1
|
Guterres H, Park SJ, Cao Y, Im W. CHARMM-GUI Ligand Designer for Template-Based Virtual Ligand Design in a Binding Site. J Chem Inf Model 2021; 61:5336-5342. [PMID: 34757752 DOI: 10.1021/acs.jcim.1c01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rational drug design involves a task of finding ligands that would bind to a specific target protein. This work presents CHARMM-GUI Ligand Designer that is an intuitive and interactive web-based tool to design virtual ligands that match the shape and chemical features of a given protein binding site. Ligand Designer provides ligand modification capabilities with 3D visualization that allow researchers to modify and redesign virtual ligands while viewing how the protein-ligand interactions are affected. Virtual ligands can also be parameterized for further molecular dynamics (MD) simulations and free energy calculations. Using 8 targets from 8 different protein classes in the directory of useful decoys, enhanced (DUD-E) data set, we show that Ligand Designer can produce similar ligands to the known active ligands in the crystal structures. Ligand Designer also produces stable protein-ligand complex structures when tested using short MD simulations. We expect that Ligand Designer can be a useful and user-friendly tool to design small molecules in any given potential ligand binding site on a protein of interest.
Collapse
Affiliation(s)
- Hugo Guterres
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yiwei Cao
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
2
|
Guterres H, Park SJ, Zhang H, Im W. CHARMM-GUI LBS Finder & Refiner for Ligand Binding Site Prediction and Refinement. J Chem Inf Model 2021; 61:3744-3751. [PMID: 34296608 DOI: 10.1021/acs.jcim.1c00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A protein performs its task by binding a variety of ligands in its local region that is also known as the ligand-binding-site (LBS). Therefore, accurate prediction, characterization, and refinement of LBS can facilitate protein functional annotations and structure-based drug design. In this work, we present CHARMM-GUI LBS Finder & Refiner (https://www.charmm-gui.org/input/lbsfinder) that predicts potential LBS, offers interactive features for local LBS structure analysis, and prepares various molecular dynamics (MD) systems and inputs by setting up distance restraint potentials for LBS structure refinement. LBS Finder & Refiner supports 5 different commonly used simulation programs, such as NAMD, AMBER, GROMACS, GENESIS, and OpenMM, for LBS structure refinement together with hydrogen mass repartitioning. The capability of LBS Finder & Refiner is illustrated through LBS structure predictions and refinements of 48 modeled and 20 apo benchmark target proteins. Overall, successful LBS structure predictions and refinements are seen in our benchmark tests. We hope that LBS Finder & Refiner is useful to predict, characterize, and refine potential LBS on any given protein of interest.
Collapse
Affiliation(s)
- Hugo Guterres
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Han Zhang
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Guterres H, Park SJ, Jiang W, Im W. Ligand-Binding-Site Refinement to Generate Reliable Holo Protein Structure Conformations from Apo Structures. J Chem Inf Model 2020; 61:535-546. [PMID: 33337877 DOI: 10.1021/acs.jcim.0c01354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first important step in a structure-based virtual screening is the judicious selection of a receptor protein. In cases where the holo protein receptor structure is unavailable, significant reduction in virtual screening performance has been reported. In this work, we present a robust method to generate reliable holo protein structure conformations from apo structures using molecular dynamics (MD) simulation with restraints derived from holo structure binding-site templates. We perform benchmark tests on two different datasets: 40 structures from a directory of useful decoy-enhanced (DUD-E) and 84 structures from the Gunasekaran dataset. Our results show successful refinement of apo binding-site structures toward holo conformations in 82% of the test cases. In addition, virtual screening performance of 40 DUD-E structures is significantly improved using our MD-refined structures as receptors with an average enrichment factor (EF), an EF1% value of 6.2 compared to apo structures with 3.5. Docking of native ligands to the refined structures shows an average ligand root mean square deviation (RMSD) of 1.97 Å (DUD-E dataset and Gunasekaran dataset) relative to ligands in the holo crystal structures, which is comparable to the self-docking (i.e., docking of the native ligand back to its crystal structure receptor) average, 1.34 Å (DUD-E dataset) and 1.36 Å (Gunasekaran dataset). On the other hand, docking to the apo structures yields an average ligand RMSD of 3.65 Å (DUD-E) and 2.90 Å (Gunasekaran). These results indicate that our method is robust and can be useful to improve virtual screening performance of apo structures.
