1
|
Zhang S, Yoo S, Snyder DT, Katz BB, Henrickson A, Demeler B, Wysocki VH, Kreutzer AG, Nowick JS. A Disulfide-Stabilized Aβ that Forms Dimers but Does Not Form Fibrils. Biochemistry 2022; 61:252-264. [PMID: 35080857 PMCID: PMC9083094 DOI: 10.1021/acs.biochem.1c00739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aβ dimers are a basic building block of many larger Aβ oligomers and are among the most neurotoxic and pathologically relevant species in Alzheimer's disease. Homogeneous Aβ dimers are difficult to prepare, characterize, and study because Aβ forms heterogeneous mixtures of oligomers that vary in size and can rapidly aggregate into more stable fibrils. This paper introduces AβC18C33 as a disulfide-stabilized analogue of Aβ42 that forms stable homogeneous dimers in lipid environments but does not aggregate to form insoluble fibrils. The AβC18C33 peptide is readily expressed in Escherichia coli and purified by reverse-phase HPLC to give ca. 8 mg of pure peptide per liter of bacterial culture. SDS-PAGE establishes that AβC18C33 forms homogeneous dimers in the membrane-like environment of SDS and that conformational stabilization of the peptide with a disulfide bond prevents the formation of heterogeneous mixtures of oligomers. Mass spectrometric (MS) studies in the presence of dodecyl maltoside (DDM) further confirm the formation of stable noncovalent dimers. Circular dichroism (CD) spectroscopy establishes that AβC18C33 adopts a β-sheet conformation in detergent solutions and supports a model in which the intramolecular disulfide bond induces β-hairpin folding and dimer formation in lipid environments. Thioflavin T (ThT) fluorescence assays and transmission electron microscopy (TEM) studies indicate that AβC18C33 does not undergo fibril formation in aqueous buffer solutions and demonstrate that the intramolecular disulfide bond prevents fibril formation. The recently published NMR structure of an Aβ42 tetramer (PDB: 6RHY) provides a working model for the AβC18C33 dimer, in which two β-hairpins assemble through hydrogen bonding to form a four-stranded antiparallel β-sheet. It is anticipated that AβC18C33 will serve as a stable, nonfibrilizing, and noncovalent Aβ dimer model for amyloid and Alzheimer's disease research.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Stan Yoo
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Benjamin B. Katz
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta, Canada T1K 3M4
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta, Canada T1K 3M4
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Adam G. Kreutzer
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States,Corresponding Authors: James S. Nowick – Department of Chemistry, University of California, Irvine, California 92697-2025, United States; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-2025, United States. , Adam G. Kreutzer – Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
| | - James S. Nowick
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States,Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California 92697-2025, United States,Corresponding Authors: James S. Nowick – Department of Chemistry, University of California, Irvine, California 92697-2025, United States; Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-2025, United States. , Adam G. Kreutzer – Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
| |
Collapse
|
2
|
Nguyen PH, Tufféry P, Derreumaux P. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods Mol Biol 2022; 2405:95-113. [PMID: 35298810 DOI: 10.1007/978-1-0716-1855-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid fibril formation is an intrinsic property of short peptides, non-disease proteins, and proteins associated with neurodegenerative diseases. Aggregates of the Aβ and tau proteins, the α-synuclein protein, and the prion protein are observed in the brain of Alzheimer's, Parkinson's, and prion disease patients, respectively. Due to the transient short-range and long-range interactions of all species and their high aggregation propensities, the conformational ensemble of these devastating proteins, the exception being for the monomeric prion protein, remains elusive by standard structural biology methods in bulk solution and in lipid membranes. To overcome these limitations, an increasing number of simulations using different sampling methods and protein models have been performed. In this chapter, we first review our main contributions to the field of amyloid protein simulations aimed at understanding the early aggregation steps of short linear amyloid peptides, the conformational ensemble of the Aβ40/42 dimers in bulk solution, and the stability of Aβ aggregates in lipid membrane models. Then we focus on our studies on the interactions of amyloid peptides/inhibitors to prevent aggregation, and long amyloid sequences, including new results on a monomeric tau construct.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
3
|
