1
|
Alvarado YJ, González-Paz L, Paz JL, Loroño-González MA, Santiago Contreras J, Lossada C, Vivas A, Marrero-Ponce Y, Martinez-Rios F, Rodriguez-Lugo P, Balladores Y, Vera-Villalobos J. Biological Implications of the Intrinsic Deformability of Human Acetylcholinesterase Induced by Diverse Compounds: A Computational Study. BIOLOGY 2024; 13:1065. [PMID: 39765732 PMCID: PMC11672903 DOI: 10.3390/biology13121065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
The enzyme acetylcholinesterase (AChE) plays a crucial role in the termination of nerve impulses by hydrolyzing the neurotransmitter acetylcholine (ACh). The inhibition of AChE has emerged as a promising therapeutic approach for the management of neurological disorders such as Lewy body dementia and Alzheimer's disease. The potential of various compounds as AChE inhibitors was investigated. In this study, we evaluated the impact of natural compounds of interest on the intrinsic deformability of human AChE using computational biophysical analysis. Our approach incorporates classical dynamics, elastic networks (ENM and NMA), statistical potentials (CUPSAT and SWOTein), energy frustration (Frustratometer), and volumetric cavity analyses (MOLE and PockDrug). The results revealed that cyanidin induced significant changes in the flexibility and rigidity of AChE, especially in the distribution and volume of internal cavities, compared to model inhibitors such as TZ2PA6, and through a distinct biophysical-molecular mechanism from the other inhibitors considered. These findings suggest that cyanidin could offer potential mechanistic pathways for future research and applications in the development of new treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ysaías J. Alvarado
- Laboratorio de Química Biofísica Experimental y Teórica (LQBET), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (Y.J.A.); (P.R.-L.)
| | - Lenin González-Paz
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Marcos A. Loroño-González
- Departamento Académico de Fisicoquímica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Julio Santiago Contreras
- Departamento Académico de Química Orgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Carla Lossada
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - Alejandro Vivas
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, México or (Y.M.-P.); (F.M.-R.)
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Universidad San Francisco de Quito (USFQ), Escuela de Medicina, Edificio de Especialidades Médicas, Diego de Robles y vía interoceánica, Quito 170157, Ecuador
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, México or (Y.M.-P.); (F.M.-R.)
| | - Patricia Rodriguez-Lugo
- Laboratorio de Química Biofísica Experimental y Teórica (LQBET), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (Y.J.A.); (P.R.-L.)
| | - Yanpiero Balladores
- Laboratorio de Física de la Materia Condensada, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, República Bolivariana de Venezuela;
| | - Joan Vera-Villalobos
- Laboratorio de Análisis Químico Instrumental (LAQUINS), Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Escuela Superior Politécnica del Litoral, Guayaquil ECO90211, Ecuador;
| |
Collapse
|
2
|
Basciu A, Athar M, Kurt H, Neville C, Malloci G, Muredda FC, Bosin A, Ruggerone P, Bonvin AMJJ, Vargiu AV. Predicting binding events in very flexible, allosteric, multi-domain proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597018. [PMID: 38895346 PMCID: PMC11185556 DOI: 10.1101/2024.06.02.597018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Knowledge of the structures formed by proteins and small molecules is key to understand the molecular principles of chemotherapy and for designing new and more effective drugs. During the early stage of a drug discovery program, it is customary to predict ligand-protein complexes in silico , particularly when screening large compound databases. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology to generate bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites by exploiting only information on the unbound structure and the putative binding sites. The protocol is validated on the paradigm enzyme adenylate kinase, for which we generated a significant fraction of bound-like structures. A fraction of these conformations, employed in ensemble-docking calculations, allowed to find native-like poses of substrates and inhibitors (binding to the active form of the enzyme), as well as catalytically incompetent analogs (binding the inactive form). Our protocol provides a general framework for the generation of bound-like conformations of challenging drug targets that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein's activity. We foresee applications in virtual screening, in the prediction of the impact of amino acid mutations on structure and dynamics, and in protein engineering.
Collapse
|
3
|
Roy A, Sharma S, Paul I, Ray S. Molecular hybridization assisted multi-technique approach for designing USP21 inhibitors to halt catalytic triad-mediated nucleophilic attack and suppress pancreatic ductal adenocarcinoma progression: A molecular dynamics study. Comput Biol Med 2024; 182:109096. [PMID: 39270458 DOI: 10.1016/j.compbiomed.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
AIMS Pancreatic cancer, the 12th-most common cancer, globally, is highly challenging to treat due to its complex epigenetic, metabolic, and genomic characteristics. In pancreatic ductal adenocarcinoma, USP21 acts as an oncogene by stabilizing the long isoform of Transcription Factor 7, thereby activating the Wnt signaling pathway. This study aims to inhibit activation of this pathway through computer-aided drug discovery. Accordingly, four libraries of compounds were designed to target the USP21's catalytic domain (Cys221, His518, Asp534), responsible for its deubiquitinating activity. MAIN METHODS Utilizing an array of computer-aided drug design methodologies, such as molecular docking, virtual screening, principal component analysis, molecular dynamics simulation, and dynamic cross-correlation matrix, the structural and functional characteristics of the USP21-inhibitor complex were examined. Following the evaluation of the binding affinities, 20 potential ligands were selected, and the best ligand was subjected to additional molecular dynamics simulation study. KEY FINDINGS The results indicated that the ligand-bound USP21 exhibited reduced structural fluctuations compared to the unbound form, as evident from RMSD, RMSF, Rg, and SASA graphs. ADMET analysis of the top ligand showed promising pharmacokinetic and pharmacodynamic profiles, good bioavailability, and low toxicity. The stable conformations of the proposed drug when bound to their target cavities indicate a robust binding affinity of -9.3 kcal/mol. The drug exhibits an elevated pKi value of 6.82, a noteworthy pIC50 value of 5.972, and a pKd value of 6.023 proving its high affinity and inhibitory potential towards the target. SIGNIFICANCE In-vitro testing of the top compound (MOLHYB-0436) could lead to its use as a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sayan Sharma
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
4
|
Roy A, Ray S. Traversing DNA-Protein Interactions Between Mesophilic and Thermophilic Bacteria: Implications from Their Cold Shock Response. Mol Biotechnol 2024; 66:824-844. [PMID: 36905463 DOI: 10.1007/s12033-023-00711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Cold shock proteins (CSPs) are small, acidic proteins which contain a conserved nucleic acid-binding domain. These perform mRNA translation acting as "RNA chaperones" when triggered by low temperatures initiating their cold shock response. CSP- RNA interactions have been predominantly studied. Our focus will be CSP-DNA interaction examination, to analyse the diverse interaction patterns such as electrostatic, hydrogen and hydrophobic bonding in both thermophilic and mesophilic bacteria. The differences in the molecular mechanism of these contrasting bacterial proteins are studied. Computational techniques such as modelling, energy refinement, simulation and docking were operated to obtain data for comparative analysis. The thermostability factors which stabilise a thermophilic bacterium and their effect on their molecular regulation is investigated. Conformational deviation, atomic residual fluctuations, binding affinity, Electrostatic energy and Solvent Accessibility energy were determined during stimulation along with their conformational study. The study revealed that mesophilic bacteria E. coli CSP have higher binding affinity to DNA than thermophilic G. stearothermophilus. This was further evident by low conformation deviation and atomic fluctuations during simulation.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
5
|
Khatua S, Roy A, Sen P, Ray S. Elucidation of the structural dynamics of mutations in PHB2 protein associated with growth suppression and cancer progression. Gene 2024; 890:147820. [PMID: 37739195 DOI: 10.1016/j.gene.2023.147820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Prohibitin is a multifunctional protein that plays an important role in numerous cellular processes. Membrane-associated mitochondrial prohibitin complex is made up of two subunits, PHB1 and PHB2 which are ubiquitously expressed and analogous to each other. High levels of prohibitin expression have consequently been found in esophageal cancer, endometrial adenocarcinoma, gastric cancer, hepatocellular carcinoma, breast cancer and bladder cancer. The aim of this study is to analyse two-point mutation PHB2_MT1(I → A) and PHB2_MT2(I → P), their effect on PHB2 protein and its effect on formation of mitochondrial complex. It is a residual level study, based on current experimental validation. To establish the effects of the two-point mutations, computational approaches such as molecular modelling, molecular docking, normal mode simulation, molecular dynamics simulations and MM/GBSA were used. An analysis of the energy dynamics of both unbound and complex proteins was conducted to elucidate how mutations impact the energy distribution of PHB2. Our study confirmed that the two mutations decreased the overall stability of PHB2. This was evidenced by heightened atomic fluctuations within the mutated region, accompanied by elevated deviations observed in RMSD and Rg values. Furthermore, these mutations were correlated with a decline in the organization of secondary structural elements. The mutations in PHB2_MT1 and PHB2_MT2 resulted in formation a less stable prohibitin complex. Thus, PHB1 and PHB2 may act as molecular target or novel biomarkers for therapeutic intervention in numerous forms of malignancies.