Collapse
Affiliation(s)
- Hugo Guterres
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wei Jiang
- Computational Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Cao Y, Park SJ, Im W. A systematic analysis of protein-carbohydrate interactions in the Protein Data Bank. Glycobiology 2020; 31:126-136. [PMID: 32614943 DOI: 10.1093/glycob/cwaa062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Protein-carbohydrate interactions underlie essential biological processes. Elucidating the mechanism of protein-carbohydrate recognition is a prerequisite for modeling and optimizing protein-carbohydrate interactions, which will help in discovery of carbohydrate-derived therapeutics. In this work, we present a survey of a curated database consisting of 6,402 protein-carbohydrate complexes in the Protein Data Bank (PDB). We performed an all-against-all comparison of a subset of nonredundant binding sites, and the result indicates that the interaction pattern similarity is not completely relevant to the binding site structural similarity. Investigation of both binding site and ligand promiscuities reveals that the geometry of chemical feature points is more important than local backbone structure in determining protein-carbohydrate interactions. A further analysis on the frequency and geometry of atomic interactions shows that carbohydrate functional groups are not equally involved in binding interactions. Finally, we discuss the usefulness of protein-carbohydrate complexes in the PDB with acknowledgement that the carbohydrates in many structures are incomplete.
Collapse
Affiliation(s)
- Yiwei Cao
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Sciences and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Sciences and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Sciences and Engineering, Lehigh University, Bethlehem, PA 18015, USA.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| |
Collapse
|
5
|
Profiling the Protein Targets of Unmodified Bio‐Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry. Proteomics 2020; 20:e1900325. [DOI: 10.1002/pmic.201900325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/28/2019] [Indexed: 12/17/2022]
|
6
|
Guterres H, Lee HS, Im W. Ligand-Binding-Site Structure Refinement Using Molecular Dynamics with Restraints Derived from Predicted Binding Site Templates. J Chem Theory Comput 2019; 15:6524-6535. [PMID: 31557013 DOI: 10.1021/acs.jctc.9b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accurate modeling of ligand-binding-site structures plays a critical role in structure-based virtual screening. However, the structures of the ligand-binding site in most predicted protein models are generally of low quality and need refinements. In this work, we present a ligand-binding-site structure refinement protocol using molecular dynamics simulation with restraints derived from predicted binding site templates. Our benchmark validation shows great performance for 40 diverse sets of proteins from the Astex list. The ligand-binding sites on modeled protein structures are consistently refined using our method with an average Cα RMSD improvement of 0.90 Å. Comparison of ligand binding modes from ligand docking to initial unrefined and refined structures shows an average of 1.97 Å RMSD improvement in the refined structures. These results demonstrate a promising new method of structure refinement for protein ligand-binding-site structures.
Collapse
Affiliation(s)
- Hugo Guterres
- Department of Biological Sciences , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Hui Sun Lee
- Department of Biological Sciences , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Wonpil Im
- Department of Biological Sciences , Lehigh University , Bethlehem , Pennsylvania 18015 , United States.,School of Computational Sciences , Korea Institute for Advanced Study , Seoul 02455 , Republic of Korea
| |
Collapse
|
7
|
Lee HS, Im W. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design. J Comput Chem 2019; 40:1622-1632. [PMID: 30829435 DOI: 10.1002/jcc.25813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
Abstract
Proteins interact with small molecules through specific molecular recognition, which is central to essential biological functions in living systems. Therefore, understanding such interactions is crucial for basic sciences and drug discovery. Here, we present Structure template-based ab initio ligand design solution (Stalis), a knowledge-based approach that uses structure templates from the Protein Data Bank libraries of whole ligands and their fragments and generates a set of molecules (virtual ligands) whose structures represent the pocket shape and chemical features of a given target binding site. Our benchmark performance evaluation shows that ligand structure-based virtual screening using virtual ligands from Stalis outperforms a receptor structure-based virtual screening using AutoDock Vina, demonstrating reliable overall screening performance applicable to computational high-throughput screening. However, virtual ligands from Stalis are worse in recognizing active compounds at the small fraction of a rank-ordered list of screened library compounds than crystal ligands, due to the low resolution of the virtual ligand structures. In conclusion, Stalis can facilitate drug discovery research by designing virtual ligands that can be used for fast ligand structure-based virtual screening. Moreover, Stalis provides actual three-dimensional ligand structures that likely bind to a target protein, enabling to gain structural insight into potential ligands. Stalis can be an efficient computational platform for high-throughput ligand design for fundamental biological study and drug discovery research at the proteomic level. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Sun Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015
| |
Collapse
|
8
|
Abstract
Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.