Zhao H, Huang X, Tong Z. Formaldehyde-Crosslinked Nontoxic Aβ Monomers to Form Toxic Aβ Dimers and Aggregates: Pathogenicity and Therapeutic Perspectives. ChemMedChem 2021; 16:3376-3390. [PMID: 34396700 DOI: 10.1002/cmdc.202100428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques in the brain. However, medicines targeting amyloid-beta (Aβ) have not achieved the expected clinical effects. This review focuses on the formation mechanism of the Aβ dimer (the basic unit of oligomers and fibrils) and its tremendous potential as a drug target. Recently, age-associated formaldehyde and Aβ-derived formaldehyde have been found to crosslink the nontoxic Aβ monomer to form the toxic dimers, oligomers and fibrils. Particularly, Aβ-induced formaldehyde accumulation and formaldehyde-promoted Aβ aggregation form a vicious cycle. Subsequently, formaldehyde initiates Aβ toxicity in both the early-and late-onset AD. These facts also explain why AD drugs targeting only Aβ do not have the desired therapeutic effects. Development of the nanoparticle-based medicines targeting both formaldehyde and Aβ dimer is a promising strategy for improving the drug efficacy by penetrating blood-brain barrier and extracellular space into the cortical neurons in AD patients.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Wenzhou Medical University Affiliated Hospital 3, Department of Neurology, Wenzhou, 325200, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
4
|
van Gerresheim EF, Herring A, Gremer L, Müller-Schiffmann A, Keyvani K, Korth C. The interaction of insoluble Amyloid-β with soluble Amyloid-β dimers decreases Amyloid-β plaque numbers. Neuropathol Appl Neurobiol 2021; 47:603-610. [PMID: 33338256 DOI: 10.1111/nan.12685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The heterogeneity of Amyloid-beta (Aβ) plaque load in patients with Alzheimer's disease (AD) has puzzled neuropathology. Since brain Aβ plaque load does not correlate with cognitive decline, neurotoxic soluble Aβ oligomers have been championed as disease-causing agents in early AD. So far, investigating molecular interactions between soluble oligomeric Aβ and insoluble Aβ in vivo has been difficult because of the abundance of Aβ oligomer species and the kinetic equilibrium in which they coexist. Here, we investigated whether Aβ plaque heterogeneity relates to interactions of different Aβ conformers. MATERIALS AND METHODS We took advantage of transgenic mice that generate exclusively Aβ dimers (tgDimer mice) but do not develop Aβ plaques or neuroinflammation during their lifetime, crossed them to the transgenic CRND8 mice that develop plaques after 90 days and measured Aβ plaque load using immunohistochemical and biochemical assays. Furthermore, we performed in vitro thioflavin T (ThT) aggregation assays titrating synthetic Aβ42 -S8C dimers into fibril-forming synthetic Aβ42 . RESULTS We observed a lower number of Aβ plaques in the brain of double transgenic mice compared to tgCRND8 mice alone while the average plaque size remained unaltered. Corroborating these in vivo findings, synthetic Aβ-S8C dimers inhibited fibril formation of wild-type Aβ also in vitro, seen by an increased half-time in the ThT assay. CONCLUSIONS Our study indicates that Aβ dimers directly interfere with Aβ fibril formation in vivo and in vitro. The variable interaction of Aβ dimers with insoluble Aβ seeds could thus contribute to the heterogeneity of Aβ plaque load in AD patients.
Collapse
Affiliation(s)
- Else F van Gerresheim
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Arne Herring
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Lothar Gremer
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Biological Information Processing (IBI-7) and JuStruct, Jülich Center for Structural Biology, Research Centre Jülich, Jülich, Germany.,Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | | | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Söldner CA, Sticht H, Horn AH. Molecular Simulations and Alzheimer׳s Disease. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
Nguyen H, Linh HQ, Matteini P, La Penna G, Li MS. Emergence of Barrel Motif in Amyloid-β Trimer: A Computational Study. J Phys Chem B 2020; 124:10617-10631. [PMID: 33180492 PMCID: PMC7735726 DOI: 10.1021/acs.jpcb.0c05508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/29/2020] [Indexed: 12/20/2022]
Abstract
Amyloid-β (Aβ) peptides form assemblies that are pathological hallmarks of Alzheimer's disease. Aβ oligomers are soluble, mobile, and toxic forms of the peptide that act in the extracellular space before assembling into protofibrils and fibrils. Therefore, oligomers play an important role in the mechanism of Alzheimer's disease. Since it is difficult to determine by experiment the atomic structures of oligomers, which accumulate fast and are polymorphic, computer simulation is a useful tool to investigate elusive oligomers' structures. In this work, we report extended all-atom molecular dynamics simulations, both canonical and replica exchange, of Aβ(1-42) trimer starting from two different initial conformations: (i) the pose produced by the best docking of a monomer aside of a dimer (simulation 1), representing oligomers freshly formed by assembling monomers, and (ii) a configuration extracted from an experimental mature fibril structure (simulation 2), representing settled oligomers in equilibrium with extended fibrils. We showed that in simulation 1, regions with small β-barrels are populated, indicating the chance of spontaneous formation of domains resembling channel-like structures. These structural domains are alternative to those more representative of mature fibrils (simulation 2), the latter showing a stable bundle of C-termini that is not sampled in simulation 1. Moreover, trimer of Aβ(1-42) can form internal pores that are large enough to be accessed by water molecules and Ca2+ ions.