Collapse
Affiliation(s)
- Susmita Khatua
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Pritha Sen
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
6
|
Rizzuti B, Abian O, Velazquez-Campoy A, Neira JL. Conformational Stability of the N-Terminal Region of MDM2. Molecules 2023; 28:7578. [PMID: 38005300 PMCID: PMC10673428 DOI: 10.3390/molecules28227578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MDM2 is an E3 ubiquitin ligase which is crucial for the degradation and inhibition of the key tumor-suppressor protein p53. In this work, we explored the stability and the conformational features of the N-terminal region of MDM2 (N-MDM2), through which it binds to the p53 protein as well as other protein partners. The isolated domain possessed a native-like conformational stability in a narrow pH range (7.0 to 10.0), as shown by intrinsic and 8-anilinonapthalene-1-sulfonic acid (ANS) fluorescence, far-UV circular dichroism (CD), and size exclusion chromatography (SEC). Guanidinium chloride (GdmCl) denaturation followed by intrinsic and ANS fluorescence, far-UV CD and SEC at physiological pH, and differential scanning calorimetry (DSC) and thermo-fluorescence experiments showed that (i) the conformational stability of isolated N-MDM2 was very low; and (ii) unfolding occurred through the presence of several intermediates. The presence of a hierarchy in the unfolding intermediates was also evidenced through DSC and by simulating the unfolding process with the help of computational techniques based on constraint network analysis (CNA). We propose that the low stability of this protein is related to its inherent flexibility and its ability to interact with several molecular partners through different routes.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L. Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI)—Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
7
|
Roy A, Ray S. An in-silico study to understand the effect of lineage diversity on cold shock response: unveiling protein-RNA interactions among paralogous CSPs of E. coli. 3 Biotech 2023; 13:236. [PMID: 37333716 PMCID: PMC10272043 DOI: 10.1007/s13205-023-03656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
Cold shock proteins (CSPs) are small, cytoplasmic, ubiquitous and acidic proteins. They have a single nucleic acid-binding domain and pose as "RNA chaperones" by binding to ssRNA in a low sequence specificity and cooperative manner. They are found in a family of nine homologous CSPs in E. coli. CspA, CspB, CspG and CspI are immensely cold inducible, CspE and CspC are consistently released at usual physiological temperatures and CspD is also induced under nutrient stress. The paralogous protein pairs CSPA/CSPB, CSPC/CSPE, CSPG/CSPI and CSPF/CSPH were first identified. The eight proteins were subjected to molecular modelling and simulation to obtain the most stable conformation in correspondence to their equilibrated RMSD and RMSF graph. The results were compared and it was observed that CSPB, CSPE, CSPF and CSPI were more stable than their paralogous partner conforming to their near equilibrated RMSD curve and low fluctuating RMSF graph. The paralogous proteins were docked with ssRNA and simultaneously binding affinity, interaction types, electrostatic surface potential, hydrophobicity, conformational analysis and SASA were calculated to minutely study and understand the molecular mechanism initiated by these proteins. It was found that CSPB, CSPC, CSPH and CSPI displayed higher affinity towards ssRNA than their paralogous partner. The results further corroborated with ΔGmmgbsa and ΔGfold energy. Between the paralogous pairs CSPC, CSPH and CSPI exhibited higher binding free energy than their partner. Further, CSPB, CSPC and CSPI exhibited higher folding free energy than their paralogous pair. CSPH exhibited highest ΔGmmgbsa of - 522.2 kcal/mol and lowest was displayed by CSPG of around - 309.3 kcal/mol. Highest number of mutations were recognised in CSPF/CSPH and CSPG/CSPI pair. Difference in interaction pattern was maximum in CSPF/CSPH owing to their high number of non-synonymous substitutions. Maximum difference in surface electrostatic potential was observed in case of CSPA, CSPG and CSPF. This research work emphasizes on discerning the molecular mechanism initiated by these proteins with a structural, mutational and functional approach. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03656-2.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
8
|
Delgado A, Vera-Villalobos J, Paz JL, Lossada C, Hurtado-León ML, Marrero-Ponce Y, Toro-Mendoza J, Alvarado YJ, González-Paz L. Macromolecular crowding impact on anti-CRISPR AcrIIC3/NmeCas9 complex: Insights from scaled particle theory, molecular dynamics, and elastic networks models. Int J Biol Macromol 2023:125113. [PMID: 37257544 DOI: 10.1016/j.ijbiomac.2023.125113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
The coupling of Cas9 and its inhibitor AcrIIC3, both from the bacterium Neisseria meningitidis (Nme), form a homodimer of the (NmeCas9/AcrIIC3)2 type. This coupling was studied to assess the impact of their interaction with the crowders in the following environments: (1) homogeneous crowded, (2) heterogeneous, and (3) microheterogeneous cytoplasmic. For this, statistical thermodynamic models based on the scaled particle theory (SPT) were used, considering the attractive and repulsive protein-crowders contributions and the stability of the formation of spherocylindrical homodimers and the effects of changes in the size of spherical dimers were estimated. Studies based on models of dynamics, elastic networks, and statistical potentials to the formation of complexes NmeCas9/AcrIIC3 using PEG as the crowding agent support the predictions from SPT. Macromolecular crowding stabilizes the formation of the dimers, being more significant when the attractive protein-crowder interactions are weaker and the crowders are smaller. The coupling is favored towards the formation of spherical and compact dimers due to crowding addition (excluded-volume effects) and the thermodynamic stability of the dimers is markedly dependent on the size of the crowders. These results support the experimental mechanistic proposal of inhibition of NmeCas9 mediated by AcrIIC3.
Collapse
Affiliation(s)
- Ariana Delgado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica Teórica y Experimental (LQBTE), 4001 Maracaibo, Zulia, Venezuela; Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Química, Laboratorio de Química Teórica y Computacional (LQTC), 4001 Maracaibo, Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Biocomputación (LB), 4001 Maracaibo, Zulia, Venezuela
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Venezuela
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito 170157, Pichincha, Ecuador; Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22860, Mexico; Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Pichincha, Ecuador
| | - Jhoan Toro-Mendoza
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica Teórica y Experimental (LQBTE), 4001 Maracaibo, Zulia, Venezuela
| | - Ysaías J Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica Teórica y Experimental (LQBTE), 4001 Maracaibo, Zulia, Venezuela.
| | - Lenin González-Paz
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Laboratorio de Biocomputación (LB), 4001 Maracaibo, Zulia, Venezuela.
| |
Collapse
|
9
|
González-Paz L, Lossada C, Hurtado-León ML, Fernández-Materán FV, Paz JL, Parvizi S, Cardenas Castillo RE, Romero F, Alvarado YJ. Intrinsic Dynamics of the ClpXP Proteolytic Machine Using Elastic Network Models. ACS OMEGA 2023; 8:7302-7318. [PMID: 36873006 PMCID: PMC9979342 DOI: 10.1021/acsomega.2c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Abstract
ClpXP complex is an ATP-dependent mitochondrial matrix protease that binds, unfolds, translocates, and subsequently degrades specific protein substrates. Its mechanisms of operation are still being debated, and several have been proposed, including the sequential translocation of two residues (SC/2R), six residues (SC/6R), and even long-pass probabilistic models. Therefore, it has been suggested to employ biophysical-computational approaches that can determine the kinetics and thermodynamics of the translocation. In this sense, and based on the apparent inconsistency between structural and functional studies, we propose to apply biophysical approaches based on elastic network models (ENM) to study the intrinsic dynamics of the theoretically most probable hydrolysis mechanism. The proposed models ENM suggest that the ClpP region is decisive for the stabilization of the ClpXP complex, contributing to the flexibility of the residues adjacent to the pore, favoring the increase in pore size and, therefore, with the energy of interaction of its residues with a larger portion of the substrate. It is predicted that the complex may undergo a stable configurational change once assembled and that the deformability of the system once assembled is oriented, to increase the rigidity of the domains of each region (ClpP and ClpX) and to gain flexibility of the pore. Our predictions could suggest under the conditions of this study the mechanism of the interaction of the system, of which the substrate passes through the unfolding of the pore in parallel with a folding of the bottleneck. The variations in the distance calculated by molecular dynamics could allow the passage of a substrate with a size equivalent to ∼3 residues. The theoretical behavior of the pore and the stability and energy of binding to the substrate based on ENM models suggest that in this system, there are thermodynamic, structural, and configurational conditions that allow a possible translocation mechanism that is not strictly sequential.