Collapse
Affiliation(s)
- Hui Sun Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, USA.
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, PA, 18015, USA.
| |
Collapse
|
9
|
Raškevičius V, Mikalayeva V, Antanavičiūtė I, Ceslevičienė I, Skeberdis VA, Kairys V, Bordel S. Genome scale metabolic models as tools for drug design and personalized medicine. PLoS One 2018; 13:e0190636. [PMID: 29304175 PMCID: PMC5755790 DOI: 10.1371/journal.pone.0190636] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/18/2017] [Indexed: 01/03/2023] Open
Abstract
In this work we aim to show how Genome Scale Metabolic Models (GSMMs) can be used as tools for drug design. By comparing the chemical structures of human metabolites (obtained using their KEGG indexes) and the compounds contained in the DrugBank database, we have observed that compounds showing Tanimoto scores higher than 0.9 with a metabolite, are 29.5 times more likely to bind the enzymes metabolizing the considered metabolite, than ligands chosen randomly. By using RNA-seq data to constrain a human GSMM it is possible to obtain an estimation of its distribution of metabolic fluxes and to quantify the effects of restraining the rate of chosen metabolic reactions (for example using a drug that inhibits the enzymes catalyzing the mentioned reactions). This method allowed us to predict the differential effects of lipoamide analogs on the proliferation of MCF7 (a breast cancer cell line) and ASM (airway smooth muscle) cells respectively. These differential effects were confirmed experimentally, which provides a proof of concept of how human GSMMs could be used to find therapeutic windows against cancer. By using RNA-seq data of 34 different cancer cell lines and 26 healthy tissues, we assessed the putative anticancer effects of the compounds in DrugBank which are structurally similar to human metabolites. Among other results it was predicted that the mevalonate pathway might constitute a good therapeutic window against cancer proliferation, due to the fact that most cancer cell lines do not express the cholesterol transporter NPC1L1 and the lipoprotein lipase LPL, which makes them rely on the mevalonate pathway to obtain cholesterol.
Collapse
Affiliation(s)
- Vytautas Raškevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- * E-mail:
| | - Valeryia Mikalayeva
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Antanavičiūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Ceslevičienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Sergio Bordel
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
10
|
Lee J, Konc J, Janežič D, Brooks BR. Global organization of a binding site network gives insight into evolution and structure-function relationships of proteins. Sci Rep 2017; 7:11652. [PMID: 28912495 PMCID: PMC5599562 DOI: 10.1038/s41598-017-10412-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023] Open
Abstract
The global organization of protein binding sites is analyzed by constructing a weighted network of binding sites based on their structural similarities and detecting communities of structurally similar binding sites based on the minimum description length principle. The analysis reveals that there are two central binding site communities that play the roles of the network hubs of smaller peripheral communities. The sizes of communities follow a power-law distribution, which indicates that the binding sites included in larger communities may be older and have been evolutionary structural scaffolds of more recent ones. Structurally similar binding sites in the same community bind to diverse ligands promiscuously and they are also embedded in diverse domain structures. Understanding the general principles of binding site interplay will pave the way for improved drug design and protein design.
Collapse
Affiliation(s)
- Juyong Lee
- Department of Chemistry, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, 24341, Republic of Korea. .,Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States.
| | - Janez Konc
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000, Koper, Slovenia.,National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000, Koper, Slovenia
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States
| |
Collapse
|
11
|
Lee HS, Im W. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design. Protein Sci 2016; 25:865-76. [PMID: 26813336 DOI: 10.1002/pro.2890] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/11/2022]
Abstract
Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/.
