1
|
Elkaeed EB, Khalifa MM, Alsfouk BA, Alsfouk AA, El-Attar AAMM, Eissa IH, Metwaly AM. The Discovery of Potential SARS-CoV-2 Natural Inhibitors among 4924 African Metabolites Targeting the Papain-like Protease: A Multi-Phase In Silico Approach. Metabolites 2022; 12:1122. [PMID: 36422263 PMCID: PMC9693093 DOI: 10.3390/metabo12111122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 09/10/2024] Open
Abstract
Four compounds, hippacine, 4,2'-dihydroxy-4'-methoxychalcone, 2',5'-dihydroxy-4-methoxychalcone, and wighteone, were selected from 4924 African natural metabolites as potential inhibitors against SARS-CoV-2 papain-like protease (PLpro, PDB ID: 3E9S). A multi-phased in silico approach was employed to select the most similar metabolites to the co-crystallized ligand (TTT) of the PLpro through molecular fingerprints and structural similarity studies. Followingly, to examine the binding of the selected metabolites with the PLpro (molecular docking. Further, to confirm this binding through molecular dynamics simulations. Finally, in silico ADMET and toxicity studies were carried out to prefer the most convenient compounds and their drug-likeness. The obtained results could be a weapon in the battle against COVID-19 via more in vitro and in vivo studies.
Collapse
Affiliation(s)
- Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Bshra A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdul-Aziz M. M. El-Attar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| |
Collapse
|
2
|
Structure-Based Virtual Screening, Docking, ADMET, Molecular Dynamics, and MM-PBSA Calculations for the Discovery of Potential Natural SARS-CoV-2 Helicase Inhibitors from the Traditional Chinese Medicine. J CHEM-NY 2022. [DOI: 10.1155/2022/7270094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Continuing our antecedent work against COVID-19, a set of 5956 compounds of traditional Chinese medicine have been virtually screened for their potential against SARS-CoV-2 helicase (PDB ID: 5RMM). Initially, a fingerprint study with VXG, the ligand of the target enzyme, disclosed the similarity of 187 compounds. Then, a molecular similarity study declared the most similar 40 compounds. Subsequently, molecular docking studies were carried out to examine the binding modes and energies. Then, the most appropriate 26 compounds were subjected to in silico ADMET and toxicity studies to select the most convenient inhibitors to be: (1R,2S)-ephedrine (57), (1R,2S)-norephedrine (59), 2-(4-(pyrrolidin-1-yl)phenyl)acetic acid (84), 1-phenylpropane-1,2-dione (195), 2-methoxycinnamic acid (246), 2-methoxybenzoic acid (364), (R)-2-((R)-5-oxopyrrolidin-3-yl)-2-phenylacetic acid (405), (Z)-6-(3-hydroxy-4-methoxystyryl)-4-methoxy-2H-pyran-2-one (533), 8-chloro-2-(2-phenylethyl)-5,6,7-trihydroxy-5,6,7,8-tetrahydrochromone (637), 3-((1R,2S)-2-(dimethylamino)-1-hydroxypropyl)phenol (818), (R)-2-ethyl-4-(1-hydroxy-2-(methylamino)ethyl)phenol (5159), and (R)-2-((1S,2S,5S)-2-benzyl-5-hydroxy-4-methylcyclohex-3-en-1-yl)propane-1,2-diol (5168). Among the selected 12 compounds, the metabolites, compound 533 showed the best docking scores. Interestingly, the MD simulation studies for compound 533, the one with the highest docking score, over 100 ns showed its correct binding to SARS-CoV-2 helicase with low energy and optimum dynamics. Finally, MM-PBSA studies showed that 533 bonded favorably to SARS-CoV-2 helicase with a free energy value of −83 kJ/mol. Further, the free energy decomposition study determined the essential amino acid residues that contributed favorably to the binding process. The obtained results give a huge hope to find a cure for COVID-19 through further in vitro and in vivo studies for the selected compounds.
