• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643727)   Today's Articles (3751)   Subscriber (50650)
For: Varnek A, Kireeva N, Tetko IV, Baskin II, Solov'ev VP. Exhaustive QSPR Studies of a Large Diverse Set of Ionic Liquids:  How Accurately Can We Predict Melting Points? J Chem Inf Model 2007;47:1111-22. [PMID: 17381081 DOI: 10.1021/ci600493x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Liang T, Liu W, Tan K, Wu A, Lu X. Advancing Ionic Liquid Research with pSCNN: A Novel Approach for Accurate Normal Melting Temperature Predictions. ACS OMEGA 2024;9:31694-31702. [PMID: 39072063 PMCID: PMC11270577 DOI: 10.1021/acsomega.4c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
2
Feng H, Qin L, Zhang B, Zhou J. Prediction and Interpretability of Melting Points of Ionic Liquids Using Graph Neural Networks. ACS OMEGA 2024;9:16016-16025. [PMID: 38617653 PMCID: PMC11007696 DOI: 10.1021/acsomega.3c09543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
3
Toropov AA, Toropova AP, Roncaglioni A, Benfenati E, Leszczynska D, Leszczynski J. The System of Self-Consistent Models: The Case of Henry's Law Constants. Molecules 2023;28:7231. [PMID: 37894710 PMCID: PMC10609047 DOI: 10.3390/molecules28207231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]  Open
4
Machine learning models for phase transition and decomposition temperature of ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
5
Characterising a Protic Ionic Liquid Library with Applied Machine Learning Algorithms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Baskin I, Epshtein A, Ein-Eli Y. Benchmarking machine learning methods for modeling physical properties of ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
7
Machine-Learning Model Prediction of Ionic Liquids Melting Points. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
8
Predicting melting point of ionic liquids using QSPR approach: Literature review and new models. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
9
Makarov D, Fadeeva Y, Shmukler L, Tetko I. Beware of proper validation of models for ionic Liquids! J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
10
Carrera GVSM, Inês J, Bernardes CES, Klimenko K, Shimizu K, Canongia Lopes JN. The Solubility of Gases in Ionic Liquids: A Chemoinformatic Predictive and Interpretable Approach. Chemphyschem 2021;22:2190-2200. [PMID: 34464013 DOI: 10.1002/cphc.202100632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/07/2022]
11
De Jesus K, Rodriguez R, Baek D, Fox R, Pashikanti S, Sharma K. Extraction of lanthanides and actinides present in spent nuclear fuel and in electronic waste. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
12
Kerner J, Dogan A, von Recum H. Machine learning and big data provide crucial insight for future biomaterials discovery and research. Acta Biomater 2021;130:54-65. [PMID: 34087445 DOI: 10.1016/j.actbio.2021.05.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
13
He H, Pan Y, Meng J, Li Y, Zhong J, Duan W, Jiang J. Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures. ACS OMEGA 2021;6:13116-13123. [PMID: 34056461 PMCID: PMC8158806 DOI: 10.1021/acsomega.1c00846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
14
Mital DK, Nancarrow P, Zeinab S, Jabbar NA, Ibrahim TH, Khamis MI, Taha A. Group Contribution Estimation of Ionic Liquid Melting Points: Critical Evaluation and Refinement of Existing Models. Molecules 2021;26:2454. [PMID: 33922374 PMCID: PMC8122861 DOI: 10.3390/molecules26092454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]  Open
15
Sifain AE, Rice BM, Yalkowsky SH, Barnes BC. Machine learning transition temperatures from 2D structure. J Mol Graph Model 2021;105:107848. [PMID: 33667863 DOI: 10.1016/j.jmgm.2021.107848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
16
Ding Y, Chen M, Guo C, Zhang P, Wang J. Molecular fingerprint-based machine learning assisted QSAR model development for prediction of ionic liquid properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
17
Quantitative structure-property relationship for melting and freezing points of deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
18
Venkatraman V, Evjen S, Knuutila HK, Fiksdahl A, Alsberg BK. Predicting ionic liquid melting points using machine learning. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
19
Sivaraman G, Jackson NE, Sanchez-Lengeling B, Vázquez-Mayagoitia Á, Aspuru-Guzik A, Vishwanath V, de Pablo JJ. A machine learning workflow for molecular analysis: application to melting points. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab8aa3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
20
Development of quantitative structure-property relationship (QSPR) models for predicting the thermal hazard of ionic liquids: A review of methods and models. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
21
A review on created QSPR models for predicting ionic liquids properties and their reliability from chemometric point of view. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
22
alvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2020. [DOI: 10.1007/978-1-0716-0150-1_32] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
23
Predicting Melting Points of Biofriendly Choline-Based Ionic Liquids with Molecular Dynamics. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
24
Carrera GVSM, Nunes da Ponte M, Rebelo LPN. Chemoinformatic Approaches To Predict the Viscosities of Ionic Liquids and Ionic Liquid-Containing Systems. Chemphyschem 2019;20:2767-2773. [PMID: 31424158 DOI: 10.1002/cphc.201900593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/26/2019] [Indexed: 12/11/2022]
25
Cerecedo-Cordoba JA, González Barbosa JJ, Frausto Solís J, Gallardo-Rivas NV. Melting Temperature Estimation of Imidazole Ionic Liquids with Clustering Methods. J Chem Inf Model 2019;59:3144-3153. [PMID: 31199647 DOI: 10.1021/acs.jcim.9b00203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
26
Yeadon DJ, Jacquemin J, Plechkova NV, Gomes MC, Seddon KR. Using Thermodynamics to Assess the Molecular Interactions of Tetrabutylphosphonium Carboxylate–Water Mixtures. Aust J Chem 2019. [DOI: 10.1071/ch18481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