Collapse
Affiliation(s)
- Hoang
Linh Nguyen
- Institute
for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Huynh Quang Linh
- Ho
Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Paolo Matteini
- Institute
of Applied Physics “Nello Carrara”, National Research Council, Via Madonna Del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Giovanni La Penna
- National
Research Council of Italy (CNR), Institute
for Chemistry of Organometallic Compounds (ICCOM), 50019 Florence, Italy
- National Institute for Nuclear Physics
(INFN), Section of Roma-Tor
Vergata Institute of Physics, Polish Academy of
Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- National Institute for Nuclear Physics
(INFN), Section of Roma-Tor
Vergata Institute of Physics, Polish Academy of
Sciences, Al. Lotnikow
32/46, 02-668 Warsaw, Poland
| |
Collapse
|
7
|
Martins S, Müller-Schiffmann A, Erichsen L, Bohndorf M, Wruck W, Sleegers K, Van Broeckhoven C, Korth C, Adjaye J. IPSC-Derived Neuronal Cultures Carrying the Alzheimer's Disease Associated TREM2 R47H Variant Enables the Construction of an Aβ-Induced Gene Regulatory Network. Int J Mol Sci 2020; 21:ijms21124516. [PMID: 32630447 PMCID: PMC7350255 DOI: 10.3390/ijms21124516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Genes associated with immune response and inflammation have been identified as genetic risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing Alzheimer’s disease (AD) 2–3-fold. Here, we report the generation and characterization of a model of late-onset Alzheimer’s disease (LOAD) using lymphoblast-derived induced pluripotent stem cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals without dementia. All iPSCs efficiently differentiated into mature neuronal cultures, however AD neuronal cultures showed a distinct gene expression profile. Furthermore, manipulation of the iPSC-derived neuronal cultures with an Aβ-S8C dimer highlighted metabolic pathways, phagosome and immune response as the most perturbed pathways in AD neuronal cultures. Through the construction of an Aβ-induced gene regulatory network, we were able to identify an Aβ signature linked to protein processing in the endoplasmic reticulum (ER), which emphasized ER-stress, as a potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be used for in-depth studies to better understand the molecular mechanisms underlying the etiology of LOAD and provides new opportunities for screening of potential therapeutic targets.
Collapse
Affiliation(s)
- Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Andreas Müller-Schiffmann
- Department of Neuropathology, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.M.-S.); (C.K.)
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB-Center for Molecular Neurology, University of Antwerp, 20610 Antwerp, Belgium; (K.S.); (C.V.B.)
- Department of Biomedical Sciences, University of Antwerp, 20610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB-Center for Molecular Neurology, University of Antwerp, 20610 Antwerp, Belgium; (K.S.); (C.V.B.)
- Department of Biomedical Sciences, University of Antwerp, 20610 Antwerp, Belgium
| | - Carsten Korth
- Department of Neuropathology, Heinrich-Heine University, 40225 Düsseldorf, Germany; (A.M.-S.); (C.K.)
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (M.B.); (W.W.)