Collapse
|
3
|
Cerruela-García G, Cuevas-Muñoz JM, García-Pedrajas N. Graph-Based Feature Selection Approach for Molecular Activity Prediction. J Chem Inf Model 2022; 62:1618-1632. [PMID: 35315648 PMCID: PMC9006223 DOI: 10.1021/acs.jcim.1c01578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
In the construction
of QSAR models for the prediction of molecular
activity, feature selection is a common task aimed at improving the
results and understanding of the problem. The selection of features
allows elimination of irrelevant and redundant features, reduces the
effect of dimensionality problems, and improves the generalization
and interpretability of the models. In many feature selection applications,
such as those based on ensembles of feature selectors, it is necessary
to combine different selection processes. In this work, we evaluate
the application of a new feature selection approach to the prediction
of molecular activity, based on the construction of an undirected
graph to combine base feature selectors. The experimental results
demonstrate the efficiency of the graph-based method in terms of the
classification performance, reduction, and redundancy compared to
the standard voting method. The graph-based method can be extended
to different feature selection algorithms and applied to other cheminformatics
problems.
Collapse
Affiliation(s)
- Gonzalo Cerruela-García
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, E-14071 Córdoba, Spain
| | - José Manuel Cuevas-Muñoz
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, E-14071 Córdoba, Spain
| | - Nicolás García-Pedrajas
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, E-14071 Córdoba, Spain
| |
Collapse
|
4
|
Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs. Processes (Basel) 2022. [DOI: 10.3390/pr10030530] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Proceeding our prior studies of SARS-CoV-2, the inhibitory potential against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) has been investigated for a collection of 3009 clinical and FDA-approved drugs. A multi-phase in silico approach has been employed in this study. Initially, a molecular fingerprint experiment of Remdesivir (RTP), the co-crystallized ligand of the examined protein, revealed the most similar 150 compounds. Among them, 30 compounds were selected after a structure similarity experiment. Subsequently, the most similar 30 compounds were docked against SARS-CoV-2 RNA-dependent RNA polymerase (PDB ID: 7BV2). Aloin 359, Baicalin 456, Cefadroxil 1273, Sophoricoside 1459, Hyperoside 2109, and Vitexin 2286 exhibited the most precise binding modes, as well as the best binding energies. To confirm the obtained results, MD simulations experiments have been conducted for Hyperoside 2109, the natural flavonoid glycoside that exhibited the best docking scores, against RdRp (PDB ID: 7BV2) for 100 ns. The achieved results authenticated the correct binding of 2109, showing low energy and optimum dynamics. Our team presents these outcomes for scientists all over the world to advance in vitro and in vivo examinations against COVID-19 for the promising compounds.
Collapse
|
5
|
Kuwahara H, Gao X. Analysis of the effects of related fingerprints on molecular similarity using an eigenvalue entropy approach. J Cheminform 2021; 13:27. [PMID: 33757582 PMCID: PMC7989080 DOI: 10.1186/s13321-021-00506-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/13/2021] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional (2D) chemical fingerprints are widely used as binary features for the quantification of structural similarity of chemical compounds, which is an important step in similarity-based virtual screening (VS). Here, using an eigenvalue-based entropy approach, we identified 2D fingerprints with little to no contribution to shaping the eigenvalue distribution of the feature matrix as related ones and examined the degree to which these related 2D fingerprints influenced molecular similarity scores calculated with the Tanimoto coefficient. Our analysis identified many related fingerprints in publicly available fingerprint schemes and showed that their presence in the feature set could have substantial effects on the similarity scores and bias the outcome of molecular similarity analysis. Our results have implication in the optimal selection of 2D fingerprints for compound similarity analysis and the identification of potential hits for compounds with target biological activity in VS.