Collapse
Affiliation(s)
- Lenin González-Paz
- Facultad
Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio
de Genética y Biología Molecular (LGBM), Universidad del Zulia (LUZ), 4001 Maracaibo, Zulia, República Bolivariana
de Venezuela
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - Carla Lossada
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - Maria Laura Hurtado-León
- Facultad
Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio
de Genética y Biología Molecular (LGBM), Universidad del Zulia (LUZ), 4001 Maracaibo, Zulia, República Bolivariana
de Venezuela
| | - Francelys V. Fernández-Materán
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - José Luis Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, 15081 Lima, Perú
| | - Shayan Parvizi
- Pulmonary,
Critical Care and Sleep Medicine, Baylor
College of Medicine, Houston, Texas 77030, United States
| | | | - Freddy Romero
- Pulmonary,
Critical Care and Sleep Medicine, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Ysaias J. Alvarado
- Centro
de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica
Teórica y Experimental (LQBTE), Instituto
Venezolano de Investigaciones Cientificas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| |
Collapse
|
10
|
Tucs A, Tsuda K, Sljoka A. Probing Conformational Dynamics of Antibodies with Geometric Simulations. Methods Mol Biol 2023; 2552:125-139. [PMID: 36346589 DOI: 10.1007/978-1-0716-2609-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter describes the application of constrained geometric simulations for prediction of antibody structural dynamics. We utilize constrained geometric simulations method FRODAN, which is a low computational complexity alternative to molecular dynamics (MD) simulations that can rapidly explore flexible motions in protein structures. FRODAN is highly suited for conformational dynamics analysis of large proteins, complexes, intrinsically disordered proteins, and dynamics that occurs on longer biologically relevant time scales that are normally inaccessible to classical MD simulations. This approach predicts protein dynamics at an all-atom scale while retaining realistic covalent bonding, maintaining dihedral angles in energetically good conformations while avoiding steric clashes in addition to performing other geometric and stereochemical criteria checks. In this chapter, we apply FRODAN to showcase its applicability for probing functionally relevant dynamics of IgG2a, including large-amplitude domain-domain motions and motions of complementarity determining region (CDR) loops. As was suggested in previous experimental studies, our simulations show that antibodies can explore a large range of conformational space.
Collapse
Affiliation(s)
- Andrejs Tucs
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Koji Tsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
- Department of Chemistry, York University, Toronto, Canada.
| |
Collapse
|
11
|
Hsueh SCC, Nijland M, Peng X, Hilton B, Plotkin SS. First Principles Calculation of Protein-Protein Dimer Affinities of ALS-Associated SOD1 Mutants. Front Mol Biosci 2022; 9:845013. [PMID: 35402516 PMCID: PMC8988244 DOI: 10.3389/fmolb.2022.845013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cu,Zn superoxide dismutase (SOD1) is a 32 kDa homodimer that converts toxic oxygen radicals in neurons to less harmful species. The dimerization of SOD1 is essential to the stability of the protein. Monomerization increases the likelihood of SOD1 misfolding into conformations associated with aggregation, cellular toxicity, and neuronal death in familial amyotrophic lateral sclerosis (fALS). The ubiquity of disease-associated mutations throughout the primary sequence of SOD1 suggests an important role of physicochemical processes, including monomerization of SOD1, in the pathology of the disease. Herein, we use a first-principles statistical mechanics method to systematically calculate the free energy of dimer binding for SOD1 using molecular dynamics, which involves sequentially computing conformational, orientational, and separation distance contributions to the binding free energy. We consider the effects of two ALS-associated mutations in SOD1 protein on dimer stability, A4V and D101N, as well as the role of metal binding and disulfide bond formation. We find that the penalty for dimer formation arising from the conformational entropy of disordered loops in SOD1 is significantly larger than that for other protein-protein interactions previously considered. In the case of the disulfide-reduced protein, this leads to a bound complex whose formation is energetically disfavored. Somewhat surprisingly, the loop free energy penalty upon dimerization is still significant for the holoprotein, despite the increased structural order induced by the bound metal cations. This resulted in a surprisingly modest increase in dimer binding free energy of only about 1.5 kcal/mol upon metalation of the protein, suggesting that the most significant stabilizing effects of metalation are on folding stability rather than dimer binding stability. The mutant A4V has an unstable dimer due to weakened monomer-monomer interactions, which are manifested in the calculation by a separation free energy surface with a lower barrier. The mutant D101N has a stable dimer partially due to an unusually rigid β-barrel in the free monomer. D101N also exhibits anticooperativity in loop folding upon dimerization. These computational calculations are, to our knowledge, the most quantitatively accurate calculations of dimer binding stability in SOD1 to date.
Collapse
Affiliation(s)
- Shawn C. C. Hsueh
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Mark Nijland
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, Netherlands
| | - Xubiao Peng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, China
| | - Benjamin Hilton
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Imperial College London, London, United Kingdom
| | - Steven S. Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Basciu A, Callea L, Motta S, Bonvin AM, Bonati L, Vargiu AV. No dance, no partner! A tale of receptor flexibility in docking and virtual screening. VIRTUAL SCREENING AND DRUG DOCKING 2022. [DOI: 10.1016/bs.armc.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Sanejouand YH. Normal-mode driven exploration of protein domain motions. J Comput Chem 2021; 42:2250-2257. [PMID: 34599620 DOI: 10.1002/jcc.26755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 09/05/2021] [Indexed: 12/27/2022]
Abstract
Domain motions involved in the function of proteins can often be well described as a combination of motions along a handfull of low-frequency modes, that is, with the values of a few normal coordinates. This means that, when the functional motion of a protein is unknown, it should prove possible to predict it, since it amounts to guess a few values. However, without the help of additional experimental data, using normal coordinates for generating accurate conformers far away from the initial one is not so straightforward. To do so, a new approach is proposed: instead of building conformers directly with the values of a subset of normal coordinates, they are built in two steps, the conformer built with normal coordinates being just used for defining a set of distance constraints, the final conformer being built so as to match them. Note that this approach amounts to transform the problem of generating accurate protein conformers using normal coordinates into a better known one: the distance-geometry problem, which is herein solved with the help of the ROSETTA software. In the present study, this approach allowed to rebuild accurately six large amplitude conformational changes, using at most six low-frequency normal coordinates. As a consequence of the low-dimensionality of the corresponding subspace, random exploration also proved enough for generating low-energy conformers close to the known end-point of the conformational change of the LAO binding protein, lysozyme T4 and adenylate kinase.
Collapse
|
14
|
Ahmad S, Strunk CH, Schott-Verdugo SN, Jaeger KE, Kovacic F, Gohlke H. Substrate Access Mechanism in a Novel Membrane-Bound Phospholipase A of Pseudomonas aeruginosa Concordant with Specificity and Regioselectivity. J Chem Inf Model 2021; 61:5626-5643. [PMID: 34748335 DOI: 10.1021/acs.jcim.1c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PlaF is a cytoplasmic membrane-bound phospholipase A1 from Pseudomonas aeruginosa that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive. Here, we combined unbiased and biased all-atom molecular dynamics (MD) simulations and configurational free-energy computations to identify access pathways of GPL substrates to the catalytic center of PlaF. Our results map out a distinct tunnel through which substrates access the catalytic center. PlaF variants with bulky tryptophan residues in this tunnel revealed decreased catalysis rates due to tunnel blockage. The MD simulations suggest that GPLs preferably enter the active site with the sn-1 acyl chain first, which agrees with the experimentally demonstrated PLA1 activity of PlaF. We propose that the acyl chain-length specificity of PlaF is determined by the structural features of the access tunnel, which results in favorable free energy of binding of medium-chain GPLs. The suggested egress route conveys fatty acid (FA) products to the dimerization interface and, thus, contributes to understanding the product feedback regulation of PlaF by FA-triggered dimerization. These findings open up opportunities for developing potential PlaF inhibitors, which may act as antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Sabahuddin Ahmad
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Heinrich Strunk
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of Talca, 3460000 Talca, Chile.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
15
|
González-Paz L, Hurtado-León ML, Lossada C, Fernández-Materán FV, Vera-Villalobos J, Loroño M, Paz JL, Jeffreys L, Alvarado YJ. Structural deformability induced in proteins of potential interest associated with COVID-19 by binding of homologues present in ivermectin: Comparative study based in elastic networks models. J Mol Liq 2021; 340:117284. [PMID: 34421159 PMCID: PMC8367659 DOI: 10.1016/j.molliq.2021.117284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
The COVID-19 pandemic has accelerated the study of the potential of multi-target drugs (MTDs). The mixture of homologues called ivermectin (avermectin-B1a + avermectin-B1b) has been shown to be a MTD with potential antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on the effect of each homologue on the flexibility and stiffness of proteins associated with COVID-19, described as ivermectin targets. We observed that each homologue was stably bound to the proteins studied and was able to induce detectable changes with Elastic Network Models (ENM). The perturbations induced by each homologue were characteristic of each compound and, in turn, were represented by a disruption of native intramolecular networks (interactions between residues). The homologues were able to slightly modify the conformation and stability of the connection points between the Cα atoms of the residues that make up the structural network of proteins (nodes), compared to free proteins. Each homologue was able to modified differently the distribution of quasi-rigid regions of the proteins, which could theoretically alter their biological activities. These results could provide a biophysical-computational view of the potential MTD mechanism that has been reported for ivermectin.