Collapse
Affiliation(s)
- Hui Sun Lee
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, 66047
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, Kansas, 66047
| |
Collapse
|
12
|
Shin WH, Bures MG, Kihara D. PatchSurfers: Two methods for local molecular property-based binding ligand prediction. Methods 2016; 93:41-50. [PMID: 26427548 PMCID: PMC4718779 DOI: 10.1016/j.ymeth.2015.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023] Open
Abstract
Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Mark Gregory Bures
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Konc J, Miller BT, Štular T, Lešnik S, Woodcock HL, Brooks BR, Janežič D. ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites. J Chem Inf Model 2015; 55:2308-14. [DOI: 10.1021/acs.jcim.5b00534] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Janez Konc
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Hajdrihova
19, SI-1000, Ljubljana, Slovenia
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000, Koper, Slovenia
| | - Benjamin T. Miller
- Laboratory
of Computational Biology, Biochemistry and Biophysics Center, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tanja Štular
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000, Koper, Slovenia
| | - Samo Lešnik
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Hajdrihova
19, SI-1000, Ljubljana, Slovenia
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, Biochemistry and Biophysics Center, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dušanka Janežič
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000, Koper, Slovenia
| |
Collapse
|
14
|
Abstract
Enzymes are one of the most important groups of drug targets, and identifying possible ligand-enzyme interactions is of major importance in many drug discovery processes. Novel computational methods have been developed that can apply the information from the increasing number of resolved and available ligand-enzyme complexes to model new unknown interactions and therefore contribute to answer open questions in the field of drug discovery like the identification of unknown protein functions, off-target binding, ligand 3D homology modeling and induced-fit simulations.
Collapse
|
15
|
Bartolowits M, Davisson VJ. Considerations of Protein Subpockets in Fragment-Based Drug Design. Chem Biol Drug Des 2015; 87:5-20. [PMID: 26307335 DOI: 10.1111/cbdd.12631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While the fragment-based drug design approach continues to gain importance, gaps in the tools and methods available in the identification and accurate utilization of protein subpockets have limited the scope. The importance of these features of small molecule-protein recognition is highlighted with several examples. A generalized solution for the identification of subpockets and corresponding chemical fragments remains elusive, but there are numerous advancements in methods that can be used in combination to address subpockets. Finally, additional examples of approaches that consider the relative importance of small-molecule co-dependence of protein conformations are highlighted to emphasize an increased significance of subpockets, especially at protein interfaces.
Collapse
Affiliation(s)
- Matthew Bartolowits
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| |
Collapse
|
16
|
Lee HS, Jo S, Mukherjee S, Park SJ, Skolnick J, Lee J, Im W. GS-align for glycan structure alignment and similarity measurement. Bioinformatics 2015; 31:2653-9. [PMID: 25857669 DOI: 10.1093/bioinformatics/btv202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/03/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Glycans play critical roles in many biological processes, and their structural diversity is key for specific protein-glycan recognition. Comparative structural studies of biological molecules provide useful insight into their biological relationships. However, most computational tools are designed for protein structure, and despite their importance, there is no currently available tool for comparing glycan structures in a sequence order- and size-independent manner. RESULTS A novel method, GS-align, is developed for glycan structure alignment and similarity measurement. GS-align generates possible alignments between two glycan structures through iterative maximum clique search and fragment superposition. The optimal alignment is then determined by the maximum structural similarity score, GS-score, which is size-independent. Benchmark tests against the Protein Data Bank (PDB) N-linked glycan library and PDB homologous/non-homologous N-glycoprotein sets indicate that GS-align is a robust computational tool to align glycan structures and quantify their structural similarity. GS-align is also applied to template-based glycan structure prediction and monosaccharide substitution matrix generation to illustrate its utility. AVAILABILITY AND IMPLEMENTATION http://www.glycanstructure.org/gsalign. CONTACT wonpil@ku.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hui Sun Lee
- Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| | - Sunhwan Jo
- Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| | - Srayanta Mukherjee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sang-Jun Park
- School of Computational Sciences and Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul 130-722, Korea and
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, GA 30076, USA
| | - Jooyoung Lee
- School of Computational Sciences and Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul 130-722, Korea and
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
17
|
Konc J, Janežič D. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites. Nucleic Acids Res 2014; 42:W215-20. [PMID: 24861616 PMCID: PMC4086080 DOI: 10.1093/nar/gku460] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands.