Collapse
Affiliation(s)
- Hiroyuki Kuwahara
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
6
|
Rajda K, Podlewska S. Similar, or dissimilar, that is the question. How different are methods for comparison of compounds similarity? Comput Biol Chem 2020; 88:107367. [PMID: 32956952 DOI: 10.1016/j.compbiolchem.2020.107367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Comparison of compounds similarity is one of the main strategies of virtual screening protocols. Both similarity and dissimilarity concepts are of great importance during the search for new active compounds. Similarity is important due to the assumption that underlies the process of searching for new drug candidates: structurally similar compounds should induce similar biological response. On the other hand, we are also interested in dissimilarity, as we usually aim to find structurally novel ligands. In the study, we compared several approaches of evaluating compound similarity. Various representations and metrics were applied and we indicated the rate of variation of the results that can occur when shifting from one strategy to another. We compared both general similarity of datasets using different approaches, as well as examined the changes in the set of nearest neighbors when changing one compound representation into another, and the influence of representation/metric settings on the clustering outcome. We hope that the study will be of great help during the preparation of virtual screening experiments, stressing the need for careful selection of the way, the compound similarity is assessed. The differences in the results that can be obtained via the application of particular strategy can significantly influence the outcome of comparison studies; therefore, its settings should be carefully selected beforerunning the comparison.
Collapse
Affiliation(s)
- Krzysztof Rajda
- Wroclaw University of Science and Technology, Faculty of Computer Science and Management, 50-371 Wrocław, I. Łukasiewicza Street 5, Poland
| | - Sabina Podlewska
- Jagiellonian University Medical College, Department of Technology and Biotechnology of Drugs, 30-688 Kraków, 9 Medyczna Street, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, 31-343 Kraków, Smętna Street 12, Poland.
| |
Collapse
|
7
|
How Sure Can We Be about ML Methods-Based Evaluation of Compound Activity: Incorporation of Information about Prediction Uncertainty Using Deep Learning Techniques. Molecules 2020; 25:molecules25061452. [PMID: 32210186 PMCID: PMC7144469 DOI: 10.3390/molecules25061452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/22/2020] [Indexed: 11/17/2022] Open
Abstract
A great variety of computational approaches support drug design processes, helping in selection of new potentially active compounds, and optimization of their physicochemical and ADMET properties. Machine learning is a group of methods that are able to evaluate in relatively short time enormous amounts of data. However, the quality of machine-learning-based prediction depends on the data supplied for model training. In this study, we used deep neural networks for the task of compound activity prediction and developed dropout-based approaches for estimating prediction uncertainty. Several types of analyses were performed: the relationships between the prediction error, similarity to the training set, prediction uncertainty, number and standard deviation of activity values were examined. It was tested whether incorporation of information about prediction uncertainty influences compounds ranking based on predicted activity and prediction uncertainty was used to search for the potential errors in the ChEMBL database. The obtained outcome indicates that incorporation of information about uncertainty of compound activity prediction can be of great help during virtual screening experiments.
Collapse
|
8
|
Cerruela-García G, Pérez-Parra Toledano J, de Haro-García A, García-Pedrajas N. Influence of feature rankers in the construction of molecular activity prediction models. J Comput Aided Mol Des 2020; 34:305-325. [PMID: 31893338 DOI: 10.1007/s10822-019-00273-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
In the construction of activity prediction models, the use of feature ranking methods is a useful mechanism for extracting information for ranking features in terms of their significance to develop predictive models. This paper studies the influence of feature rankers in the construction of molecular activity prediction models; for this purpose, a comparative study of fourteen rankings methods for feature selection was conducted. The activity prediction models were constructed using four well-known classifiers and a wide collection of datasets. The ranking algorithms were compared considering the performance of these classifiers using different metrics and the consistency of the ranked features.