Collapse
Affiliation(s)
- Lenin González-Paz
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología. Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Republica Bolivariana de Venezuela.,Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Estudios Botánicos y Agroforestales (CEBA), Laboratorio de Protección Vegetal (LPV), 4001 Maracaibo, Republica Bolivariana de Venezuela
| | - María Laura Hurtado-León
- Universidad del Zulia (LUZ), Facultad Experimental de Ciencias (FEC), Departamento de Biología. Laboratorio de Genética y Biología Molecular (LGBM), 4001 Maracaibo, Republica Bolivariana de Venezuela
| | - Carla Lossada
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Republica Bolivariana de Venezuela
| | - Francelys V Fernández-Materán
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Republica Bolivariana de Venezuela
| | - Joan Vera-Villalobos
- Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Laboratorio de Análisis Químico Instrumental (LAQUINS), Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Marcos Loroño
- Departamento Académico de Química Analítica e Instrumental, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - J L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Laura Jeffreys
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Ysaias J Alvarado
- Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (CITeMA), Laboratorio de Caracterización Molecular y Biomolecular, 4001 Maracaibo, Republica Bolivariana de Venezuela
| |
Collapse
|
16
|
Lee W, Park JW, Go YJ, Kim WJ, Rhee YM. Considering both small and large scale motions of vascular endothelial growth factor (VEGF) is crucial for reliably predicting its binding affinities to DNA aptamers. RSC Adv 2021; 11:9315-9326. [PMID: 35423456 PMCID: PMC8695334 DOI: 10.1039/d0ra10106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
Considering both small and large scale motions of VEGF is crucial to predict its relative binding affinities to DNA aptamer variants with docking.
Collapse
Affiliation(s)
- Wook Lee
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Korea
- Department of Chemistry
| | - Jae Whee Park
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Yeon Ju Go
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Won Jong Kim
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Korea
| | - Young Min Rhee
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| |
Collapse
|
17
|
Peng C, Wang J, Shi Y, Xu Z, Zhu W. Increasing the Sampling Efficiency of Protein Conformational Change by Combining a Modified Replica Exchange Molecular Dynamics and Normal Mode Analysis. J Chem Theory Comput 2020; 17:13-28. [PMID: 33351613 DOI: 10.1021/acs.jctc.0c00592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding conformational change at an atomic level is significant when determining a protein functional mechanism. Replica exchange molecular dynamics (REMD) is a widely used enhanced sampling method to explore protein conformational space. However, REMD with an explicit solvent model requires huge computational resources, immensely limiting its application. In this study, a variation of parallel tempering metadynamics (PTMetaD) with the omission of solvent-solvent interactions in exchange attempts and the use of low-frequency modes calculated by normal-mode analysis (NMA) as collective variables (CVs), namely ossPTMetaD, is proposed with the aim to accelerate MD simulations simultaneously in temperature and geometrical spaces. For testing the performance of ossPTMetaD, five protein systems with diverse biological functions and motion patterns were selected, including large-scale domain motion (AdK), flap movement (HIV-1 protease and BACE1), and DFG-motif flip in kinases (p38α and c-Abl). The simulation results showed that ossPTMetaD requires much fewer numbers of replicas than temperature REMD (T-REMD) with a reduction of ∼70% to achieve a similar exchange ratio. Although it does not obey the detailed balance condition, ossPTMetaD provides consistent results with T-REMD and experimental data. The high accessibility of the large conformational change of protein systems by ossPTMetaD, especially in simulating the very challenging DFG-motif flip of protein kinases, demonstrated its high efficiency and robustness in the characterization of the large-scale protein conformational change pathway and associated free energy profile.
Collapse
Affiliation(s)
- Cheng Peng
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yulong Shi
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Lead Compounds, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
18
|
Dimura M, Peulen TO, Sanabria H, Rodnin D, Hemmen K, Hanke CA, Seidel CAM, Gohlke H. Automated and optimally FRET-assisted structural modeling. Nat Commun 2020; 11:5394. [PMID: 33106483 PMCID: PMC7589535 DOI: 10.1038/s41467-020-19023-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
FRET experiments can provide state-specific structural information of complex dynamic biomolecular assemblies. However, to overcome the sparsity of FRET experiments, they need to be combined with computer simulations. We introduce a program suite with (i) an automated design tool for FRET experiments, which determines how many and which FRET pairs should be used to minimize the uncertainty and maximize the accuracy of an integrative structure, (ii) an efficient approach for FRET-assisted coarse-grained structural modeling, and all-atom molecular dynamics simulations-based refinement, and (iii) a quantitative quality estimate for judging the accuracy of FRET-derived structures as opposed to precision. We benchmark our tools against simulated and experimental data of proteins with multiple conformational states and demonstrate an accuracy of ~3 Å RMSDCα against X-ray structures for sets of 15 to 23 FRET pairs. Free and open-source software for the introduced workflow is available at https://github.com/Fluorescence-Tools. A web server for FRET-assisted structural modeling of proteins is available at http://nmsim.de. To overcome the limitation of FRET data being too sparse to cover all structural details, FRET experiments need to be carefully designed and complemented with simulations. Here the authors present a toolkit for automated design of FRET experiments, which determines how many and which FRET pairs should be used to maximize the accuracy, and for FRET-assisted structural modeling and refinement at the atomistic level.
Collapse
Affiliation(s)
- Mykola Dimura
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Thomas-Otavio Peulen
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Hugo Sanabria
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Dmitro Rodnin
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katherina Hemmen
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christian A Hanke
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Claus A M Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany. .,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
19
|
Saldaño TE, Freixas VM, Tosatto SCE, Parisi G, Fernandez-Alberti S. Exploring Conformational Space with Thermal Fluctuations Obtained by Normal-Mode Analysis. J Chem Inf Model 2020; 60:3068-3080. [PMID: 32216314 DOI: 10.1021/acs.jcim.9b01136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteins in their native states can be represented as ensembles of conformers in dynamical equilibrium. Thermal fluctuations are responsible for transitions between these conformers. Normal-modes analysis (NMA) using elastic network models (ENMs) provides an efficient procedure to explore global dynamics of proteins commonly associated with conformational transitions. In the present work, we present an iterative approach to explore protein conformational spaces by introducing structural distortions according to their equilibrium dynamics at room temperature. The approach can be used either to perform unbiased explorations of conformational space or to explore guided pathways connecting two different conformations, e.g., apo and holo forms. In order to test its performance, four proteins with different magnitudes of structural distortions upon ligand binding have been tested. In all cases, the conformational selection model has been confirmed and the conformational space between apo and holo forms has been encompassed. Different strategies have been tested that impact on the efficiency either to achieve a desired conformational change or to achieve a balanced exploration of the protein conformational multiplicity.
Collapse
Affiliation(s)
- Tadeo E Saldaño
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Victor M Freixas
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 5131 Padova, Italy
| | - Gustavo Parisi
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | | |
Collapse
|
20
|
Wang A, Zhang Y, Chu H, Liao C, Zhang Z, Li G. Higher Accuracy Achieved for Protein-Ligand Binding Pose Prediction by Elastic Network Model-Based Ensemble Docking. J Chem Inf Model 2020; 60:2939-2950. [PMID: 32383873 DOI: 10.1021/acs.jcim.9b01168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular docking plays an indispensable role in predicting the receptor-ligand interactions in which the protein receptor is usually kept rigid, whereas the ligand is treated as being flexible. Because of the inherent flexibility of proteins, the binding pocket of apo receptors might undergo significant conformational rearrangement upon ligand binding, which limits the prediction accuracy of docking. Here, we present an iterative anisotropic network model (iterANM)-based ensemble docking approach, which generates multiple holo-like receptor structures starting from the apo receptor and incorporates protein flexibility into docking. In a validation data set consisting of 233 chemically diverse cyclin-dependent kinase 2 (CDK2) inhibitors, the iterANM-based ensemble docking achieves higher capacity to reproduce native-like binding poses compared with those using single apo receptor conformation or conformational ensemble from molecular dynamics simulations. The prediction success rate within the top5-ranked binding poses produced by the iterANM can further be improved through reranking with the molecular mechanics-Poisson-Boltzmann surface area method. In a smaller data set with 58 CDK2 inhibitors, the iterANM-based ensemble shows a higher success rate compared with the flexible receptor-based docking procedure AutoDockFR and other receptor conformation generation approaches. Further, an additional docking test consisting of 10 diverse receptor-ligand combinations shows that the iterANM is robustly applicable for different receptor structures. These results suggest the iterANM-based ensemble docking as an accurate, efficient, and practical framework to predict the binding mode of a ligand for receptors with flexibility.
Collapse
Affiliation(s)
- Anhui Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.,Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
21
|
Wang A, Zhang D, Li Y, Zhang Z, Li G. Large-Scale Biomolecular Conformational Transitions Explored by a Combined Elastic Network Model and Enhanced Sampling Molecular Dynamics. J Phys Chem Lett 2020; 11:325-332. [PMID: 31867970 DOI: 10.1021/acs.jpclett.9b03399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomolecules often undergo large-scale conformational transitions when carrying out their functions. However, it is still challenging for conventional molecular dynamics simulations to provide adequate structural dynamics information to interpret associated mechanisms. Here, we present a combined elastic network model and enhanced sampling-based strategy (iterANM-IaMD) by adopting iterANM to construct initial conformation space and enhanced sampling IaMD to explore the free energy landscape along specific large-scale conformational transitions. We applied this strategy to three functionally and structurally distinct proteins (adenylate kinase, calmodulin, and p38α kinase), which undergo striking conformational change upon ligand binding. The simulation results for both free and ligand-bound proteins show qualitative and quantitative agreement with existing studies, suggesting iterANM-IaMD as an accurate and efficient tool to investigate structural dynamics involved in complicated biological processes. Our work also provides insights into the relationship between the dynamics and functionality of biomolecules.
