1
|
Bozkurt E, Soares TA, Rothlisberger U. Can Biomimetic Zinc Compounds Assist a (3 + 2) Cycloaddition Reaction? A Theoretical Perspective. J Chem Theory Comput 2017; 13:6382-6390. [DOI: 10.1021/acs.jctc.7b00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esra Bozkurt
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Thereza A. Soares
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Fundamental Chemistry, Federal University of Pernambuco, Recife 50740-560, Brazil
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry LCBC, ISIC, FSB BSP, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Świderek K, Moliner V. Computational Studies of Candida Antarctica Lipase B to Test Its Capability as a Starting Point To Redesign New Diels-Alderases. J Phys Chem B 2015; 120:2053-70. [PMID: 26624234 DOI: 10.1021/acs.jpcb.5b10527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The design of new biocatalysts is a target that is receiving increasing attention. One of the most popular reactions in this regard is the Diels-Alder cycloaddition because of its applications in organic synthesis and the absence of efficient natural enzymes that catalyze it. In this paper, the possibilities of using the highly promiscuous Candida Antarctica lipase B as a protein scaffold to redesign a Diels-Alderase has been explored by means of theoretical quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations. Free energy surfaces have been computed for two reactions in the wild-type and in several mutants with hybrid AM1/MM potentials with corrections at M06-2X/MM level. The study of the counterpart reactions in solution has allowed performing comparative analysis that render interesting conclusions. Since the dienophile anchors very well in the oxyanion hole of all tested protein variants, the slight electronic changes from reactant complex to the transition state suggest that mutations should be focused in favoring the formation of reactive conformations of a reactant complex that, in turn, would reduce the energy barrier.
Collapse
Affiliation(s)
- Katarzyna Świderek
- Institute of Applied Radiation Chemistry, Lodz University of Technology , 90-924 Lodz, Poland.,Departamento de Química Física y Analítica, Universitat Jaume I , 12071 Castellón, Spain
| | - Vicent Moliner
- Departamento de Química Física y Analítica, Universitat Jaume I , 12071 Castellón, Spain
| |
Collapse
|
3
|
Świderek K, Tuñón I, Moliner V, Bertran J. Computational strategies for the design of new enzymatic functions. Arch Biochem Biophys 2015; 582:68-79. [PMID: 25797438 PMCID: PMC4554825 DOI: 10.1016/j.abb.2015.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
In this contribution, recent developments in the design of biocatalysts are reviewed with particular emphasis in the de novo strategy. Studies based on three different reactions, Kemp elimination, Diels-Alder and Retro-Aldolase, are used to illustrate different success achieved during the last years. Finally, a section is devoted to the particular case of designed metalloenzymes. As a general conclusion, the interplay between new and more sophisticated engineering protocols and computational methods, based on molecular dynamics simulations with Quantum Mechanics/Molecular Mechanics potentials and fully flexible models, seems to constitute the bed rock for present and future successful design strategies.
Collapse
Affiliation(s)
- K Świderek
- Departament de Química Física, Universitat de València, 46100 Burjasot, Spain; Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - I Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjasot, Spain
| | - V Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - J Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
4
|
Computational study of a model system of enzyme-mediated [4+2] cycloaddition reaction. PLoS One 2015; 10:e0119984. [PMID: 25853669 PMCID: PMC4390235 DOI: 10.1371/journal.pone.0119984] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/18/2015] [Indexed: 11/24/2022] Open
Abstract
A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reac-tion was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation.
Collapse
|
5
|
Sirin S, Pearlman DA, Sherman W. Physics-based enzyme design: predicting binding affinity and catalytic activity. Proteins 2014; 82:3397-409. [PMID: 25243583 DOI: 10.1002/prot.24694] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 11/11/2022]
Abstract
Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications.
Collapse
Affiliation(s)
- Sarah Sirin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02140
| | | | | |
Collapse
|
6
|
Linder M. Computational Enzyme Design: Advances, hurdles and possible ways forward. Comput Struct Biotechnol J 2012; 2:e201209009. [PMID: 24688650 PMCID: PMC3962231 DOI: 10.5936/csbj.201209009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/30/2012] [Accepted: 10/12/2012] [Indexed: 12/13/2022] Open
Abstract
This mini review addresses recent developments in computational enzyme design. Successful protocols as well as known issues and limitations are discussed from an energetic perspective. It will be argued that improved results can be obtained by including a dynamic treatment in the design protocol. Finally, a molecular dynamics-based approach for evaluating and refining computational designs is presented.
