1
|
Cerra B, Venturoni F, Souma M, Ceccarelli G, Lozza AM, Passeri D, De Franco F, Baxendale IR, Pellicciari R, Macchiarulo A, Gioiello A. Development of 3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-sulfate sodium salt (INT-767): Process optimization, synthesis and characterization of metabolites. Eur J Med Chem 2022; 242:114652. [PMID: 36049273 DOI: 10.1016/j.ejmech.2022.114652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Herein we report our synthetic efforts in supporting the development of the bile alcohol sulfate INT-767, a FXR/TGR5 dual agonist with remarkable therapeutic potential for liver disorders. We describe the process development to a final route for large scale preparation and analogues synthesis. Key sequences include Grignard addition, a one-pot two-step shortening-reduction of the carboxylic side chain, and the final sulfation reaction. The necessity for additional steps such as the protection/deprotection of hydroxyl groups at the steroidal body was also evaluated for step-economy and formation of side-products. Critical bottlenecks such as the side chain degradation have been tackled using flow technology before scaling-up individual steps. The final synthetic route may be successfully employed to produce the amount of INT-767 required to support late-stage clinical development of the compound. Furthermore, potential metabolites have been synthesized, characterized and evaluated for their ability to modulate FXR and TGR5 receptors providing key reference standards for future drug investigations, as well as offering further insights into the structure-activity relationships of this class of compounds.
Collapse
Affiliation(s)
- Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Francesco Venturoni
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Maria Souma
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Giada Ceccarelli
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Anna Maria Lozza
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Daniela Passeri
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Francesca De Franco
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Ian R Baxendale
- Department of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - Roberto Pellicciari
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Antonio Macchiarulo
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy.
| |
Collapse
|
2
|
Luxenburger A, Ure EM, Harris L, Cameron SA, Weymouth-Wilson A, Furneaux RH, Pitman J, Hinkley SF. The Synthesis of 12β-Methyl-18-nor-Avicholic Acid Analogues as Potential TGR5 Agonists†. Org Biomol Chem 2022; 20:3511-3527. [DOI: 10.1039/d1ob02401a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quest for new modulators of the Farnesoid-X (FXR) and Takeda G-protein-coupled (TGR5) receptors, bile acids are a popular candidate for drug development. Recently, bile acids endowed with a...
Collapse
|
3
|
Evaluation of novel TGR5 agonist in combination with Sitagliptin for possible treatment of type 2 diabetes. Bioorg Med Chem Lett 2018; 28:1849-1852. [PMID: 29655980 DOI: 10.1016/j.bmcl.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
TGR5 is a member of G protein-coupled receptor (GPCR) superfamily, a promising molecular target for metabolic diseases. Activation of TGR5 promotes secretion of glucagon-like peptide-1 (GLP-1), which activates insulin secretion. A series of 2-thio-imidazole derivatives have been identified as novel, potent and orally efficacious TGR5 agonists. Compound 4d, a novel TGR5 agonist, in combination with Sitagliptin, a DPP-4 inhibitor, has demonstrated an adequate GLP-1 secretion and glucose lowering effect in animal models, suggesting a potential clinical option in treatment of type-2 diabetes.
Collapse
|
4
|
Vilar S, Hripcsak G. Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations. J Cheminform 2016; 8:35. [PMID: 27375776 PMCID: PMC4930585 DOI: 10.1186/s13321-016-0147-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/23/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Drug-target identification is crucial to discover novel applications for existing drugs and provide more insights about mechanisms of biological actions, such as adverse drug effects (ADEs). Computational methods along with the integration of current big data sources provide a useful framework for drug-target and drug-adverse effect discovery. RESULTS In this article, we propose a method based on the integration of 3D chemical similarity, target and adverse effect data to generate a drug-target-adverse effect predictor along with a simple leveraging system to improve identification of drug-targets and drug-adverse effects. In the first step, we generated a system for multiple drug-target identification based on the application of 3D drug similarity into a large target dataset extracted from the ChEMBL. Next, we developed a target-adverse effect predictor combining targets from ChEMBL with phenotypic information provided by SIDER data source. Both modules were linked to generate a final predictor that establishes hypothesis about new drug-target-adverse effect candidates. Additionally, we showed that leveraging drug-target candidates with phenotypic data is very useful to improve the identification of drug-targets. The integration of phenotypic data into drug-target candidates yielded up to twofold precision improvement. In the opposite direction, leveraging drug-phenotype candidates with target data also yielded a significant enhancement in the performance. CONCLUSIONS The modeling described in the current study is simple and efficient and has applications at large scale in drug repurposing and drug safety through the identification of mechanism of action of biological effects.