Collapse
Affiliation(s)
- Gonzalo Cerruela-García
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain.
| | - José Pérez-Parra Toledano
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain
| | - Aída de Haro-García
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain
| | - Nicolás García-Pedrajas
- Department of Computing and Numerical Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein Building, 14071, Córdoba, Spain
| |
Collapse
|
9
|
Laufkötter O, Miyao T, Bajorath J. Large-Scale Comparison of Alternative Similarity Search Strategies with Varying Chemical Information Contents. ACS OMEGA 2019; 4:15304-15311. [PMID: 31552377 PMCID: PMC6751733 DOI: 10.1021/acsomega.9b02470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Similarity searching (SS) is a core approach in computational compound screening and has a long tradition in pharmaceutical research. Over the years, different approaches have been introduced to increase the information content of search calculations and optimize the ability to detect compounds having similar activity. We present a large-scale comparison of distinct search strategies on more than 600 qualifying compound activity classes. Challenging test cases for SS were identified and used to evaluate different ways to further improve search performance, which provided a differentiated view of alternative search strategies and their relative performance. It was found that search results could not only be improved by increasing compound input information but also by focusing similarity calculations on database compounds. In the presence of multiple active reference compounds, asymmetric SS with high weights on chemical features of target compounds emerged as an overall preferred approach across many different activity classes. These findings have implications for practical virtual screening applications.
Collapse
Affiliation(s)
- Oliver Laufkötter
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Tomoyuki Miyao
- Data
Science Center and Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Jürgen Bajorath
- Department
of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology
and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| |
Collapse
|
10
|
Three-dimensional descriptors for aminergic GPCRs: dependence on docking conformation and crystal structure. Mol Divers 2018; 23:603-613. [PMID: 30484023 PMCID: PMC6682580 DOI: 10.1007/s11030-018-9894-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
Three-dimensional descriptors are often used to search for new biologically active compounds, in both ligand- and structure-based approaches, capturing the spatial orientation of molecules. They frequently constitute an input for machine learning-based predictions of compound activity or quantitative structure-activity relationship modeling; however, the distribution of their values and the accuracy of depicting compound orientations might have an impact on the power of the obtained predictive models. In this study, we analyzed the distribution of three-dimensional descriptors calculated for docking poses of active and inactive compounds for all aminergic G protein-coupled receptors with available crystal structures, focusing on the variation in conformations for different receptors and crystals. We demonstrated that the consistency in compound orientation in the binding site is rather not correlated with the affinity itself, but is more influenced by other factors, such as the number of rotatable bonds and crystal structure used for docking studies. The visualizations of the descriptors distributions were prepared and made available online at http://chem.gmum.net/vischem_stability , which enables the investigation of chemical structures referring to particular data points depicted in the figures. Moreover, the performed analysis can assist in choosing crystal structure for docking studies, helping in selection of conditions providing the best discrimination between active and inactive compounds in machine learning-based experiments.
Collapse
|
11
|
Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov Today 2016; 21:1291-302. [DOI: 10.1016/j.drudis.2016.06.013] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/25/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022]
|
12
|
Muegge I, Mukherjee P. An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discov 2015; 11:137-48. [PMID: 26558489 DOI: 10.1517/17460441.2016.1117070] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION A central premise of medicinal chemistry is that structurally similar molecules exhibit similar biological activities. Molecular fingerprints encode properties of small molecules and assess their similarities computationally through bit string comparisons. Based on the similarity to a biologically active template, molecular fingerprint methods allow for identifying additional compounds with a higher chance of displaying similar biological activities against the same target - a process commonly referred to as virtual screening (VS). AREAS COVERED This article focuses on fingerprint similarity searches in the context of compound selection for enhancing hit sets, comparing compound decks, and VS. In addition, the authors discuss the application of fingerprints in predictive modeling. EXPERT OPINION Fingerprint similarity search methods are especially useful in VS if only a few unrelated ligands are known for a given target and therefore more complex and information rich methods such as pharmacophore searches or structure-based design are not applicable. In addition, fingerprint methods are used in characterizing properties of compound collections such as chemical diversity, density in chemical space, and content of biologically active molecules (biodiversity). Such assessments are important for deciding what compounds to experimentally screen, to purchase, or to assemble in a virtual compound deck for in silico screening or de novo design.