Collapse
Affiliation(s)
- Janez Konc
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Dušanka Janežič
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000 Koper, Slovenia
| |
Collapse
|
18
|
Konc J, Janežič D. Binding site comparison for function prediction and pharmaceutical discovery. Curr Opin Struct Biol 2013; 25:34-9. [PMID: 24878342 DOI: 10.1016/j.sbi.2013.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
Abstract
While structural genomics resulted in thousands of new protein crystal structures, we still do not know the functions of most of these proteins. One reason for this shortcoming is their unique sequences or folds, which leaves them assigned as proteins of 'unknown function'. Recent advances in and applications of cutting edge binding site comparison algorithms for binding site detection and function prediction have begun to shed light on this problem. Here, we review these algorithms and their use in function prediction and pharmaceutical discovery. Finding common binding sites in weakly related proteins may lead to the discovery of new protein functions and to novel ways of drug discovery.
Collapse
Affiliation(s)
- Janez Konc
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Dušanka Janežič
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Koper, Slovenia.
| |
Collapse
|
19
|
Lee HS, Im W. Ligand binding site detection by local structure alignment and its performance complementarity. J Chem Inf Model 2013; 53:2462-70. [PMID: 23957286 DOI: 10.1021/ci4003602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands' positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a nontemplate geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy.
Collapse
Affiliation(s)
- Hui Sun Lee
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
20
|
Murakami Y, Kinoshita K, Kinjo AR, Nakamura H. Exhaustive comparison and classification of ligand-binding surfaces in proteins. Protein Sci 2013; 22:1379-91. [PMID: 23934772 PMCID: PMC3795496 DOI: 10.1002/pro.2329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 12/03/2022]
Abstract
Many proteins function by interacting with other small molecules (ligands). Identification of ligand-binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand-binding protein sequences and functions. Consequently, we classified the patches into ∼2000 well-characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross-fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes.
Collapse
Affiliation(s)
- Yoichi Murakami
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi, 982-0036, Japan
| | | | | | | |
Collapse
|
21
|
Topham CM, Rouquier M, Tarrat N, André I. Adaptive Smith-Waterman residue match seeding for protein structural alignment. Proteins 2013; 81:1823-39. [DOI: 10.1002/prot.24327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/22/2013] [Accepted: 05/15/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Christopher M. Topham
- Université de Toulouse, INSA, UPS, INP, LISBP; 135 Avenue de Rangueil F-31077 Toulouse France
- CNRS, UMR5504; F-31400 Toulouse France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés; F-31400 Toulouse France
| | - Mickaël Rouquier
- Université de Toulouse, INSA, UPS, INP, LISBP; 135 Avenue de Rangueil F-31077 Toulouse France
- CNRS, UMR5504; F-31400 Toulouse France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés; F-31400 Toulouse France
| | - Nathalie Tarrat
- Université de Toulouse, INSA, UPS, INP, LISBP; 135 Avenue de Rangueil F-31077 Toulouse France
- CNRS, UMR5504; F-31400 Toulouse France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés; F-31400 Toulouse France
| | - Isabelle André
- Université de Toulouse, INSA, UPS, INP, LISBP; 135 Avenue de Rangueil F-31077 Toulouse France
- CNRS, UMR5504; F-31400 Toulouse France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés; F-31400 Toulouse France
| |
Collapse
|
22
|
Jo S, Lee HS, Skolnick J, Im W. Restricted N-glycan conformational space in the PDB and its implication in glycan structure modeling. PLoS Comput Biol 2013; 9:e1002946. [PMID: 23516343 PMCID: PMC3597548 DOI: 10.1371/journal.pcbi.1002946] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022] Open
Abstract
Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures. An N-glycan is a carbohydrate chain covalently linked to the side chain of asparagine. Due to the flexibility of carbohydrate chains, it is believed that the N-glycan chains would not have a well-defined structure. However, our survey of N-glycan structures in the PDB shows that the N-glycan structures found on the surfaces of homologous glycoproteins are significantly conserved. This suggests that the interaction between the carbohydrate and the protein structure around the glycan chain plays an important role in determining the N-glycan structure. While the global N-glycan structures found on the surfaces of non-homologous glycoproteins are not conserved, the conformations of the carbohydrate residues that are closer to the protein appear to be more conserved. Our analysis highlights the applicability of template-based approaches used in protein structure prediction to structure prediction and modeling of N-glycans of glycoproteins.
Collapse
Affiliation(s)
- Sunhwan Jo
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
| | - Hui Sun Lee
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|