- Correspondence:
| |
Collapse
|
8
|
Aβ dimers induce behavioral and neurochemical deficits of relevance to early Alzheimer's disease. Neurobiol Aging 2018; 69:1-9. [DOI: 10.1016/j.neurobiolaging.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 11/23/2022]
|
9
|
Chiang ACA, Fowler SW, Reddy R, Pletnikova O, Troncoso JC, Sherman MA, Lesne SE, Jankowsky JL. Discrete Pools of Oligomeric Amyloid-β Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:739-756. [PMID: 29248459 PMCID: PMC5840490 DOI: 10.1016/j.ajpath.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023]
Abstract
Despite increasing appreciation that oligomeric amyloid-β (Aβ) may contribute to cognitive decline of Alzheimer disease, defining the most critical forms has been thwarted by the changeable nature of these aggregates and the varying methods used for detection. Herein, using a broad approach, we quantified Aβ oligomers during the evolution of cognitive deficits in an aggressive model of Aβ amyloidosis. Amyloid precursor protein/tetracycline transactivator mice underwent behavioral testing at 3, 6, 9, and 12 months of age to evaluate spatial learning and memory, followed by histologic assessment of amyloid burden and biochemical characterization of oligomeric Aβ species. Transgenic mice displayed progressive impairments in acquisition and immediate recall of the trained platform location. Biochemical analysis of cortical extracts from behaviorally tested mice revealed distinct age-dependent patterns of accumulation in multiple oligomeric species. Dot blot analysis demonstrated that nonfibrillar Aβ oligomers were highly soluble and extracted into a fraction enriched for extracellular proteins, whereas prefibrillar species required high-detergent conditions to retrieve, consistent with membrane localization. Low-detergent extracts tested by 82E1 enzyme-linked immunosorbent assay confirmed the presence of bona fide Aβ oligomers, whereas immunoprecipitation-Western blotting using high-detergent extracts revealed a variety of SDS-stable low-n species. These findings show that different Aβ oligomers vary in solubility, consistent with distinct localization, and identify nonfibrillar Aβ oligomer-positive aggregates as tracking most closely with cognitive decline in this model.
Collapse
Affiliation(s)
- Angie C A Chiang
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Stephanie W Fowler
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Rohit Reddy
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Cognitive Science, Rice University, Houston, Texas
| | - Olga Pletnikova
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mathew A Sherman
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Sylvain E Lesne
- Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Joanna L Jankowsky
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas; Department of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
10
|
Söldner CA, Sticht H, Horn AHC. Role of the N-terminus for the stability of an amyloid-β fibril with three-fold symmetry. PLoS One 2017; 12:e0186347. [PMID: 29023579 PMCID: PMC5638522 DOI: 10.1371/journal.pone.0186347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/01/2017] [Indexed: 12/28/2022] Open
Abstract
A key player in Alzheimer’s disease is the peptide amyloid-beta (Aβ), whose aggregation into small soluble oligomers, protofilaments, and fibrils finally leads to plaque deposits in human brains. The aggregation behavior of Aβ is strongly modulated by the nature and composition of the peptide’s environment and by its primary sequence properties. The N-terminal residues of Aβ play an important role, because they are known to change the peptide’s aggregation propensity. Since these residues are for the first time completely resolved at the molecular level in a three-fold symmetric fibril structure derived from a patient, we chose that system as template for a systematic investigation of the influence of the N-terminus upon structural stability. Using atomistic molecular dynamics simulations, we examined several fibrillar systems comprising three, six, twelve and an infinite number of layers, both with and without the first eight residues. First, we found that three layers are not sufficient to stabilize the respective Aβ topology. Second, we observed a clear stabilizing effect of the N-terminal residues upon the overall fibril fold: truncated Aβ systems were less stable than their full-length counterparts. The N-terminal residues Arg5, Asp7, and Ser8 were found to form important interfilament contacts stabilizing the overall fibril structure of three-fold symmetry. Finally, similar structural rearrangements of the truncated Aβ species in different simulations prompted us to suggest a potential mechanism involved in the formation of amyloid fibrils with three-fold symmetry.
Collapse
Affiliation(s)
- Christian A. Söldner
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anselm H. C. Horn
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- * E-mail:
| |
Collapse
|
11
|
Wolff M, Zhang-Haagen B, Decker C, Barz B, Schneider M, Biehl R, Radulescu A, Strodel B, Willbold D, Nagel-Steger L. Aβ42 pentamers/hexamers are the smallest detectable oligomers in solution. Sci Rep 2017; 7:2493. [PMID: 28559586 PMCID: PMC5449387 DOI: 10.1038/s41598-017-02370-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
Amyloid β (Aβ) oligomers may play a decisive role in Alzheimer's disease related neurodegeneration, but their structural properties are poorly understood. In this report, sedimentation velocity centrifugation, small angle neutron scattering (SANS) and molecular modelling were used to identify the small oligomeric species formed by the 42 amino acid residue long isoform of Aβ (Aβ42) in solution, characterized by a sedimentation coefficient of 2.56 S, and a radius of gyration between 2 and 4 nm. The measured sedimentation coefficient is in close agreement with the sedimentation coefficient calculated for Aβ42 hexamers using MD simulations at µM concentration. To the best of our knowledge this is the first report detailing the Aβ42 oligomeric species by SANS measurements. Our results demonstrate that the smallest detectable species in solution are penta- to hexamers. No evidences for the presence of dimers, trimers or tetramers were found, although the existence of those Aβ42 oligomers at measurable quantities had been reported frequently.