Collapse
Affiliation(s)
- Mats Linder
- Applied Physical Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden
| |
Collapse
|
7
|
Linder M, Johansson AJ, Olsson TSG, Liebeschuetz J, Brinck T. Computational design of a Diels-Alderase from a thermophilic esterase: the importance of dynamics. J Comput Aided Mol Des 2012; 26:1079-95. [PMID: 22983490 DOI: 10.1007/s10822-012-9601-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/03/2012] [Indexed: 12/01/2022]
Abstract
A novel computational Diels-Alderase design, based on a relatively rare form of carboxylesterase from Geobacillus stearothermophilus, is presented and theoretically evaluated. The structure was found by mining the PDB for a suitable oxyanion hole-containing structure, followed by a combinatorial approach to find suitable substrates and rational mutations. Four lead designs were selected and thoroughly modeled to obtain realistic estimates of substrate binding and prearrangement. Molecular dynamics simulations and DFT calculations were used to optimize and estimate binding affinity and activation energies. A large quantum chemical model was used to capture the salient interactions in the crucial transition state (TS). Our quantitative estimation of kinetic parameters was validated against four experimentally characterized Diels-Alderases with good results. The final designs in this work are predicted to have rate enhancements of ≈ 10(3)-10(6) and high predicted proficiencies. This work emphasizes the importance of considering protein dynamics in the design approach, and provides a quantitative estimate of the how the TS stabilization observed in most de novo and redesigned enzymes is decreased compared to a minimal, 'ideal' model. The presented design is highly interesting for further optimization and applications since it is based on a thermophilic enzyme (T (opt) = 70 °C).
Collapse
Affiliation(s)
- Mats Linder
- Applied Physical Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
8
|
Linder M, Brinck T. Stepwise Diels-Alder: more than just an oddity? A computational mechanistic study. J Org Chem 2012; 77:6563-73. [PMID: 22780581 DOI: 10.1021/jo301176t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have employed hybrid DFT and SCS-MP2 calculations at the SMD-PCM-6-311++G(2d,2p)//6-31+G(d) level to investigate the relationship between three possible channels for forming a Diels-Alder adduct from a highly nucleophilic diene and moderately to highly electrophilic dienophiles. We discuss geometries optimized using the B3LYP and M06-2X functionals with the 6-31+(d) basis set. The transition states and intermediates are characterized on the basis of geometric and electronic properties, and we also address the possibility of predicting detectability of a zwitterionic intermediate based on its relative stability. Our results show that a conventional Diels-Alder transition state conformation yields intermediates in all four investigated cases, but that these are too short-lived to be detected experimentally for the less activated reactants. The stepwise trans pathway, beginning with a conjugate addition-like transition state, becomes increasingly competitive with more activated reactants and is indeed favored for the most electrophilic dienophiles. Addition of a trans diene leads to a dead-end as the trans intermediates have insurmountable rotation barriers that prohibit formation of the second bond, unless another, heterocyclic intermediate is formed. We also show that introduction of a hydrogen bond donating catalyst favors a stepwise pathway even for less activated dienophiles.
Collapse
Affiliation(s)
- Mats Linder
- Applied Physical Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-100 44 Stockholm
| | | |
Collapse
|
9
|
Linder M, Johansson AJ, Manta B, Olsson P, Brinck T. Envisioning an enzymatic Diels-Alder reaction by in situ acid-base catalyzed diene generation. Chem Commun (Camb) 2012; 48:5665-7. [PMID: 22547054 DOI: 10.1039/c2cc31502e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We present and evaluate a new and potentially efficient route for enzyme-mediated Diels-Alder reactions, utilizing general acid-base catalysis. The viability of employing the active site of ketosteroid isomerase is demonstrated.
Collapse
Affiliation(s)
- Mats Linder
- Applied Physical Chemistry, KTH Royal Institute of Technology, Teknikringen 30-36, S-10044 Stockholm, Sweden
| | | | | | | | | |
Collapse
|