Collapse
Affiliation(s)
- Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Dinglin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
22
|
Orellana L. Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier. Front Mol Biosci 2019; 6:117. [PMID: 31750315 PMCID: PMC6848229 DOI: 10.3389/fmolb.2019.00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Large-scale conformational changes are essential to link protein structures with their function at the cell and organism scale, but have been elusive both experimentally and computationally. Over the past few years developments in cryo-electron microscopy and crystallography techniques have started to reveal multiple snapshots of increasingly large and flexible systems, deemed impossible only short time ago. As structural information accumulates, theoretical methods become central to understand how different conformers interconvert to mediate biological function. Here we briefly survey current in silico methods to tackle large conformational changes, reviewing recent examples of cross-validation of experiments and computational predictions, which show how the integration of different scale simulations with biological information is already starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding new light onto complex biological problems inaccessible so far.
Collapse
Affiliation(s)
- Laura Orellana
- Institutionen för Biokemi och Biofysik, Stockholms Universitet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
23
|
Basciu A, Malloci G, Pietrucci F, Bonvin AMJJ, Vargiu AV. Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape. J Chem Inf Model 2019; 59:1515-1528. [PMID: 30883122 DOI: 10.1021/acs.jcim.8b00730] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding molecular recognition of small molecules by proteins in atomistic detail is key for drug design. Molecular docking is a widely used computational method to mimic ligand-protein association in silico. However, predicting conformational changes occurring in proteins upon ligand binding is still a major challenge. Ensemble docking approaches address this issue by considering a set of different conformations of the protein obtained either experimentally or from computer simulations, e.g., molecular dynamics. However, holo structures prone to host (the correct) ligands are generally poorly sampled by standard molecular dynamics simulations of the apo protein. In order to address this limitation, we introduce a computational approach based on metadynamics simulations called ensemble docking with enhanced sampling of pocket shape (EDES) that allows holo-like conformations of proteins to be generated by exploiting only their apo structures. This is achieved by defining a set of collective variables that effectively sample different shapes of the binding site, ultimately mimicking the steric effect due to the ligand. We assessed the method on three challenging proteins undergoing different extents of conformational changes upon ligand binding. In all cases our protocol generates a significant fraction of structures featuring a low RMSD from the experimental holo geometry. Moreover, ensemble docking calculations using those conformations yielded in all cases native-like poses among the top-ranked ones.
Collapse
Affiliation(s)
- Andrea Basciu
- Dipartimento di Fisica , Università di Cagliari, Cittadella Universitaria , I- 09042 Monserrato (CA) , Italy
| | - Giuliano Malloci
- Dipartimento di Fisica , Università di Cagliari, Cittadella Universitaria , I- 09042 Monserrato (CA) , Italy
| | - Fabio Pietrucci
- Sorbonne Université , Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC , F-75005 Paris , France
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Attilio V Vargiu
- Dipartimento di Fisica , Università di Cagliari, Cittadella Universitaria , I- 09042 Monserrato (CA) , Italy.,Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| |
Collapse
|
24
|
Kumar AP, Nguyen MN, Verma C, Lukman S. Structural analysis of protein tyrosine phosphatase 1B reveals potentially druggable allosteric binding sites. Proteins 2018; 86:301-321. [PMID: 29235148 DOI: 10.1002/prot.25440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/16/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
Abstract
Catalytic proteins such as human protein tyrosine phosphatase 1B (PTP1B), with conserved and highly polar active sites, warrant the discovery of druggable nonactive sites, such as allosteric sites, and potentially, therapeutic small molecules that can bind to these sites. Catalyzing the dephosphorylation of numerous substrates, PTP1B is physiologically important in intracellular signal transduction pathways in diverse cell types and tissues. Aberrant PTP1B is associated with obesity, diabetes, cancers, and neurodegenerative disorders. Utilizing clustering methods (based on root mean square deviation, principal component analysis, nonnegative matrix factorization, and independent component analysis), we have examined multiple PTP1B structures. Using the resulting representative structures in different conformational states, we determined consensus clustroids and used them to identify both known and novel binding sites, some of which are potentially allosteric. We report several lead compounds that could potentially bind to the novel PTP1B binding sites and can be further optimized. Considering the possibility for drug repurposing, we discovered homologous binding sites in other proteins, with ligands that could potentially bind to the novel PTP1B binding sites.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Minh N Nguyen
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Pandey B, Sharma P. Structural insights into impact of Y134F mutation and discovery of novel fungicidal compounds against CYP51 in Puccinia triticina. J Cell Biochem 2017; 119:2588-2603. [PMID: 28980720 DOI: 10.1002/jcb.26422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/22/2017] [Indexed: 12/22/2022]
Abstract
Sterol 14α-Demethylase Cytochrome P450 (CYP51) protein involved in ergosterol biosynthesis pathways turn out to be a crucial target for the fungicidal compound. However, the recognition mechanism and dynamic behavior of CYP51 in wheat leaf rust pathogen, Puccinia triticina, is still obscure. Previously, a mutation at position 134 (Y134F) was reported in five European isolates of P. triticina, conversely, structural basis of this mutation remains unclear. To address this problem, three-dimensional structure of CYP51 protein from P. triticina was successfully built using homology modeling approach. To assess the protein structure stability, wild and mutant-type CYP51 proteins bound with azole fungicide was subjected to 50 ns molecular dynamics (MD) simulations run. Observably, the comparative protein-ligand interaction analysis and binding free energy results revealed that impact of the mutation on the thermodynamics and conformational stability of the CYP51 protein was negligible. In addition, we carried out structure-based virtual screening and identified potent novel fungicidal compounds from four different databases and libraries. Consequently, through MD simulation and thermodynamic integration, four novel compounds such as CoCoCo54211 (CoCoCo database), ZINC04089470 (ZINC database), Allyl pyrocatechol 3,4 diacetate (Natural compound library), and 9-octadecenoic acid (Traditional Chinese Medicine database) has been predicted as potent fungicidal compound against CYP51 with XPGlide docking score of -11.41, -13.64, -7.40, and -6.55 kcal/mol, respectively. These compounds were found to form hydrogen bonds with heme group of CYP51, subsequently disturbing the stability and survival of fungus and can be used to control leaf rust in wheat.
Collapse
Affiliation(s)
- Bharati Pandey
- Plant Biotechnology Unit, ICAR-Indian Institute of Wheat Barley Research, Karnal, Haryana, India
| | - Pradeep Sharma
- Plant Biotechnology Unit, ICAR-Indian Institute of Wheat Barley Research, Karnal, Haryana, India
| |
Collapse
|
26
|
Maggi M, Mittelman SD, Parmentier JH, Colombo G, Meli M, Whitmire JM, Merrell DS, Whitelegge J, Scotti C. A protease-resistant Escherichia coli asparaginase with outstanding stability and enhanced anti-leukaemic activity in vitro. Sci Rep 2017; 7:14479. [PMID: 29101342 PMCID: PMC5670125 DOI: 10.1038/s41598-017-15075-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022] Open
Abstract
L-Asparaginases (ASNases) have been used as first line drugs for paediatric Acute Lymphoblastic Leukaemia (ALL) treatment for more than 40 years. Both the Escherichia coli (EcAII) and Erwinia chrysanthemi (ErAII) type II ASNases currently used in the clinics are characterized by high in vivo instability, short half-life and the requirement of several administrations to obtain a pharmacologically active concentration. Moreover, they are sensitive to proteases (cathepsin B and asparagine endopeptidase) that are over-expressed by resistant leukaemia lymphoblasts, thereby impairing drug activity and pharmacokinetics. Herein, we present the biochemical, structural and in vitro antiproliferative characterization of a new EcAII variant, N24S. The mutant shows completely preserved asparaginase and glutaminase activities, long-term storage stability, improved thermal parameters, and outstanding resistance to proteases derived from leukaemia cells. Structural analysis demonstrates a modification in the hydrogen bond network related to residue 24, while Normal Mode-based geometric Simulation and Molecular Dynamics predict a general rigidification of the monomer as compared to wild-type. These improved features render N24S a potential alternative treatment to reduce the number of drug administrations in vivo and to successfully address one of the major current challenges of ALL treatment: spontaneous, protease-dependent and immunological inactivation of ASNase.
Collapse
Affiliation(s)
- Maristella Maggi
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy
| | - Steven D Mittelman
- Center for Endocrinology, Diabetes & Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jean Hugues Parmentier
- Center for Endocrinology, Diabetes & Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Giorgio Colombo
- Biomolecular Simulations & Computational Chemistry Group, Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Massimiliano Meli
- Biomolecular Simulations & Computational Chemistry Group, Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Jeannette Marie Whitmire
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Julian Whitelegge
- Julian Whitelegge, The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute & Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, USA
| | - Claudia Scotti
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy.
| |
Collapse
|
27
|
Abstract
In this issue of Structure, Greener et al. (2017) describe a new computational approach to generate conformational ensembles of proteins based on two experimental input structures. The method shows promise for rapidly predicting global protein flexibility and for the identification of putative binding sites for allosteric effectors on proteins.