Collapse
Affiliation(s)
- Martin Wolff
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Physikalische Biochemie, University Potsdam, 14476, Golm, Germany
| | - Bo Zhang-Haagen
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Centre for Neutron Science & Institute of Complex Systems, Neutron Scattering (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christina Decker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Bogdan Barz
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Mario Schneider
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Ralf Biehl
- Jülich Centre for Neutron Science & Institute of Complex Systems, Neutron Scattering (JCNS-1&ICS-1), Forschungszentrum Jülich, 52425, Jülich, Germany
- Jülich Centre for Neutron Science, Outstation at MLZ (JCNS-MLZ), Forschungszentrum Jülich, 85747, Garching, Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Outstation at MLZ (JCNS-MLZ), Forschungszentrum Jülich, 85747, Garching, Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Luitgard Nagel-Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
12
|
Man VH, Nguyen PH, Derreumaux P. Conformational Ensembles of the Wild-Type and S8C Aβ1-42 Dimers. J Phys Chem B 2017; 121:2434-2442. [PMID: 28245647 PMCID: PMC5944329 DOI: 10.1021/acs.jpcb.7b00267] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We characterized the dimer of the amyloid-β wild-type (WT) peptide, Aβ, of 42 residues and its disulfide-bond-locked double mutant (S8C) by replica exchange molecular dynamics simulations. Aβ dimers are known to be the smallest toxic species in Alzheimer's disease, and the S8C mutant has been shown experimentally to form an exclusive homogeneous and neurotoxic dimer. Our 50 μs all-atom simulations reveal similar secondary structures and collision cross-sections but very different intramolecular and intermolecular conformations upon double S8C mutation. Both dimers are very dynamic with hundreds of free-energy minima that differ from the U-shape and S-shape conformations of the peptides in the fibrils. The only common structural feature, shared by both species with a probability of 4% in WT and 12% in S8C-S8C, is a three-stranded β-sheet spanning the 17-23, 29-36, and 39-41 residues, which does not exist in the Aβ40 WT dimers.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
13
|
Ruiz J, Boehringer R, Grogg M, Raya J, Schirer A, Crucifix C, Hellwig P, Schultz P, Torbeev V. Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Self-Assembly of Distinct Amyloid Structures. Chembiochem 2016; 17:2274-2285. [PMID: 27717158 DOI: 10.1002/cbic.201600440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/10/2022]
Abstract
Polymorphism is a common property of amyloid fibers that complicates their detailed structural and functional studies. Here we report experiments illustrating the chemical principles that enable the formation of amyloid polymorphs with distinct stoichiometric composition. Using appropriate covalent tethering we programmed self-assembly of a model peptide corresponding to the [20-41] fragment of human β2-microglobulin into fibers with either trimeric or dimeric amyloid cores. Using a set of biophysical and biochemical methods we demonstrated their distinct structural, morphological, and templating properties. Furthermore, we showed that supramolecular approaches in which the peptide is modified with bulky substituents can also be applied to modulate the formation of different fiber polymorphs. Such strategies, when applied to disease-related peptides and proteins, will greatly help in the evaluation of the biological properties of structurally distinct amyloids.
Collapse
Affiliation(s)
- Jérémy Ruiz
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Régis Boehringer
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Marcel Grogg
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Jésus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, University of Strasbourg, CNRS-, UMR 7177, 4 rue Blaise Pascal, 67008, Strasbourg, France
| | - Alicia Schirer
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-, UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-, UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Petra Hellwig
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-, UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-, UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Vladimir Torbeev
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-, UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| |
Collapse
|
14
|
O'Malley TT, Witbold WM, Linse S, Walsh DM. The Aggregation Paths and Products of Aβ42 Dimers Are Distinct from Those of the Aβ42 Monomer. Biochemistry 2016; 55:6150-6161. [PMID: 27750419 DOI: 10.1021/acs.biochem.6b00453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracts of Alzheimer's disease (AD) brain that contain what appear to be sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated the Aβ monomer, consist primarily of Aβ42, and resist denaturation by chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in two ways: by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then used a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by the Aβ monomer. The results suggest that the cross-links disfavor fibril formation from Aβ dimers, thereby enhancing the concentration of soluble aggregates akin to those in aqueous extracts of AD brain. Thus, it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates.