Collapse
Affiliation(s)
- Santiago Vilar
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY USA
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY USA
| |
Collapse
|
5
|
Agarwal S, Patil A, Aware U, Deshmukh P, Darji B, Sasane S, Sairam KVV, Priyadarsiny P, Giri P, Patel H, Giri S, Jain M, Desai RC. Discovery of a Potent and Orally Efficacious TGR5 Receptor Agonist. ACS Med Chem Lett 2016; 7:51-5. [PMID: 26819665 PMCID: PMC4716599 DOI: 10.1021/acsmedchemlett.5b00323] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/20/2015] [Indexed: 12/13/2022] Open
Abstract
TGR5 is a G protein-coupled receptor (GPCR), activation of which promotes secretion of glucagon-like peptide-1 (GLP-1) and modulates insulin secretion. The 2-thio-imidazole derivative 6g was identified as a novel, potent, and selective TGR5 agonist (hTGR5 EC50 = 57 pM, mTGR5 = 62 pM) with a favorable pharmacokinetic profile. The compound 6g was found to have potent glucose lowering effects in vivo during an oral glucose tolerance test in DIO C57 mice with ED50 of 7.9 mg/kg and ED90 of 29.2 mg/kg.
Collapse
Affiliation(s)
- Sameer Agarwal
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Amit Patil
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Umesh Aware
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Prashant Deshmukh
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Brijesh Darji
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Santosh Sasane
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Kalapatapu V. V.
M. Sairam
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Priyanka Priyadarsiny
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Poonam Giri
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Harilal Patel
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Suresh Giri
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Mukul Jain
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| | - Ranjit C. Desai
- Zydus Research Centre, Cadila
Healthcare Ltd., Sarkhej-Bavla
N.H. No. 8 A, Moraiya, Ahmedabad 382 210, India
| |
Collapse
|
6
|
Gertzen CGW, Spomer L, Smits SHJ, Häussinger D, Keitel V, Gohlke H. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur J Med Chem 2015; 104:57-72. [PMID: 26435512 DOI: 10.1016/j.ejmech.2015.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/06/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022]
Abstract
TGR5 (Gpbar-1, M-Bar) is a class A G-protein coupled bile acid-sensing receptor predominately expressed in brain, liver and gastrointestinal tract, and a promising drug target for the treatment of metabolic disorders. Due to the lack of a crystal structure of TGR5, the development of TGR5 agonists has been guided by ligand-based approaches so far. Three binding mode models of bile acid derivatives have been presented recently. However, they differ from one another in terms of overall orientation or with respect to the location and interactions of the cholane scaffold, or cannot explain all results from mutagenesis experiments. Here, we present an extended binding mode model based on an iterative and integrated computational and biological approach. An alignment of 68 TGR5 agonists based on this binding mode leads to a significant and good structure-based 3D QSAR model, which constitutes the most comprehensive structure-based 3D-QSAR study of TGR5 agonists undertaken so far and suggests that the binding mode model is a close representation of the "true" binding mode. The binding mode model is further substantiated in that effects predicted for eight mutations in the binding site agree with experimental analyses on the impact of these TGR5 variants on receptor activity. In the binding mode, the hydrophobic cholane scaffold of taurolithocholate orients towards the interior of the orthosteric binding site such that rings A and B are in contact with TM5 and TM6, the taurine side chain orients towards the extracellular opening of the binding site and forms a salt bridge with R79(EL1), and the 3-hydroxyl group forms hydrogen bonds with E169(5.44) and Y240(6.51). The binding mode thus differs in important aspects from the ones recently presented. These results are highly relevant for the development of novel, more potent agonists of TGR5 and should be a valuable starting point for the development of TGR5 antagonists, which could show antiproliferative effects in tumor cells.