Collapse
|
28
|
On the potential alternate binding change mechanism in a dimeric structure of Pyruvate Phosphate Dikinase. Sci Rep 2017; 7:8020. [PMID: 28808308 PMCID: PMC5556012 DOI: 10.1038/s41598-017-08521-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
The pyruvate phosphate dikinase (PPDK) reaction mechanism is characterized by a distinct spatial separation of reaction centers and large conformational changes involving an opening-closing motion of the nucleotide-binding domain (NBD) and a swiveling motion of the central domain (CD). However, why PPDK is active only in a dimeric form and to what extent an alternate binding change mechanism could underlie this fact has remained elusive. We performed unbiased molecular dynamics simulations, configurational free energy computations, and rigidity analysis to address this question. Our results support the hypothesis that PPDK dimerization influences the opening-closing motion of the NBDs, and that this influence is mediated via the CDs of both chains. Such an influence would be a prerequisite for an alternate binding change mechanism to occur. To the best of our knowledge, this is the first time that a possible explanation has been suggested as to why only dimeric PPDK is active.
Collapse
|
29
|
Hermans SM, Pfleger C, Nutschel C, Hanke CA, Gohlke H. Rigidity theory for biomolecules: concepts, software, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susanne M.A. Hermans
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christopher Pfleger
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christina Nutschel
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christian A. Hanke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| |
Collapse
|
30
|
Minges A, Ciupka D, Winkler C, Höppner A, Gohlke H, Groth G. Structural intermediates and directionality of the swiveling motion of Pyruvate Phosphate Dikinase. Sci Rep 2017; 7:45389. [PMID: 28358005 PMCID: PMC5371819 DOI: 10.1038/srep45389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Pyruvate phosphate dikinase (PPDK) is a vital enzyme in cellular energy metabolism catalyzing the ATP- and Pi-dependent formation of phosphoenolpyruvate from pyruvate in C4 -plants, but the reverse reaction forming ATP in bacteria and protozoa. The multi-domain enzyme is considered an efficient molecular machine that performs one of the largest single domain movements in proteins. However, a comprehensive understanding of the proposed swiveling domain motion has been limited by not knowing structural intermediates or molecular dynamics of the catalytic process. Here, we present crystal structures of PPDKs from Flaveria, a model genus for studying the evolution of C4 -enzymes from phylogenetic ancestors. These structures resolve yet unknown conformational intermediates and provide the first detailed view on the large conformational transitions of the protein in the catalytic cycle. Independently performed unrestrained MD simulations and configurational free energy calculations also identified these intermediates. In all, our experimental and computational data reveal strict coupling of the CD swiveling motion to the conformational state of the NBD. Moreover, structural asymmetries and nucleotide binding states in the PPDK dimer support an alternate binding change mechanism for this intriguing bioenergetic enzyme.
Collapse
Affiliation(s)
- Alexander Minges
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Daniel Ciupka
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Christian Winkler
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Astrid Höppner
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
31
|
Greener JG, Filippis I, Sternberg MJE. Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints. Structure 2017; 25:546-558. [PMID: 28190781 PMCID: PMC5343748 DOI: 10.1016/j.str.2017.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/24/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022]
Abstract
The related concepts of protein dynamics, conformational ensembles and allostery are often difficult to study with molecular dynamics (MD) due to the timescales involved. We present ExProSE (Exploration of Protein Structural Ensembles), a distance geometry-based method that generates an ensemble of protein structures from two input structures. ExProSE provides a unified framework for the exploration of protein structure and dynamics in a fast and accessible way. Using a dataset of apo/holo pairs it is shown that existing coarse-grained methods often cannot span large conformational changes. For T4-lysozyme, ExProSE is able to generate ensembles that are more native-like than tCONCOORD and NMSim, and comparable with targeted MD. By adding additional constraints representing potential modulators, ExProSE can predict allosteric sites. ExProSE ranks an allosteric pocket first or second for 27 out of 58 allosteric proteins, which is similar and complementary to existing methods. The ExProSE source code is freely available.
Collapse
Affiliation(s)
- Joe G Greener
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Ioannis Filippis
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Michael J E Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
32
|
Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr Opin Struct Biol 2016; 40:163-185. [PMID: 27939973 DOI: 10.1016/j.sbi.2016.11.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023]
Abstract
Förster Resonance Energy Transfer (FRET) combined with single-molecule spectroscopy probes macromolecular structure and dynamics and identifies coexisting conformational states. We review recent methodological developments in integrative structural modeling by satisfying spatial restraints on networks of FRET pairs (hybrid-FRET). We discuss procedures to incorporate prior structural knowledge and to obtain optimal distance networks. Finally, a workflow for hybrid-FRET is presented that automates integrative structural modeling and experiment planning to put hybrid-FRET on rails. To test this workflow, we simulate realistic single-molecule experiments and resolve three protein conformers, exchanging at 30μs and 10ms, with accuracies of 1-3Å RMSD versus the target structure. Incorporation of data from other spectroscopies and imaging is also discussed.
Collapse
Affiliation(s)
- Mykola Dimura
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas O Peulen
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian A Hanke
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Aiswaria Prakash
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Claus Am Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
33
|
Römer RA, Wells SA, Emilio Jimenez‐Roldan J, Bhattacharyya M, Vishweshwara S, Freedman RB. The flexibility and dynamics of protein disulfide isomerase. Proteins 2016; 84:1776-1785. [PMID: 27616289 PMCID: PMC5111589 DOI: 10.1002/prot.25159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023]
Abstract
We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rudolf A. Römer
- Department of Physics and Centre for Scientific ComputingThe University of WarwickCoventryCV4 7ALUnited Kingdom
| | - Stephen A. Wells
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUnited Kingdom
| | - J. Emilio Jimenez‐Roldan
- Department of Physics and Centre for Scientific ComputingThe University of WarwickCoventryCV4 7ALUnited Kingdom
| | - Moitrayee Bhattacharyya
- Molecular Biophysics Unit, Indian Institute of ScienceBangalore560012India
- Present address: Moitrayee Bhattacharyya's current address is Department of Molecular and Cell BiologyUniversity of California BerkeleyCalifornia94720.
| | | | - Robert B. Freedman
- School of Life SciencesThe University of WarwickCoventryCV4 7ALUnited Kingdom
| |
Collapse
|
34
|
Kurkcuoglu Z, Bahar I, Doruker P. ClustENM: ENM-Based Sampling of Essential Conformational Space at Full Atomic Resolution. J Chem Theory Comput 2016; 12:4549-62. [PMID: 27494296 DOI: 10.1021/acs.jctc.6b00319] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accurate sampling of conformational space and, in particular, the transitions between functional substates has been a challenge in molecular dynamic (MD) simulations of large biomolecular systems. We developed an Elastic Network Model (ENM)-based computational method, ClustENM, for sampling large conformational changes of biomolecules with various sizes and oligomerization states. ClustENM is an iterative method that combines ENM with energy minimization and clustering steps. It is an unbiased technique, which requires only an initial structure as input, and no information about the target conformation. To test the performance of ClustENM, we applied it to six biomolecular systems: adenylate kinase (AK), calmodulin, p38 MAP kinase, HIV-1 reverse transcriptase (RT), triosephosphate isomerase (TIM), and the 70S ribosomal complex. The generated ensembles of conformers determined at atomic resolution show good agreement with experimental data (979 structures resolved by X-ray and/or NMR) and encompass the subspaces covered in independent MD simulations for TIM, p38, and RT. ClustENM emerges as a computationally efficient tool for characterizing the conformational space of large systems at atomic detail, in addition to generating a representative ensemble of conformers that can be advantageously used in simulating substrate/ligand-binding events.
Collapse
Affiliation(s)
- Zeynep Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University , Bebek 34342, Istanbul, Turkey
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | - Pemra Doruker
- Department of Chemical Engineering and Polymer Research Center, Bogazici University , Bebek 34342, Istanbul, Turkey
| |
Collapse
|
35
|
Meshach Paul D, Rajasekaran R. In silico approach to explore the disruption in the molecular mechanism of human hyaluronidase 1 by mutant E268K that directs Natowicz syndrome. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:157-169. [PMID: 27424109 DOI: 10.1007/s00249-016-1151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/02/2016] [Accepted: 07/01/2016] [Indexed: 01/27/2023]
Abstract
Natowicz syndrome (mucopolysaccharidoses type 9) is a lysosomal storage disorder caused by deficient or defective human hyaluronidase 1. The disorder is not well studied at the molecular level. Therefore, a new in silico approach was proposed to study the molecular basis on which one clinically observed mutation, Glu268Lys, results in a defective enzyme. The native and mutant structures were subjected to comparative analyses using a conformational sampling approach for geometrical variables viz, RMSF, RMSD, and Ramachandran plot. In addition, the strength of a Cys207-Cys221 disulfide bond and electrostatic interaction between Arg265 and Asp206 were studied, as they are known to be involved in the catalytic activity of the enzyme. Native and mutant E268K showed statistically significant variations with p < 0.05 in RMSD, Ramachandran plot, strengths of disulfide bond, and electrostatic interactions. Further, single model analysis showed variations between native and mutant structures in terms of intra-protein interactions, hydrogen bond dilution, secondary structure, and dihedral angles. Docking analysis predicted the mutant to have a less favorable substrate binding energy compared to the native protein. Additionally, steered MD analysis indicated that the substrate should have more affinity to the native than mutant enzymes. The observed changes theoretically explain the less favorable binding energy of substrate towards mutant E268K, thereby providing a structural basis for its reduced catalytic activity. Hence, our study provides a basis for understanding the disruption in the molecular mechanism of human hyaluronidase 1 by mutation E268K, which may prove useful for the development of synthetic chaperones as a treatment option for Natowicz syndrome.
