resonance Center (CERM) Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM) Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Claudia Andreini
- Magnetic Resonance Center (CERM) Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Minimal Functional Sites in Metalloproteins and Their Usage in Structural Bioinformatics. Int J Mol Sci 2016; 17:ijms17050671. [PMID: 27153067 PMCID: PMC4881497 DOI: 10.3390/ijms17050671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 04/18/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022] Open
Abstract
Metal ions play a functional role in numerous biochemical processes and cellular pathways. Indeed, about 40% of all enzymes of known 3D structure require a metal ion to be able to perform catalysis. The interactions of the metals with the macromolecular framework determine their chemical properties and reactivity. The relevant interactions involve both the coordination sphere of the metal ion and the more distant interactions of the so-called second sphere, i.e., the non-bonded interactions between the macromolecule and the residues coordinating the metal (metal ligands). The metal ligands and the residues in their close spatial proximity define what we call a minimal functional site (MFS). MFSs can be automatically extracted from the 3D structures of metal-binding biological macromolecules deposited in the Protein Data Bank (PDB). They are 3D templates that describe the local environment around a metal ion or metal cofactor and do not depend on the overall macromolecular structure. MFSs provide a different view on metal-binding proteins and nucleic acids, completely focused on the metal. Here we present different protocols and tools based upon the concept of MFS to obtain deeper insight into the structural and functional properties of metal-binding macromolecules. We also show that structure conservation of MFSs in metalloproteins relates to local sequence similarity more strongly than to overall protein similarity.
Collapse
|
21
|
Andreini C, Banci L, Rosato A. Exploiting Bacterial Operons To Illuminate Human Iron–Sulfur Proteins. J Proteome Res 2016; 15:1308-22. [DOI: 10.1021/acs.jproteome.6b00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center and ‡Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Bailão EFLC, Lima PDS, Silva-Bailão MG, Bailão AM, Fernandes GDR, Kosman DJ, Soares CMDA. Paracoccidioides spp. ferrous and ferric iron assimilation pathways. Front Microbiol 2015; 6:821. [PMID: 26441843 PMCID: PMC4585334 DOI: 10.3389/fmicb.2015.00821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation.
Collapse
Affiliation(s)
- Elisa Flávia L C Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Mirelle G Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás Goiânia, Brazil
| | | | - Daniel J Kosman
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo Buffalo, NY, USA
| | | |
Collapse
|
23
|
Tristão GB, Assunção LDP, Dos Santos LPA, Borges CL, Silva-Bailão MG, Soares CMDA, Cavallaro G, Bailão AM. Predicting copper-, iron-, and zinc-binding proteins in pathogenic species of the Paracoccidioides genus. Front Microbiol 2015; 5:761. [PMID: 25620964 PMCID: PMC4288321 DOI: 10.3389/fmicb.2014.00761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/13/2014] [Indexed: 12/18/2022] Open
Abstract
Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the copper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03, and Pb18). The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe-, and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3 and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe, and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens.