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute for Biochemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Jain AK, Wen JX, Blomenkamp KS, Arora S, Blaufuss TA, Rodrigues J, Long JP, Neuschwander-Tetri BA, Teckman JH. Oleanolic Acid Improves Gut Atrophy Induced by Parenteral Nutrition. JPEN J Parenter Enteral Nutr 2015; 40:67-72. [PMID: 25921560 DOI: 10.1177/0148607115583536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nutrition support with parenteral nutrition (PN) is associated with gut atrophy. Prior studies have shown improvement with enteral chenodeoxycholic acid, a dual agonist for the farnesoid X receptor (FXR) and bile acid receptor TGR5. We hypothesized that gut growth is induced by TGR5 activation, and gut atrophy during PN administration could be prevented with the TGR5-specific agonist oleanolic acid (OA). METHODS Neonatal pigs were implanted with duodenal and jugular vein catheters. Animals were provided equi-nutritious PN or enteral swine milk. A PN subgroup received enteral OA at 50 mg/kg/d. RESULTS PN caused marked gut atrophy compared with enterally fed (EN) control animals. OA treatment led to preservation of gut mass demonstrated grossly and histologically. The mean ± SD gut weight as a percentage of body weight was 4.30 ± 0.26 for EN, 1.92 ± 0.06 for PN (P < .05, EN vs PN), and 3.39 ± 0.79 for PN+OA (P < .05, PN+OA vs PN). Mean ± SD gut density (g/cm) was 0.31 ± 0.03 for EN, 0.18 ± 0.03 for PN (P < .05 EN vs PN), and 0.27 ± 0.01 for PN+OA (P < .05 PN+OA vs PN). Histologically, a markedly decreased villous to crypt ratio was noted with PN, and OA significantly prevented this decrease. The mean ± SD v/c ratio was 3.51 ± 0.59 for EN, 1.69 ± 0.10 for PN (P < .05, EN vs PN), and 2.90 ± 0.23 for PN+OA (P < .05, PN+OA vs PN). Gut TGR5 messenger RNA expression was significantly elevated with OA treatment compared with both PN and EN. CONCLUSION The bile acid-activated G protein-coupled receptor TGR5 agonist OA prevented gut atrophy associated with PN.
Collapse
Affiliation(s)
- Ajay Kumar Jain
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, Missouri
| | - Joy X Wen
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, Missouri
| | - Keith S Blomenkamp
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, Missouri
| | - Sumit Arora
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, Missouri
| | - Timothy A Blaufuss
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, Missouri
| | - Jonathan Rodrigues
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, Missouri
| | - John P Long
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri
| | | | - Jeffery H Teckman
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, Missouri
| |
Collapse
|
8
|
Yu DD, Sousa KM, Mattern DL, Wagner J, Fu X, Vaidehi N, Forman BM, Huang W. Stereoselective synthesis, biological evaluation, and modeling of novel bile acid-derived G-protein coupled Bile acid receptor 1 (GP-BAR1, TGR5) agonists. Bioorg Med Chem 2015; 23:1613-28. [DOI: 10.1016/j.bmc.2015.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 12/31/2022]
|
9
|
Zhou C, Zou F, Xu Y, Zhang L, Zha X. Identification of new non-steroidal TGR5 agonists using virtual screening with combined pharmacophore models. Med Chem Res 2015. [DOI: 10.1007/s00044-014-1310-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
|
11
|