Collapse
Affiliation(s)
- Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States.,School of Biomolecular and Biomedical Science, University College Dublin , Dublin 4, Republic of Ireland
| | - William M Witbold
- Wyatt Technology Corporation , 18 Commerce Way, Woburn, Massachusetts 01801, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University , PO Box 124, SE221 00 Lund, Sweden
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Chiricotto M, Tran TT, Nguyen PH, Melchionna S, Sterpone F, Derreumaux P. Coarse-grained and All-atom Simulations towards the Early and Late Steps of Amyloid Fibril Formation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Thanh Thuy Tran
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Simone Melchionna
- Istituto Sistemi Complessi; Consiglio Nazionale delle Ricerche; P. le A. Moro 2 00185 Rome Italy
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
16
|
Nagel-Steger L, Owen MC, Strodel B. An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations. Chembiochem 2016; 17:657-76. [PMID: 26910367 DOI: 10.1002/cbic.201500623] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/27/2022]
Abstract
The deposition of amyloid in brain tissue in the context of neurodegenerative diseases involves the formation of intermediate species-termed oligomers-of lower molecular mass and with structures that deviate from those of mature amyloid fibrils. Because these oligomers are thought to be primarily responsible for the subsequent disease pathogenesis, the elucidation of their structure is of enormous interest. Nevertheless, because of the high aggregation propensity and the polydispersity of oligomeric species formed by the proteins or peptides in question, the preparation of appropriate samples for high-resolution structural methods has proven to be rather difficult. This is why theoretical approaches have been of particular importance in gaining insights into possible oligomeric structures for some time. Only recently has it been possible to achieve some progress with regard to the experimentally based structural characterization of defined oligomeric species. Here we discuss how theory and experiment are used to determine oligomer structures and what can be done to improve the integration of the two disciplines.
Collapse
Affiliation(s)
- Luitgard Nagel-Steger
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany
| | - Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany. .,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
17
|
Müller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schäble S, Wedel D, Horn AHC, Sticht H, de Souza Silva MA, Gottmann K, Sergeeva OA, Huston JP, Keyvani K, Korth C. Amyloid-β dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain 2015; 139:509-25. [DOI: 10.1093/brain/awv355] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/17/2015] [Indexed: 11/12/2022] Open
Abstract
Abstract
Despite amyloid plaques, consisting of insoluble, aggregated amyloid-β peptides, being a defining feature of Alzheimer’s disease, their significance has been challenged due to controversial findings regarding the correlation of cognitive impairment in Alzheimer’s disease with plaque load. The amyloid cascade hypothesis defines soluble amyloid-β oligomers, consisting of multiple amyloid-β monomers, as precursors of insoluble amyloid-β plaques. Dissecting the biological effects of single amyloid-β oligomers, for example of amyloid-β dimers, an abundant amyloid-β oligomer associated with clinical progression of Alzheimer’s disease, has been difficult due to the inability to control the kinetics of amyloid-β multimerization. For investigating the biological effects of amyloid-β dimers, we stabilized amyloid-β dimers by an intermolecular disulphide bridge via a cysteine mutation in the amyloid-β peptide (Aβ-S8C) of the amyloid precursor protein. This construct was expressed as a recombinant protein in cells and in a novel transgenic mouse, termed tgDimer mouse. This mouse formed constant levels of highly synaptotoxic soluble amyloid-β dimers, but not monomers, amyloid-β plaques or insoluble amyloid-β during its lifespan. Accordingly, neither signs of neuroinflammation, tau hyperphosphorylation or cell death were observed. Nevertheless, these tgDimer mice did exhibit deficits in hippocampal long-term potentiation and age-related impairments in learning and memory, similar to what was observed in classical Alzheimer’s disease mouse models. Although the amyloid-β dimers were unable to initiate the formation of insoluble amyloid-β aggregates in tgDimer mice, after crossbreeding tgDimer mice with the CRND8 mouse, an amyloid-β plaque generating mouse model, Aβ-S8C dimers were sequestered into amyloid-β plaques, suggesting that amyloid-β plaques incorporate neurotoxic amyloid-β dimers that by themselves are unable to self-assemble. Our results suggest that within the fine interplay between different amyloid-β species, amyloid-β dimer neurotoxic signalling, in the absence of amyloid-β plaque pathology, may be involved in causing early deficits in synaptic plasticity, learning and memory that accompany Alzheimer’s disease.