Collapse
Affiliation(s)
- Gabriel B Tristão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Leandro do Prado Assunção
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Luiz Paulo A Dos Santos
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Clayton L Borges
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Mirelle Garcia Silva-Bailão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Célia M de Almeida Soares
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| | - Gabriele Cavallaro
- Magnetic Resonance Center, University of Florence Sesto Fiorentino, Italy
| | - Alexandre M Bailão
- Biochemistry and Molecular Biology, Laboratório de Biologia Molecular, Universidade Federal de Goiás Goiânia, Brazil
| |
Collapse
|
24
|
Leoni G, Rosato A, Perozzi G, Murgia C. Zinc proteome interaction network as a model to identify nutrient-affected pathways in human pathologies. GENES AND NUTRITION 2014; 9:436. [PMID: 25367142 DOI: 10.1007/s12263-014-0436-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/08/2014] [Indexed: 12/22/2022]
Abstract
Zinc is an essential micronutrient playing fundamental roles in cellular metabolism. It acts mostly through binding a wide range of proteins, thus affecting a broad spectrum of biological processes, which include cell division, growth and differentiation. Full annotation of zinc-binding proteins showed them to represent about 10 % of the human proteome, with over 300 enzymes containing zinc ions within their catalytic domains. Also, hundreds of key regulatory proteins, including transcription factors, require zinc for their activity. In this study, the whole set of zinc-binding proteins together with their direct interactors was listed and defined as the zinc proteome (ZNP). We interrogated pathway analysis tools to identify the cellular processes that are predicted to be affected by zinc availability. Network and functional enrichment analyses highlighted biological processes potentially affected by deregulated zinc homeostasis. This computational approach was also tested on a real case study: The possible involvement of ZNP network proteins in Crohn's disease pathogenesis was assessed on genes transcriptionally regulated in the intestine of patients affected by this condition. The analysis produced a network of pathways likely to be influenced by zinc and associated with Crohn's disease. These results highlight a central role for zinc in the tissue remodeling process which occurs upon gut inflammation, pointing at novel disease pathways whose effect could be worsened by zinc dyshomeostasis and impaired zinc fluxes in specific damaged areas. Overall, our computational approach could provide novel insights into pathological conditions and could therefore be used to drive mechanistic research in under-investigated fields of research. An interactive version of the determined ZNP network is available at URL http://93.63.165.11/ZNnetwork/ .
Collapse
Affiliation(s)
- Guido Leoni
- CRA-NUT, Food and Nutrition Research Center, Agricultural Research Council, Via Ardeatina 546, 00178, Rome, Italy
| | | | | | | |
Collapse
|
25
|
Cao Q, Leung KM. Prediction of Chemical Biodegradability Using Support Vector Classifier Optimized with Differential Evolution. J Chem Inf Model 2014; 54:2515-23. [DOI: 10.1021/ci500323t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Cao
- Department
of Training, Logistical Engineering University, Chongqing 401311, China
- Department
of Computer Science and Engineering, Polytechnic School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - K. M. Leung
- Department
of Computer Science and Engineering, Polytechnic School of Engineering, New York University, Brooklyn, New York 11201, United States
| |
Collapse
|
26
|
Cheng F, Ikenaga Y, Zhou Y, Yu Y, Li W, Shen J, Du Z, Chen L, Xu C, Liu G, Lee PW, Tang Y. In silico assessment of chemical biodegradability. J Chem Inf Model 2012; 52:655-69. [PMID: 22332973 DOI: 10.1021/ci200622d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biodegradation is the principal environmental dissipation process. Due to a lack of comprehensive experimental data, high study cost and time-consuming, in silico approaches for assessing the biodegradable profiles of chemicals are encouraged and is an active current research topic. Here we developed in silico methods to estimate chemical biodegradability in the environment. At first 1440 diverse compounds tested under the Japanese Ministry of International Trade and Industry (MITI) protocol were used. Four different methods, namely support vector machine, k-nearest neighbor, naïve Bayes, and C4.5 decision tree, were used to build the combinatorial classification probability models of ready versus not ready biodegradability using physicochemical descriptors and fingerprints separately. The overall predictive accuracies of the best models were more than 80% for the external test set of 164 diverse compounds. Some privileged substructures were further identified for ready or not ready biodegradable chemicals by combining information gain and substructure fragment analysis. Moreover, 27 new predicted chemicals were selected for experimental assay through the Japanese MITI test protocols, which validated that all 27 compounds were predicted correctly. The predictive accuracies of our models outperform the commonly used software of the EPI Suite. Our study provided critical tools for early assessment of biodegradability of new organic chemicals in environmental hazard assessment.
Collapse
Affiliation(s)
- Feixiong Cheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Banci L, Bertini I, Cavallaro G, Ciofi-Baffoni S. Seeking the determinants of the elusive functions of Sco proteins. FEBS J 2011; 278:2244-62. [DOI: 10.1111/j.1742-4658.2011.08141.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|