Macchiarulo A, Gioiello A, Thomas C, Pols TWH, Nuti R, Ferrari C, Giacchè N, De Franco F, Pruzanski M, Auwerx J, Schoonjans K, Pellicciari R. Probing the Binding Site of Bile Acids in TGR5. ACS Med Chem Lett 2013; 4:1158-62. [PMID: 24900622 DOI: 10.1021/ml400247k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Antimo Gioiello
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Charles Thomas
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Thijs W. H. Pols
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Roberto Nuti
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Cristina Ferrari
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Nicola Giacchè
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Francesca De Franco
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| | - Mark Pruzanski
- Intercept Pharmaceuticals, 18 Desbrosses
Street, New York, New York 10013, United States
| | - Johan Auwerx
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory
of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Roberto Pellicciari
- Dipartimento
di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia, 06123 Perugia, Italy
- TES Pharma S.r.l., via Palmiro
Togliatti 20, 06073 Corciano (Perugia), Italy
| |
Collapse
|
12
|
Gioiello A, Rosatelli E, Nuti R, Macchiarulo A, Pellicciari R. Patented TGR5 modulators: a review (2006 - present). Expert Opin Ther Pat 2012; 22:1399-414. [PMID: 23039746 DOI: 10.1517/13543776.2012.733000] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The G protein-coupled receptor TGR5 is a key player of the bile acid signaling network, and its activation has been proved to increase the glycemic control, to enhance energy expenditure and to exert anti-inflammatory actions. Accordingly, TGR5 ligands have emerged in drug discovery and preclinical appraisals as promising agents for the treatment of liver diseases, metabolic syndrome and related disorders. AREAS COVERED Recent advances in the field of TGR5 modulators are reviewed, with a particular attention on patent applications and peer-reviewed publications in the past 6 years. EXPERT OPINION Activation of TGR5 showed to protect mice from diabesity and insulin resistance, to improve liver functions, as well as to attenuate the development of atherosclerosis. However, although the efficacy of TGR5 agonists in mice is encouraging, further studies are needed to determine their potential in humans and to evaluate carefully the balance between the therapeutic benefits and adverse effects associated with the target. The development of new TGR5 selective ligands to support studies in animal models will surely facilitate the understanding of the complexity of TGR5 signaling network.
Collapse
Affiliation(s)
- Antimo Gioiello
- Dipartimento di Chimica e Tecnologia del Farmaco, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | |
Collapse
|
13
|
Pellicciari R, Gioiello A, Sabbatini P, Venturoni F, Nuti R, Colliva C, Rizzo G, Adorini L, Pruzanski M, Roda A, Macchiarulo A. Avicholic Acid: A Lead Compound from Birds on the Route to Potent TGR5 Modulators. ACS Med Chem Lett 2012; 3:273-7. [PMID: 24900463 DOI: 10.1021/ml200256d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/06/2012] [Indexed: 02/08/2023] Open
Abstract
Grounding on our former 3D QSAR studies, a knowledge-based screen of natural bile acids from diverse animal species has led to the identification of avicholic acid as a selective but weak TGR5 agonist. Chemical modifications of this compound resulted in the disclosure of 6α-ethyl-16-epi-avicholic acid that shows enhanced potency at TGR5 and FXR receptors. The synthesis, biological appraisals, and structure-activity relationships of this series of compounds are herein described. Moreover, a thorough physicochemical characterization of 6α-ethyl-16-epi-avicholic acid as compared to naturally occurring bile acids is reported and discussed.