Collapse
Affiliation(s)
- D Meshach Paul
- Computational Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - R Rajasekaran
- Computational Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
36
|
Kurkcuoglu Z, Doruker P. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins. PLoS One 2016; 11:e0158063. [PMID: 27348230 PMCID: PMC4922591 DOI: 10.1371/journal.pone.0158063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023] Open
Abstract
Incorporating receptor flexibility in small ligand-protein docking still poses a challenge for proteins undergoing large conformational changes. In the absence of bound structures, sampling conformers that are accessible by apo state may facilitate docking and drug design studies. For this aim, we developed an unbiased conformational search algorithm, by integrating global modes from elastic network model, clustering and energy minimization with implicit solvation. Our dataset consists of five diverse proteins with apo to complex RMSDs 4.7-15 Å. Applying this iterative algorithm on apo structures, conformers close to the bound-state (RMSD 1.4-3.8 Å), as well as the intermediate states were generated. Dockings to a sequence of conformers consisting of a closed structure and its "parents" up to the apo were performed to compare binding poses on different states of the receptor. For two periplasmic binding proteins and biotin carboxylase that exhibit hinge-type closure of two dynamics domains, the best pose was obtained for the conformer closest to the bound structure (ligand RMSDs 1.5-2 Å). In contrast, the best pose for adenylate kinase corresponded to an intermediate state with partially closed LID domain and open NMP domain, in line with recent studies (ligand RMSD 2.9 Å). The docking of a helical peptide to calmodulin was the most challenging case due to the complexity of its 15 Å transition, for which a two-stage procedure was necessary. The technique was first applied on the extended calmodulin to generate intermediate conformers; then peptide docking and a second generation stage on the complex were performed, which in turn yielded a final peptide RMSD of 2.9 Å. Our algorithm is effective in producing conformational states based on the apo state. This study underlines the importance of such intermediate states for ligand docking to proteins undergoing large transitions.
Collapse
Affiliation(s)
- Zeynep Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Istanbul, 34342, Turkey
- * E-mail: (ZK); (PD)
| | - Pemra Doruker
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Bebek, Istanbul, 34342, Turkey
- * E-mail: (ZK); (PD)
| |
Collapse
|
37
|
Analysis of the Structural Stability Among Cyclotide Members Through Cystine Knot Fold that Underpins Its Potential Use as a Drug Scaffold. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9537-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Abstract
The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five different classes of protein pocket dynamics: (1) appearance/disappearance of a subpocket in an existing pocket; (2) appearance/disappearance of an adjacent pocket on the protein surface in the direct vicinity of an already existing pocket; (3) pocket breathing, which may be caused by side-chain fluctuations or backbone or interdomain vibrational motion; (4) opening/closing of a channel or tunnel, connecting a pocket inside the protein with solvent, including lid motion; and (5) the appearance/disappearance of an allosteric pocket at a site on a protein distinct from an already existing pocket with binding of a ligand to the allosteric binding site affecting the original pocket. We suggest that the class of pocket dynamics, as well as the type and extent of protein motion affecting the binding pocket, should be factors considered in choosing the most appropriate computational approach to study a given binding pocket. Furthermore, we examine the relationship between pocket dynamics classes and induced fit, conformational selection, and gating models of ligand binding on binding kinetics and thermodynamics. We discuss the implications of protein binding pocket dynamics for drug design and conclude with potential future directions for computational analysis of protein binding pocket dynamics.
Collapse
Affiliation(s)
- Antonia Stank
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Daria B. Kokh
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Jonathan C. Fuller
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Center
for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA. Interdiscip Sci 2016; 10:81-92. [PMID: 27138754 DOI: 10.1007/s12539-016-0173-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.
Collapse
|
40
|
Selection of effective and highly thermostable Bacillus subtilis lipase A template as an industrial biocatalyst-A modern computational approach. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1379-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Senthilkumar B, Kumar P, Rajasekaran R. In-Silico Template Selection of In-Vitro Evolved Kalata B1 ofOldenlandia Affinisfor Scaffolding Peptide-Based Drug Design. J Cell Biochem 2015; 117:66-73. [DOI: 10.1002/jcb.25248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/29/2015] [Indexed: 12/20/2022]
Affiliation(s)
- B. Senthilkumar
- Bioinformatics Division; School of Bio Sciences and Technology; Vellore Institute of Technology University; Vellore 632014 Tamil Nadu India
| | - Prakash Kumar
- Bioinformatics Division; School of Bio Sciences and Technology; Vellore Institute of Technology University; Vellore 632014 Tamil Nadu India
| | - R. Rajasekaran
- Bioinformatics Division; School of Bio Sciences and Technology; Vellore Institute of Technology University; Vellore 632014 Tamil Nadu India
| |
Collapse
|
42
|
Wells SA, van der Kamp MW, McGeagh JD, Mulholland AJ. Structure and Function in Homodimeric Enzymes: Simulations of Cooperative and Independent Functional Motions. PLoS One 2015; 10:e0133372. [PMID: 26241964 PMCID: PMC4524684 DOI: 10.1371/journal.pone.0133372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/25/2015] [Indexed: 12/19/2022] Open
Abstract
Large-scale conformational change is a common feature in the catalytic cycles of enzymes. Many enzymes function as homodimers with active sites that contain elements from both chains. Symmetric and anti-symmetric cooperative motions in homodimers can potentially lead to correlated active site opening and/or closure, likely to be important for ligand binding and release. Here, we examine such motions in two different domain-swapped homodimeric enzymes: the DcpS scavenger decapping enzyme and citrate synthase. We use and compare two types of all-atom simulations: conventional molecular dynamics simulations to identify physically meaningful conformational ensembles, and rapid geometric simulations of flexible motion, biased along normal mode directions, to identify relevant motions encoded in the protein structure. The results indicate that the opening/closure motions are intrinsic features of both unliganded enzymes. In DcpS, conformational change is dominated by an anti-symmetric cooperative motion, causing one active site to close as the other opens; however a symmetric motion is also significant. In CS, we identify that both symmetric (suggested by crystallography) and asymmetric motions are features of the protein structure, and as a result the behaviour in solution is largely non-cooperative. The agreement between two modelling approaches using very different levels of theory indicates that the behaviours are indeed intrinsic to the protein structures. Geometric simulations correctly identify and explore large amplitudes of motion, while molecular dynamics simulations indicate the ranges of motion that are energetically feasible. Together, the simulation approaches are able to reveal unexpected functionally relevant motions, and highlight differences between enzymes.
Collapse
Affiliation(s)
- Stephen A. Wells
- Department of Chemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - John D. McGeagh
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
43
|
Wells SA, Sartbaeva A. GASP: software for geometric simulations of flexibility in polyhedral and molecular framework structures. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1032277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Erskine PT, Fokas A, Muriithi C, Rehman H, Yates LA, Bowyer A, Findlow IS, Hagan R, Werner JM, Miles AJ, Wallace BA, Wells SA, Wood SP, Cooper JB. X-ray, spectroscopic and normal-mode dynamics of calexcitin: structure-function studies of a neuronal calcium-signalling protein. ACTA ACUST UNITED AC 2015; 71:615-31. [PMID: 25760610 DOI: 10.1107/s1399004714026704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/04/2014] [Indexed: 01/28/2023]
Abstract
The protein calexcitin was originally identified in molluscan photoreceptor neurons as a 20 kDa molecule which was up-regulated and phosphorylated following a Pavlovian conditioning protocol. Subsequent studies showed that calexcitin regulates the voltage-dependent potassium channel and the calcium-dependent potassium channel as well as causing the release of calcium ions from the endoplasmic reticulum (ER) by binding to the ryanodine receptor. A crystal structure of calexcitin from the squid Loligo pealei showed that the fold is similar to that of another signalling protein, calmodulin, the N- and C-terminal domains of which are known to separate upon calcium binding, allowing interactions with the target protein. Phosphorylation of calexcitin causes it to translocate to the cell membrane, where its effects on membrane excitability are exerted and, accordingly, L. pealei calexcitin contains two protein kinase C phosphorylation sites (Thr61 and Thr188). Thr-to-Asp mutations which mimic phosphorylation of the protein were introduced and crystal structures of the corresponding single and double mutants were determined, which suggest that the C-terminal phosphorylation site (Thr188) exerts the greatest effects on the protein structure. Extensive NMR studies were also conducted, which demonstrate that the wild-type protein predominantly adopts a more open conformation in solution than the crystallographic studies have indicated and, accordingly, normal-mode dynamic simulations suggest that it has considerably greater capacity for flexible motion than the X-ray studies had suggested. Like calmodulin, calexcitin consists of four EF-hand motifs, although only the first three EF-hands of calexcitin are involved in binding calcium ions; the C-terminal EF-hand lacks the appropriate amino acids. Hence, calexcitin possesses two functional EF-hands in close proximity in its N-terminal domain and one functional calcium site in its C-terminal domain. There is evidence that the protein has two markedly different affinities for calcium ions, the weaker of which is most likely to be associated with binding of calcium ions to the protein during neuronal excitation. In the current study, site-directed mutagenesis has been used to abolish each of the three calcium-binding sites of calexcitin, and these experiments suggest that it is the single calcium-binding site in the C-terminal domain of the protein which is likely to have a sensory role in the neuron.