10.1093/brain/awv355_video_abstract awv355_video_abstract
Collapse
Affiliation(s)
| | - Arne Herring
- 2 Institute of Neuropathology, University of Duisburg-Essen, Germany
| | - Laila Abdel-Hafiz
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Aisa N. Chepkova
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Schäble
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
- *Present address: Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Diana Wedel
- 1 Department Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Anselm H. C. Horn
- 5 Institute for Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- 5 Institute for Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kurt Gottmann
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Olga A. Sergeeva
- 4 Institute for Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Joseph P. Huston
- 3 Centre for Behavioural Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Kathy Keyvani
- 2 Institute of Neuropathology, University of Duisburg-Essen, Germany
| | - Carsten Korth
- 1 Department Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
18
|
Xu L, Shan S, Chen Y, Wang X, Nussinov R, Ma B. Coupling of Zinc-Binding and Secondary Structure in Nonfibrillar Aβ40 Peptide Oligomerization. J Chem Inf Model 2015; 55:1218-30. [PMID: 26017140 PMCID: PMC6407634 DOI: 10.1021/acs.jcim.5b00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nonfibrillar neurotoxic amyloid β (Aβ) oligomer structures are typically rich in β-sheets, which could be promoted by metal ions like Zn(2+). Here, using molecular dynamics (MD) simulations, we systematically examined combinations of Aβ40 peptide conformations and Zn(2+) binding modes to probe the effects of secondary structure on Aβ dimerization energies and kinetics. We found that random conformations do not contribute to dimerization either thermodynamically or kinetically. Zn(2+) couples with preformed secondary structures (α-helix and β-hairpin) to speed dimerization and stabilize the resulting dimer. Partial α-helices increase the dimerization speed, and dimers with α-helix rich conformations have the lowest energy. When Zn(2+) coordinates with residues D1, H6, H13, and H14, Aβ40 β-hairpin monomers have the fastest dimerization speed. Dimers with experimentally observed zinc coordination (E11, H6, H13, and H14) form with slower rate but have lower energy. Zn(2+) cannot stabilize fibril-like β-arch dimers. However, Zn(2+)-bound β-arch tetramers have the lowest energy. Collectively, zinc-stabilized β-hairpin oligomers could be important in the nucleation-polymerization of cross-β structures. Our results are consistent with experimental findings that α-helix to β-structural transition should accompany Aβ aggregation in the presence of zinc ions and that Zn(2+) stabilizes nonfibrillar Aβ oligomers and, thus, inhibits formation of less toxic Aβ fibrils.
Collapse
Affiliation(s)
- Liang Xu
- School of Chemistry, Dalian University of Technology, Dalian, China
| | - Shengsheng Shan
- School of Chemistry, Dalian University of Technology, Dalian, China
| | - Yonggang Chen
- Network and Information Center, Dalian University of Technology, Dalian, China
| | - Xiaojuan Wang
- School of Chemical Machinery, Dalian University of Technology, Dalian, China
| | - Ruth Nussinov
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| |
Collapse
|
19
|
Marreiros R, Müller-Schiffmann A, Bader V, Selvarajah S, Dey D, Lingappa VR, Korth C. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets. Virus Res 2014; 207:155-64. [PMID: 25451064 DOI: 10.1016/j.virusres.2014.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 11/18/2022]
Abstract
Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation therapeutics. A key basis for the commonality between viral and neurodegenerative disease aggregation is a broader definition of assembly as more than just simple aggregation, particularly suited for the crowded cytoplasm. The assembly machines are collections of proteins that catalytically accelerate an assembly reaction that would occur spontaneously but too slowly to be relevant in vivo. Being an enzyme complex with a functional allosteric site, appropriated for a non-physiological purpose (e.g. viral infection or conformational disease), these assembly machines present a superior pharmacological target because inhibition of their active site will amplify an effect on their substrate reaction. Here, we present this hypothesis based on recent proof-of-principle studies against Aβ assembly relevant in Alzheimer's disease.
Collapse
Affiliation(s)
- Rita Marreiros
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Andreas Müller-Schiffmann
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verian Bader
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | | | | | - Carsten Korth
- Department Neuropathology, Heinrich Heine University Düsseldorf Medical School, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Horn AHC, Kahler A. The effect of fulvic acid on pre- and postaggregation state of Aβ17-42: molecular dynamics simulation studies, S. Verma, A. Singh and A. Mishra, Biochim Biophys Acta 1834 (2013) 24-33. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:2867-2868. [PMID: 24091242 DOI: 10.1016/j.bbapap.2013.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Anselm H C Horn
- Bioinformatik, Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany.
| | | |
Collapse
|
21
|
Dombkowski AA, Sultana KZ, Craig DB. Protein disulfide engineering. FEBS Lett 2013; 588:206-12. [PMID: 24291258 DOI: 10.1016/j.febslet.2013.11.024] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022]
Abstract
Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts.