Collapse
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Antimo Gioiello
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Paola Sabbatini
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Francesco Venturoni
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Roberto Nuti
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Carolina Colliva
- Dipartimento di Scienze Farmaceutiche, Alma Mater
Studiorum, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giovanni Rizzo
- Intercept Pharmaceuticals, New York, New York 10013, United States
| | - Luciano Adorini
- Intercept Pharmaceuticals, New York, New York 10013, United States
| | - Mark Pruzanski
- Intercept Pharmaceuticals, New York, New York 10013, United States
| | - Aldo Roda
- Dipartimento di Scienze Farmaceutiche, Alma Mater
Studiorum, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia
del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
14
|
The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54:1263-72. [PMID: 21145931 PMCID: PMC3650458 DOI: 10.1016/j.jhep.2010.12.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 02/08/2023]
Abstract
Bile acids (BAs) are amphipathic molecules that facilitate the uptake of lipids, and their levels fluctuate in the intestine as well as in the blood circulation depending on food intake. Besides their role in dietary lipid absorption, bile acids function as signaling molecules capable to activate specific receptors. These BA receptors are not only important in the regulation of bile acid synthesis and their metabolism, but also regulate glucose homeostasis, lipid metabolism, and energy expenditure. These processes are important in diabetes and other facets of the metabolic syndrome, which represents a considerable increasing health burden. In addition to the function of the nuclear receptor FXRα in regulating local effects in the organs of the enterohepatic axis, increasing evidence points to a crucial role of the G-protein coupled receptor (GPCR) TGR5 in mediating systemic actions of BAs. Here we discuss the current knowledge on BA receptors, with a strong focus on the cell membrane receptor TGR5, which emerges as a valuable target for intervention in metabolic diseases.
Collapse
|
15
|
Fast chromatographic determination of the bile salt critical micellar concentration. Anal Bioanal Chem 2011; 401:267-74. [DOI: 10.1007/s00216-011-5082-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/06/2011] [Accepted: 05/03/2011] [Indexed: 01/12/2023]
|
16
|
Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, Pruzanski M, Roda A, Pastorini E, Schoonjans K, Auwerx J. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem 2010; 52:7958-61. [PMID: 20014870 DOI: 10.1021/jm901390p] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the framework of the design and development of TGR5 agonists, we reported that the introduction of a C(23)(S)-methyl group in the side chain of bile acids such as chenodeoxycholic acid (CDCA) and 6-ethylchenodeoxycholic acid (6-ECDCA, INT-747) affords selectivity for TGR5. Herein we report further lead optimization efforts that have led to the discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a novel potent and selective TGR5 agonist with remarkable in vivo activity.
Collapse
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Universita di Perugia, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10:167-77. [PMID: 19723493 PMCID: PMC2739652 DOI: 10.1016/j.cmet.2009.08.001] [Citation(s) in RCA: 1317] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/27/2009] [Accepted: 08/05/2009] [Indexed: 02/06/2023]
Abstract
TGR5 is a G protein-coupled receptor expressed in brown adipose tissue and muscle, where its activation by bile acids triggers an increase in energy expenditure and attenuates diet-induced obesity. Using a combination of pharmacological and genetic gain- and loss-of-function studies in vivo, we show here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice. In addition, we show that the induction of GLP-1 release in enteroendocrine cells by 6alpha-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777), a specific TGR5 agonist, is linked to an increase of the intracellular ATP/ADP ratio and a subsequent rise in intracellular calcium mobilization. Altogether, these data show that the TGR5 signaling pathway is critical in regulating intestinal GLP-1 secretion in vivo, and suggest that pharmacological targeting of TGR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Charles Thomas
- Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tiwari A, Maiti P. TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov Today 2009; 14:523-30. [PMID: 19429513 DOI: 10.1016/j.drudis.2009.02.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/31/2009] [Accepted: 02/04/2009] [Indexed: 12/13/2022]
Abstract
Over the past decade, new roles for bile acids in paracrine and endocrine regulation of cholesterol homeostasis, lipid and carbohydrate metabolism and immunomodulatory functions have been discovered. Most of the early discoveries focused on the genomic actions of bile acids through the activation of families of nuclear receptors, such as the farnesoid X receptor and vitamin D receptors, until a new chapter in the bile acid receptor discovery unfolded in the form of TGR5; a novel G-protein-coupled receptor mediating several non-genomic functional responses induced by binding of bile acids. The key involvement of TGR5 in mediating energy homeostasis and glucose homeostasis made it an attractive target for the potential treatment of metabolic disorders.
Collapse
Affiliation(s)
- Atul Tiwari
- Metabolic Disorder, Drug Discovery Unit, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India.
| | | |
Collapse
|