Collapse
Affiliation(s)
- Ingo Muegge
- a Boehringer Ingelheim Pharmaceuticals , Department of Small Molecule Discovery Research , Ridgefield , CT , USA
| | - Prasenjit Mukherjee
- a Boehringer Ingelheim Pharmaceuticals , Department of Small Molecule Discovery Research , Ridgefield , CT , USA
| |
Collapse
|
13
|
Yu X, Geer LY, Han L, Bryant SH. Target enhanced 2D similarity search by using explicit biological activity annotations and profiles. J Cheminform 2015; 7:55. [PMID: 26583046 PMCID: PMC4648974 DOI: 10.1186/s13321-015-0103-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enriched biological activity information of compounds in large and freely-accessible chemical databases like the PubChem Bioassay Database has become a powerful research resource for the scientific research community. Currently, 2D fingerprint based conventional similarity search (CSS) is the most common widely used approach for database screening, but it does not typically incorporate the relative importance of fingerprint bits to biological activity. RESULTS In this study, a large-scale similarity search investigation has been carried out on 208 well-defined compound activity classes extracted from PubChem Bioassay Database. An analysis was performed to compare the search performance of three types of 2D similarity search approaches: 2D fingerprint based conventional similarity search approach (CSS), iterative similarity search approach with multiple active compounds as references (ISS), and fingerprint based iterative similarity search with classification (ISC), which can be regarded as the combination of iterative similarity search with active references and a reversed iterative similarity search with inactive references. Compared to the search results returned by CSS, ISS improves recall but not precision. Although ISC causes the false rejection of active hits, it improves the precision with statistical significance, and outperforms both ISS and CSS. In a second part of this study, we introduce the profile concept into the three types of searches. We find that the profile based non-iterative search can significantly improve the search performance by increasing the recall rate. We also find that profile based ISS (PBISS) and profile based ISC (PBISC) significantly decreases ISS search time without sacrificing search performance. CONCLUSIONS On the basis of our large-scale investigation directed against a wide spectrum of pharmaceutical targets, we conclude that ISC and ISS searches perform better than 2D fingerprint similarity searching and that profile based versions of these algorithms do nearly as well in less time. We also suggest that the profile version of the iterative similarity searches are both better performing and potentially quicker than the standard algorithm.
Collapse
Affiliation(s)
- Xiang Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Lewis Y Geer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Lianyi Han
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| | - Stephen H Bryant
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894 USA
| |
Collapse
|
14
|
Introducing the ‘active search’ method for iterative virtual screening. J Comput Aided Mol Des 2015; 29:305-14. [DOI: 10.1007/s10822-015-9832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
15
|
Bajorath J. Molecular crime scene investigation - dusting for fingerprints. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e491-e498. [PMID: 24451639 DOI: 10.1016/j.ddtec.2012.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In chemoinformatics and drug design, fingerprints (FPs) are defined as string representations of molecular structure and properties and are popular descriptors for similarity searching. FPs are generally characterized by the simplicity of their design and ease of use. Despite a long history in chemoinformatics, the potential and limitations of FP searching are often not well under- stood. Standard FPs can also be subjected to engineering techniques to tune them for specific search applications.
Collapse
|
16
|
Fernald GH, Altman RB. Using molecular features of xenobiotics to predict hepatic gene expression response. J Chem Inf Model 2013; 53:2765-73. [PMID: 24010729 PMCID: PMC3810861 DOI: 10.1021/ci3005868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite recent advances in molecular medicine and rational drug design, many drugs still fail because toxic effects arise at the cellular and tissue level. In order to better understand these effects, cellular assays can generate high-throughput measurements of gene expression changes induced by small molecules. However, our understanding of how the chemical features of small molecules influence gene expression is very limited. Therefore, we investigated the extent to which chemical features of small molecules can reliably be associated with significant changes in gene expression. Specifically, we analyzed the gene expression response of rat liver cells to 170 different drugs and searched for genes whose expression could be related to chemical features alone. Surprisingly, we can predict the up-regulation of 87 genes (increased expression of at least 1.5 times compared to controls). We show an average cross-validation predictive area under the receiver operating characteristic curve (AUROC) of 0.7 or greater for each of these 87 genes. We applied our method to an external data set of rat liver gene expression response to a novel drug and achieved an AUROC of 0.7. We also validated our approach by predicting up-regulation of Cytochrome P450 1A2 (CYP1A2) in three drugs known to induce CYP1A2 that were not in our data set. Finally, a detailed analysis of the CYP1A2 predictor allowed us to identify which fragments made significant contributions to the predictive scores.