Collapse
Affiliation(s)
- Alan A Dombkowski
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Kazi Zakia Sultana
- Department of Computer Science & Engineering, Chittagong University of Engineering & Technology, Chittagong 4349, Bangladesh
| | - Douglas B Craig
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
22
|
Roeder AM, Roettger Y, Stündel A, Dodel R, Geyer A. Synthetic dimeric Aβ(28-40) mimics the complex epitope of human anti-Aβ autoantibodies against toxic Aβ oligomers. J Biol Chem 2013; 288:27638-27645. [PMID: 23846683 DOI: 10.1074/jbc.m113.463273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Covalently linked carboxyl-terminal segments of the β-amyloid peptide (Aβ) were tested for their qualification as minimal conformational epitopes of the naturally occurring human autoantibodies against β-amyloid (nAbs-Aβ). nAbs-Aβ specifically recognize the toxic oligomers of Aβ and not the monomeric or the fibrillar forms of Aβ. The synthetic dimers of Aβ(28-40) described herein mimic the toxic Aβ oligomers but are not kinetic intermediates with uncertain compositions. CD spectra identified a surprisingly rich conformational behavior of selected miniamyloids. We observed a highly cooperative conformational transition of β-sheet to α-helix upon the addition of the helix enforcing co-solvent hexafluoroisopropanol. The CD curves of dimer 9 resembled, in a completely reversible manner, the CD spectra measured during the irreversible fibrillation of the parent Aβ(1-40). Synthetic peptide epitopes with high affinities for nAbs-Aβ are needed to identify the physiological roles of nAbs-Aβ and are promising epitopes for vaccination experiments.
Collapse
Affiliation(s)
- Andreas M Roeder
- Faculty of Chemistry, Philipps University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg
| | - Yvonne Roettger
- Department of Neurology, Philipps University of Marburg, Baldingerstrasse, D-35043 Marburg, Germany
| | - Anne Stündel
- Department of Neurology, Philipps University of Marburg, Baldingerstrasse, D-35043 Marburg, Germany
| | - Richard Dodel
- Department of Neurology, Philipps University of Marburg, Baldingerstrasse, D-35043 Marburg, Germany.
| | - Armin Geyer
- Faculty of Chemistry, Philipps University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg.
| |
Collapse
|
23
|
Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG, Stout RF, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A. Glial cells in (patho)physiology. J Neurochem 2012; 121:4-27. [PMID: 22251135 DOI: 10.1111/j.1471-4159.2012.07664.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Härd T. Protein engineering to stabilize soluble amyloid β-protein aggregates for structural and functional studies. FEBS J 2011; 278:3884-92. [PMID: 21824290 DOI: 10.1111/j.1742-4658.2011.08295.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The molecular biology underlying protein aggregation and neuronal death in Alzheimer's disease is not yet completely understood, but small soluble nonamyloid aggregates of the amyloid β-protein (Aβ) have been shown to play a fundamental neurotoxic role. The composition and biological action of such aggregates, known as oligomers and protofibrils, are therefore areas of intense study. However, research is complicated by the multitude of different interconverting aggregates that Aβ can form in vitro and in vivo, and by the inhomogeneity and instability of in vitro preparations. Here we review recent studies in which protein engineering, and in particular disulfide engineering, has been applied to stabilize different Aβ aggregates. For example, several techniques now exist to obtain stable and neurotoxic protofibrillar forms of Aβ, and engineered Aβ dimers, or larger aggregates formed by these, have been shown to specifically induce neuronal damage in a way that mimics Alzheimer's disease pathology. Disulfide engineering has also revealed structural properties of neurotoxic aggregates, for instance that Aβ in protofibrils and globular oligomers adopts a β-hairpin conformation that is similar to, but topologically distinct from, the conformation of Aβ in mature amyloid fibrils. Protein engineering is therefore a workable strategy to address many of the outstanding questions relating to the structure, interconversion and biological effects of oligomers and protofibrils of Aβ.
Collapse
Affiliation(s)
- Torleif Härd
- Department of Molecular Biology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| |
Collapse
|