Collapse
Affiliation(s)
- P T Erskine
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - A Fokas
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - C Muriithi
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - H Rehman
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - L A Yates
- Centre of Biological Sciences, University of Southampton, Southampton SO17 1BJ, England
| | - A Bowyer
- Centre of Biological Sciences, University of Southampton, Southampton SO17 1BJ, England
| | - I S Findlow
- Centre of Biological Sciences, University of Southampton, Southampton SO17 1BJ, England
| | - R Hagan
- Centre of Biological Sciences, University of Southampton, Southampton SO17 1BJ, England
| | - J M Werner
- Centre of Biological Sciences, University of Southampton, Southampton SO17 1BJ, England
| | - A J Miles
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, England
| | - S A Wells
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
| | - S P Wood
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - J B Cooper
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| |
Collapse
|
45
|
Uyar A, Kantarci-Carsibasi N, Haliloglu T, Doruker P. Features of large hinge-bending conformational transitions. Prediction of closed structure from open state. Biophys J 2015; 106:2656-66. [PMID: 24940783 DOI: 10.1016/j.bpj.2014.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/22/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
We performed a detailed analysis of conformational transition pathways for a set of 10 proteins, which undergo large hinge-bending-type motions with 4-12 Å RMSD (root mean-square distance) between open and closed crystal structures. Anisotropic network model-Monte Carlo (ANM-MC) algorithm generates a targeted pathway between two conformations, where the collective modes from the ANM are used for deformation at each iteration and the conformational energy of the deformed structure is minimized via an MC algorithm. The target structure was approached successfully with an RMSD of 0.9-4.1 Å when a relatively low cutoff radius of 10 Å was used in ANM. Even though one predominant mode (first or second) directed the open-to-closed conformational transition, changes in the dominant mode character were observed for most cases along the transition. By imposing radius of gyration constraint during mode selection, it was possible to predict the closed structure for eight out of 10 proteins (with initial 4.1-7.1 Å and final 1.7-2.9 Å RMSD to target). Deforming along a single mode leads to most successful predictions. Based on the previously reported free energy surface of adenylate kinase, deformations along the first mode produced an energetically favorable path, which was interestingly facilitated by a change in mode shape (resembling second and third modes) at key points. Pathway intermediates are provided in our database of conformational transitions (http://safir.prc.boun.edu.tr/anmmc/method/1).
Collapse
Affiliation(s)
- Arzu Uyar
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Nigar Kantarci-Carsibasi
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey.
| | - Pemra Doruker
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
46
|
Wells SA, Crennell SJ, Danson MJ. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function. Proteins 2014; 82:2657-70. [PMID: 24948467 DOI: 10.1002/prot.24630] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 11/07/2022]
Abstract
Citrate synthase (CS) catalyses the entry of carbon into the citric acid cycle and is highly-conserved structurally across the tree of life. Crystal structures of dimeric CSs are known in both "open" and "closed" forms, which differ by a substantial domain motion that closes the substrate-binding clefts. We explore both the static rigidity and the dynamic flexibility of CS structures from mesophilic and extremophilic organisms from all three evolutionary domains. The computational expense of this wide-ranging exploration is kept to a minimum by the use of rigidity analysis and rapid all-atom simulations of flexible motion, combining geometric simulation and elastic network modeling. CS structures from thermophiles display increased structural rigidity compared with the mesophilic enzyme. A CS structure from a psychrophile, stabilized by strong ionic interactions, appears to display likewise increased rigidity in conventional rigidity analysis; however, a novel modified analysis, taking into account the weakening of the hydrophobic effect at low temperatures, shows a more appropriate decreased rigidity. These rigidity variations do not, however, affect the character of the flexible dynamics, which are well conserved across all the structures studied. Simulation trajectories not only duplicate the crystallographically observed symmetric open-to-closed transitions, but also identify motions describing a previously unidentified antisymmetric functional motion. This antisymmetric motion would not be directly observed in crystallography but is revealed as an intrinsic property of the CS structure by modeling of flexible motion. This suggests that the functional motion closing the binding clefts in CS may be independent rather than symmetric and cooperative.
Collapse
Affiliation(s)
- Stephen A Wells
- Department of Chemistry/Department of Physics, University of Bath, BATH, BA2 7AY, United Kingdom
| | | | | |
Collapse
|
47
|
Seyler SL, Beckstein O. Sampling large conformational transitions: adenylate kinase as a testing ground. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.919497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Abstract
This chapter describes the use of physically simplified analysis and simulation methods-pebble-game rigidity analysis, coarse-grained elastic network modeling, and template-based geometric simulation-to explore flexible motion in protein structures. Substantial amplitudes of flexible motion can be explored rapidly in an all-atom model, retaining realistic covalent bonding, steric exclusion, and a user-defined network of noncovalent polar and hydrophobic interactions, using desktop computing resources. Detailed instructions are given for simulations using FIRST/FRODA software installed on a UNIX/Linux workstation. Other implementations of similar methods exist, particularly NMSim and FRODAN, and are available online. Topics covered include rigidity analysis and constraints, geometric simulation of flexible motion, targeting between known structures, and exploration of motion along normal mode eigenvectors.
Collapse
|
49
|
Ping J, Hao P, Li YX, Wang JF. Molecular dynamics studies on the conformational transitions of adenylate kinase: a computational evidence for the conformational selection mechanism. BIOMED RESEARCH INTERNATIONAL 2013; 2013:628536. [PMID: 23936827 PMCID: PMC3712241 DOI: 10.1155/2013/628536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
Escherichia coli adenylate kinase (ADK) is a monomeric phosphotransferase enzyme that catalyzes reversible transfer of phosphoryl group from ATP to AMP with a large-scale domain motion. The detailed mechanism for this conformational transition remains unknown. In the current study, we performed long time-scale molecular dynamics simulations on both open and closed states of ADK. Based on the structural analyses of the simulation trajectories, we detected over 20 times conformational transitions between the open and closed states of ADK and identified two novel conformations as intermediate states in the catalytic processes. With these findings, we proposed a possible mechanism for the large-scale domain motion of Escherichia coli ADK and its catalytic process: (1) the substrate free ADK adopted an open conformation; (2) ATP bound with LID domain closure; (3) AMP bound with NMP domain closure; (4) phosphoryl transfer occurred with ATP, and AMP converted into two ADPs, and no conformational transition was detected in the enzyme; (5) LID domain opened with one ADP released; (6) another ADP released with NMP domain open. As both open and closed states sampled a wide range of conformation transitions, our simulation strongly supported the conformational selection mechanism for Escherichia coli ADK.
Collapse
Affiliation(s)
- Jie Ping
- Pathogen Diagnostic Center, Institut Pasteur of Shanghai Chinese Academy of Sciences, Shanghai 200025, China
| | - Pei Hao
- Pathogen Diagnostic Center, Institut Pasteur of Shanghai Chinese Academy of Sciences, Shanghai 200025, China
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
| | - Yi-Xue Li
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
- Bioinformatics Center, Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Fang Wang
- Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
50
|
Jamroz M, Kolinski A, Kmiecik S. CABS-flex: Server for fast simulation of protein structure fluctuations. Nucleic Acids Res 2013; 41:W427-31. [PMID: 23658222 PMCID: PMC3692091 DOI: 10.1093/nar/gkt332] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The CABS-flex server (http://biocomp.chem.uw.edu.pl/CABSflex) implements CABS-model–based protocol for the fast simulations of near-native dynamics of globular proteins. In this application, the CABS model was shown to be a computationally efficient alternative to all-atom molecular dynamics—a classical simulation approach. The simulation method has been validated on a large set of molecular dynamics simulation data. Using a single input (user-provided file in PDB format), the CABS-flex server outputs an ensemble of protein models (in all-atom PDB format) reflecting the flexibility of the input structure, together with the accompanying analysis (residue mean-square-fluctuation profile and others). The ensemble of predicted models can be used in structure-based studies of protein functions and interactions.
Collapse
Affiliation(s)
- Michal Jamroz
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | | | | |
Collapse
|