Collapse
Affiliation(s)
- Guy Haskin Fernald
- Biomedical Informatics Training Program, Stanford University School of Medicine and ‡Departments of Bioengineering and Genetics, Stanford University , Stanford, California 94305, United States
| | | |
Collapse
|
17
|
Fingerprint design and engineering strategies: rationalizing and improving similarity search performance. Future Med Chem 2013; 4:1945-59. [PMID: 23088275 DOI: 10.4155/fmc.12.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fingerprints (FPs) are bit or integer string representations of molecular structure and properties, and are popular descriptors for chemical similarity searching. A major goal of similarity searching is the identification of novel active compounds on the basis of known reference molecules. In this review recent FP design and engineering strategies are discussed. New types of FPs continue to be replaced, often applying different design principles. FP engineering techniques have recently been introduced to further improve search performance and computational efficiency and elucidate mechanisms by which FPs recognize active compounds. In addition, through feature selection and hybridization techniques, standard FPs have been transformed into compound class-specific versions with further increased search performance. Moreover, scaffold hopping mechanisms have been explored. FPs will continue to play an important role in the search for novel active compounds.
Collapse
|
18
|
Singh N, Chaudhury S, Liu R, AbdulHameed MDM, Tawa G, Wallqvist A. QSAR Classification Model for Antibacterial Compounds and Its Use in Virtual Screening. J Chem Inf Model 2012; 52:2559-69. [PMID: 23013546 DOI: 10.1021/ci300336v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Narender Singh
- DoD Biotechnology High Performance Software Applications Institute, BHSAI/MRMC, ATTN: MCMR-TT, 2405
Whittier Drive, Frederick, Maryland 21702, United States
| | - Sidhartha Chaudhury
- DoD Biotechnology High Performance Software Applications Institute, BHSAI/MRMC, ATTN: MCMR-TT, 2405
Whittier Drive, Frederick, Maryland 21702, United States
| | - Ruifeng Liu
- DoD Biotechnology High Performance Software Applications Institute, BHSAI/MRMC, ATTN: MCMR-TT, 2405
Whittier Drive, Frederick, Maryland 21702, United States
| | - Mohamed Diwan M. AbdulHameed
- DoD Biotechnology High Performance Software Applications Institute, BHSAI/MRMC, ATTN: MCMR-TT, 2405
Whittier Drive, Frederick, Maryland 21702, United States
| | - Gregory Tawa
- DoD Biotechnology High Performance Software Applications Institute, BHSAI/MRMC, ATTN: MCMR-TT, 2405
Whittier Drive, Frederick, Maryland 21702, United States
| | - Anders Wallqvist
- DoD Biotechnology High Performance Software Applications Institute, BHSAI/MRMC, ATTN: MCMR-TT, 2405
Whittier Drive, Frederick, Maryland 21702, United States
| |
Collapse
|
19
|
Vogt M, Bajorath J. Chemoinformatics: A view of the field and current trends in method development. Bioorg Med Chem 2012; 20:5317-23. [DOI: 10.1016/j.bmc.2012.03.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 12/18/2022]
|
20
|
Rabal O, Oyarzabal J. Using Novel Descriptor Accounting for Ligand–Receptor Interactions To Define and Visually Explore Biologically Relevant Chemical Space. J Chem Inf Model 2012; 52:1086-102. [DOI: 10.1021/ci200627v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Obdulia Rabal
- Small Molecule Discovery Platform, Center for Applied
Medical Research (CIMA), University of Navarra, Avda. Pio XII 55,
E-31008 Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Center for Applied
Medical Research (CIMA), University of Navarra, Avda. Pio XII 55,
E-31008 Pamplona, Spain
| |
Collapse
|