27
Venkatraman V, Evjen S, Knuutila HK, Fiksdahl A, Alsberg BK. Predicting ionic liquid melting points using machine learning. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
28
Baghban A, Sasanipour J, Sarafbidabad M, Piri A, Razavi R. On the prediction of critical micelle concentration for sugar-based non-ionic surfactants. Chem Phys Lipids 2018;214:46-57. [DOI: 10.1016/j.chemphyslip.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/08/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
29
Venkatraman V, Raj JJ, Evjen S, Lethesh KC, Fiksdahl A. In silico prediction and experimental verification of ionic liquid refractive indices. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
30
Chen L, Bryantsev VS. A density functional theory based approach for predicting melting points of ionic liquids. Phys Chem Chem Phys 2018;19:4114-4124. [PMID: 28111666 DOI: 10.1039/c6cp08403f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
3D molecular fragment descriptors for structure–property modeling: predicting the free energies for the complexation between antipodal guests and β-cyclodextrins. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0739-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
32
Dong K, Liu X, Dong H, Zhang X, Zhang S. Multiscale Studies on Ionic Liquids. Chem Rev 2017;117:6636-6695. [DOI: 10.1021/acs.chemrev.6b00776] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
33
Martin S, Pratt HD, Anderson TM. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors. Mol Inform 2017;36. [DOI: 10.1002/minf.201600125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/14/2017] [Indexed: 11/07/2022]
34
Mehraein I, Riahi S. The QSPR models to predict the solubility of CO 2 in ionic liquids based on least-squares support vector machines and genetic algorithm-multi linear regression. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.10.133] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
35
Gaudin T, Rotureau P, Pezron I, Fayet G. New QSPR Models to Predict the Critical Micelle Concentration of Sugar-Based Surfactants. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
36
Yosipof A, Shimanovich K, Senderowitz H. Materials Informatics: Statistical Modeling in Material Science. Mol Inform 2016;35:568-579. [DOI: 10.1002/minf.201600047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023]
37
Tetko IV, M. Lowe D, Williams AJ. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. J Cheminform 2016;8:2. [PMID: 26807157 PMCID: PMC4724158 DOI: 10.1186/s13321-016-0113-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 11/18/2022]  Open
38
Chen B, Zhang T, Bond T, Gan Y. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources. JOURNAL OF HAZARDOUS MATERIALS 2015;299:260-79. [PMID: 26142156 DOI: 10.1016/j.jhazmat.2015.06.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/21/2015] [Indexed: 05/19/2023]
39
Nekoeinia M, Yousefinejad S, Abdollahi-Dezaki A. Prediction of ETN Polarity Scale of Ionic Liquids Using a QSPR Approach. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02982] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
40
Nieto-Draghi C, Fayet G, Creton B, Rozanska X, Rotureau P, de Hemptinne JC, Ungerer P, Rousseau B, Adamo C. A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes. Chem Rev 2015;115:13093-164. [PMID: 26624238 DOI: 10.1021/acs.chemrev.5b00215] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
41
Lazzús JA, Pulgar-Villarroel G. Estimation of thermal conductivity of ionic liquids using quantitative structure–property relationship calculations. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.08.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
42
Lindenberg EK, Patey GN. Melting point trends and solid phase behaviors of model salts with ion size asymmetry and distributed cation charge. J Chem Phys 2015;143:024508. [DOI: 10.1063/1.4923344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
43
Alexander DLJ, Tropsha A, Winkler DA. Beware of R(2): Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models. J Chem Inf Model 2015;55:1316-22. [PMID: 26099013 DOI: 10.1021/acs.jcim.5b00206] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
44
Wicker JGP, Cooper RI. Will it crystallise? Predicting crystallinity of molecular materials. CrystEngComm 2015. [DOI: 10.1039/c4ce01912a] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
45
Tetko IV, Sushko Y, Novotarskyi S, Patiny L, Kondratov I, Petrenko AE, Charochkina L, Asiri AM. How accurately can we predict the melting points of drug-like compounds? J Chem Inf Model 2014;54:3320-9. [PMID: 25489863 PMCID: PMC4702524 DOI: 10.1021/ci5005288] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
46
Yan F, Lartey M, Jariwala K, Bowser S, Damodaran K, Albenze E, Luebke DR, Nulwala HB, Smit B, Haranczyk M. Toward a Materials Genome Approach for Ionic Liquids: Synthesis Guided by Ab Initio Property Maps. J Phys Chem B 2014;118:13609-20. [DOI: 10.1021/jp506972w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
47
Ruggiu F, Solov'ev V, Marcou G, Horvath D, Graton J, Le Questel JY, Varnek A. Individual Hydrogen-Bond Strength QSPR Modelling with ISIDA Local Descriptors: a Step Towards Polyfunctional Molecules. Mol Inform 2014;33:477-87. [PMID: 27485986 DOI: 10.1002/minf.201400032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/15/2014] [Indexed: 11/09/2022]
48
Solov’ev V, Varnek A, Tsivadze A. QSPR ensemble modelling of the 1:1 and 1:2 complexation of Co2+, Ni2+, and Cu2+ with organic ligands: relationships between stability constants. J Comput Aided Mol Des 2014;28:549-64. [DOI: 10.1007/s10822-014-9741-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
49
Geppert T, Beck B. Fuzzy Matched Pairs: A Means To Determine the Pharmacophore Impact on Molecular Interaction. J Chem Inf Model 2014;54:1093-102. [DOI: 10.1021/ci400694q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
50
Lindenberg EK, Patey GN. How distributed charge reduces the melting points of model ionic salts. J Chem Phys 2014;140:104504. [DOI: 10.1063/1.4867275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA