1
|
Peshenko IV, Olshevskaya EV, Dizhoor AM. Calcium-sensor proteins but not bicarbonate ion activate retinal photoreceptor membrane guanylyl cyclase in photoreceptors. Front Mol Neurosci 2024; 17:1509366. [PMID: 39717564 PMCID: PMC11663931 DOI: 10.3389/fnmol.2024.1509366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Retinal membrane guanylyl cyclase (RetGC), regulated by guanylyl cyclase activating proteins (GCAPs) via negative calcium-feedback, is one of the most critically important enzymes in vertebrate rod and cone physiology, enabling their sensitivity to light. It was also reported that, similarly to olfactory receptor guanylyl cyclase, bicarbonate anion directly stimulates RetGC activity in photoreceptors as a novel phototransduction-linked regulating factor. We directly tested whether or not RetGC is a bicarbonate-activated enzyme using recombinant human RetGC expressed in HEK293 cells and the native RetGC in mouse retinas. Whereas RetGC in all cases was activated by GCAPs, we found no evidence indicating that bicarbonate can produce direct stimulating effect on RetGC catalytic activity, either basal or GCAP-activated, even at concentrations as high as 100 mM. Instead, near-physiological concentrations of bicarbonate only slightly reduced RetGC activity, whereas concentrations substantially exceeding physiological levels caused a more pronounced reduction of RetGC activity measured in mouse retinas. Our results argue that photoreceptor guanylyl cyclase is not a bicarbonate-stimulated enzyme and rule out the possibility that effects of bicarbonate on photoreceptor physiology are mediated by a direct stimulation of retinal guanylyl cyclase by HCO3 -.
Collapse
Affiliation(s)
- Igor V. Peshenko
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, PA, United States
| | - Elena V. Olshevskaya
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, PA, United States
| | - Alexander M. Dizhoor
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, PA, United States
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Shahu M, Schuhmann F, Wong SY, Solov’yov IA, Koch KW. Allosteric Communication of the Dimerization and the Catalytic Domain in Photoreceptor Guanylate Cyclase. Biochemistry 2024; 63:2131-2140. [PMID: 39175413 PMCID: PMC11375764 DOI: 10.1021/acs.biochem.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Phototransduction in vertebrate photoreceptor cells is controlled by Ca2+-dependent feedback loops involving the membrane-bound guanylate cyclase GC-E that synthesizes the second messenger guanosine-3',5'-cyclic monophosphate. Intracellular Ca2+-sensor proteins named guanylate cyclase-activating proteins (GCAPs) regulate the activity of GC-E by switching from a Ca2+-bound inhibiting state to a Ca2+-free/Mg2+-bound activating state. The gene GUCY2D encodes for human GC-E, and mutations in GUCY2D are often associated with an imbalance of Ca2+ and cGMP homeostasis causing retinal disorders. Here, we investigate the Ca2+-dependent inhibition of the constitutively active GC-E mutant V902L. The inhibition is not mediated by GCAP variants but by Ca2+ replacing Mg2+ in the catalytic center. Distant from the cyclase catalytic domain is an α-helical domain containing a highly conserved helix-turn-helix motif. Mutating the critical amino acid position 804 from leucine to proline left the principal activation mechanism intact but resulted in a lower level of catalytic efficiency. Our experimental analysis of amino acid positions in two distant GC-E domains implied an allosteric communication pathway connecting the α-helical and the cyclase catalytic domains. A computational connectivity analysis unveiled critical differences between wildtype GC-E and the mutant V902L in the allosteric network of critical amino acid positions.
Collapse
Affiliation(s)
- Manisha
Kumari Shahu
- Department
of Neuroscience, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Str.
9-11, 26129 Oldenburg ,Germany
| | - Fabian Schuhmann
- Niels
Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Siu Ying Wong
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg ,Germany
- Center
for Nanoscale Dynamics (CENAD), Institute of Physics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department
of Neuroscience, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Str.
9-11, 26129 Oldenburg ,Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg ,Germany
| |
Collapse
|
3
|
Asteriti S, Marino V, Avesani A, Biasi A, Dal Cortivo G, Cangiano L, Dell'Orco D. Recombinant protein delivery enables modulation of the phototransduction cascade in mouse retina. Cell Mol Life Sci 2023; 80:371. [PMID: 38001384 PMCID: PMC10673981 DOI: 10.1007/s00018-023-05022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy.
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
4
|
Abtout A, Reingruber J. Analysis of dim-light responses in rod and cone photoreceptors with altered calcium kinetics. J Math Biol 2023; 87:69. [PMID: 37823947 PMCID: PMC10570263 DOI: 10.1007/s00285-023-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Rod and cone photoreceptors in the retina of vertebrates are the primary sensory neurons underlying vision. They convert light into an electrical current using a signal transduction pathway that depends on Ca[Formula: see text] feedback. It is known that manipulating the Ca[Formula: see text] kinetics affects the response shape and the photoreceptor sensitivity, but a precise quantification of these effects remains unclear. We have approached this task in mouse retina by combining numerical simulations with mathematical analysis. We consider a parsimonious phototransduction model that incorporates negative Ca[Formula: see text] feedback onto the synthesis of cyclic GMP, and fast buffering reactions to alter the Ca[Formula: see text] kinetics. We derive analytic results for the photoreceptor functioning in sufficiently dim light conditions depending on the photoreceptor type. We exploit these results to obtain conceptual and quantitative insight into how response waveform and amplitude depend on the underlying biophysical processes and the Ca[Formula: see text] feedback. With a low amount of buffering, the Ca[Formula: see text] concentration changes in proportion to the current, and responses to flashes of light are monophasic. With more buffering, the change in the Ca[Formula: see text] concentration becomes delayed with respect to the current, which gives rise to a damped oscillation and a biphasic waveform. This shows that biphasic responses are not necessarily a manifestation of slow buffering reactions. We obtain analytic approximations for the peak flash amplitude as a function of the light intensity, which shows how the photoreceptor sensitivity depends on the biophysical parameters. Finally, we study how changing the extracellular Ca[Formula: see text] concentration affects the response.
Collapse
Affiliation(s)
- Annia Abtout
- Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Jürgen Reingruber
- Institute of Biology, Ecole Normale Supérieure, Paris, France.
- INSERM, U1024, Paris, France.
| |
Collapse
|
5
|
Koch KW. Molecular tuning of calcium dependent processes by neuronal calcium sensor proteins in the retina. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119491. [PMID: 37230154 DOI: 10.1016/j.bbamcr.2023.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination mediated by phototransduction, which is under control of the two secondary messengers cGMP and Ca2+. Feedback mechanisms enable photoreceptor cells to regain their responsiveness after light stimulation and involve neuronal Ca2+-sensor proteins, named GCAPs (guanylate cyclase-activating proteins) and recoverins. This review compares the diversity in Ca2+-related signaling mediated by GCAP and recoverin variants that exhibit differences in Ca2+-sensing, protein conformational changes, myristoyl switch mechanisms, diversity in divalent cation binding and dimer formation. In summary, both subclasses of neuronal Ca2+-sensor proteins contribute to a complex signaling network in rod and cone cells, which is perfectly suited to match the requirements for sensitive cell responses and maintaining this responsiveness in the presence of different background light intensities.
Collapse
Affiliation(s)
- Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
6
|
Duda T, Sharma RK. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Front Mol Neurosci 2023; 15:1022771. [PMID: 36683846 PMCID: PMC9849996 DOI: 10.3389/fnmol.2022.1022771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.
Collapse
|
7
|
Zinc Modulation of Neuronal Calcium Sensor Proteins: Three Modes of Interaction with Different Structural Outcomes. Biomolecules 2022; 12:biom12070956. [PMID: 35883512 PMCID: PMC9312857 DOI: 10.3390/biom12070956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Neuronal calcium sensors (NCSs) are the family of EF-hand proteins mediating Ca2+-dependent signaling pathways in healthy neurons and neurodegenerative diseases. It was hypothesized that the calcium sensor activity of NCSs can be complemented by sensing fluctuation of intracellular zinc, which could further diversify their function. Here, using a set of biophysical techniques, we analyzed the Zn2+-binding properties of five proteins belonging to three different subgroups of the NCS family, namely, VILIP1 and neurocalcin-δ/NCLD (subgroup B), recoverin (subgroup C), as well as GCAP1 and GCAP2 (subgroup D). We demonstrate that each of these proteins is capable of coordinating Zn2+ with a different affinity, stoichiometry, and structural outcome. In the absence of calcium, recoverin and VILIP1 bind two zinc ions with submicromolar affinity, and the binding induces pronounced conformational changes and regulates the dimeric state of these proteins without significant destabilization of their structure. In the presence of calcium, recoverin binds zinc with slightly decreased affinity and moderate conformational outcome, whereas VILIP1 becomes insensitive to Zn2+. NCALD binds Zn2+ with micromolar affinity, but the binding induces dramatic destabilization and aggregation of the protein. In contrast, both GCAPs demonstrate low-affinity binding of zinc independent of calcium, remaining relatively stable even at submillimolar Zn2+ concentrations. Based on these data, and the results of structural bioinformatics analysis, NCSs can be divided into three categories: (1) physiological Ca2+/Zn2+ sensor proteins capable of binding exchangeable (signaling) zinc (recoverin and VILIP1), (2) pathological Ca2+/Zn2+ sensors responding only to aberrantly high free zinc concentrations by denaturation and aggregation (NCALD), and (3) Zn2+-resistant, Ca2+ sensor proteins (GCAP1, GCAP2). We suggest that NCS proteins may therefore govern the interconnection between Ca2+-dependent and Zn2+-dependent signaling pathways in healthy neurons and zinc cytotoxicity-related neurodegenerative diseases, such as Alzheimer’s disease and glaucoma.
Collapse
|
8
|
Shahu MK, Schuhmann F, Scholten A, Solov’yov IA, Koch KW. The Transition of Photoreceptor Guanylate Cyclase Type 1 to the Active State. Int J Mol Sci 2022; 23:ijms23074030. [PMID: 35409388 PMCID: PMC8999790 DOI: 10.3390/ijms23074030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane-bound guanylate cyclases (GCs), which synthesize the second messenger guanosine-3', 5'-cyclic monophosphate, differ in their activation modes to reach the active state. Hormone peptides bind to the extracellular domain in hormone-receptor-type GCs and trigger a conformational change in the intracellular, cytoplasmic part of the enzyme. Sensory GCs that are present in rod and cone photoreceptor cells have intracellular binding sites for regulatory Ca2+-sensor proteins, named guanylate-cyclase-activating proteins. A rotation model of activation involving an α-helix rotation was described as a common activation motif among hormone-receptor GCs. We tested whether the photoreceptor GC-E underwent an α-helix rotation when reaching the active state. We experimentally simulated such a transitory switch by integrating alanine residues close to the transmembrane region, and compared the effects of alanine integration with the point mutation V902L in GC-E. The V902L mutation is found in patients suffering from retinal cone-rod dystrophies, and leads to a constitutively active state of GC-E. We analyzed the enzymatic catalytic parameters of wild-type and mutant GC-E. Our data showed no involvement of an α-helix rotation when reaching the active state, indicating a difference in hormone receptor GCs. To characterize the protein conformations that represent the transition to the active state, we investigated the protein dynamics by using a computational approach based on all-atom molecular dynamics simulations. We detected a swinging movement of the dimerization domain in the V902L mutant as the critical conformational switch in the cyclase going from the low to high activity state.
Collapse
Affiliation(s)
- Manisha Kumari Shahu
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
| | - Fabian Schuhmann
- Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany; (F.S.); (I.A.S.)
| | - Alexander Scholten
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
| | - Ilia A. Solov’yov
- Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany; (F.S.); (I.A.S.)
- Research Centre for Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (M.K.S.); (A.S.)
- Research Centre for Neurosensory Science, University of Oldenburg, 26111 Oldenburg, Germany
- Correspondence:
| |
Collapse
|
9
|
Dal Cortivo G, Dell’Orco D. Calcium- and Integrin-Binding Protein 2 (CIB2) in Physiology and Disease: Bright and Dark Sides. Int J Mol Sci 2022; 23:ijms23073552. [PMID: 35408910 PMCID: PMC8999013 DOI: 10.3390/ijms23073552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium- and integrin-binding protein 2 (CIB2) is a small EF-hand protein capable of binding Mg2+ and Ca2+ ions. While its biological function remains largely unclear, an increasing number of studies have shown that CIB2 is an essential component of the mechano-transduction machinery that operates in cochlear hair cells. Mutations in the gene encoding CIB2 have been associated with non-syndromic deafness. In addition to playing an important role in the physiology of hearing, CIB2 has been implicated in a multitude of very different processes, ranging from integrin signaling in platelets and skeletal muscle to autophagy, suggesting extensive functional plasticity. In this review, we summarize the current understanding of biochemical and biophysical properties of CIB2 and the biological roles that have been proposed for the protein in a variety of processes. We also highlight the many molecular aspects that remain unclarified and deserve further investigation.
Collapse
|
10
|
Avesani A, Bielefeld L, Weisschuh N, Marino V, Mazzola P, Stingl K, Haack TB, Koch KW, Dell’Orco D. Molecular Properties of Human Guanylate Cyclase-Activating Protein 3 (GCAP3) and Its Possible Association with Retinitis Pigmentosa. Int J Mol Sci 2022; 23:ijms23063240. [PMID: 35328663 PMCID: PMC8948881 DOI: 10.3390/ijms23063240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism.
Collapse
Affiliation(s)
- Anna Avesani
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Laura Bielefeld
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; (P.M.); (T.B.H.)
- Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, University of Oldenburg, 26111 Oldenburg, Germany; (L.B.); (K.-W.K.)
| | - Daniele Dell’Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (A.A.); (V.M.)
- Correspondence: ; Tel.: +39-045-802-7637
| |
Collapse
|
11
|
Biasi A, Marino V, Dal Cortivo G, Maltese PE, Modarelli AM, Bertelli M, Colombo L, Dell’Orco D. A Novel GUCA1A Variant Associated with Cone Dystrophy Alters cGMP Signaling in Photoreceptors by Strongly Interacting with and Hyperactivating Retinal Guanylate Cyclase. Int J Mol Sci 2021; 22:ijms221910809. [PMID: 34639157 PMCID: PMC8509414 DOI: 10.3390/ijms221910809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 μs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.
Collapse
Affiliation(s)
- Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
| | | | - Antonio Mattia Modarelli
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milano, Italy;
| | - Matteo Bertelli
- MAGI’S Lab s.r.l., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy
| | - Leonardo Colombo
- Department of Ophthalmology, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milano, Italy;
- Correspondence: (L.C.); (D.D.); Tel.: +39-02-81844301 (L.C.); +39-045-802-7637 (D.D.)
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy; (A.B.); (V.M.); (G.D.C.)
- Correspondence: (L.C.); (D.D.); Tel.: +39-02-81844301 (L.C.); +39-045-802-7637 (D.D.)
| |
Collapse
|
12
|
Affiliation(s)
- Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, I-37124, Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26111, Oldenburg, Germany
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, Section of Physiology, Via Borsari 46, I-44121, Ferrara, Italy.
| |
Collapse
|
13
|
A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods. Comput Struct Biotechnol J 2021; 19:3720-3734. [PMID: 34285774 PMCID: PMC8258797 DOI: 10.1016/j.csbj.2021.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
A hybrid stochastic/deterministic model of mouse rod phototransduction is presented. Rod photocurrent to photovoltage conversion in darkness is accurately characterized. Photoresponses to dim and bright stimuli and in various mutants are well reproduced. Recently debated molecular mechanisms of the phototransduction cascade are examined.
The phototransduction cascade is paradigmatic for signaling pathways initiated by G protein-coupled receptors and is characterized by a fine regulation of photoreceptor sensitivity and electrical response to a broad range of light stimuli. Here, we present a biochemically comprehensive model of phototransduction in mouse rods based on a hybrid stochastic and deterministic mathematical framework, and a quantitatively accurate description of the rod impedance in the dark. The latter, combined with novel patch clamp recordings from rod outer segments, enables the interconversion of dim flash responses between photovoltage and photocurrent and thus direct comparison with the simulations. The model reproduces the salient features of the experimental photoresponses at very dim and bright stimuli, for both normal photoreceptors and those with genetically modified cascade components. Our modelling approach recapitulates a number of recent findings in vertebrate phototransduction. First, our results are in line with the recently established requirement of dimeric activation of PDE6 by transducin and further show that such conditions can be fulfilled at the expense of a significant excess of G protein activated by rhodopsin. Secondly, simulations suggest a crucial role of the recoverin-mediated Ca2+-feedback on rhodopsin kinase in accelerating the shutoff, when light flashes are delivered in the presence of a light background. Finally, stochastic simulations suggest that transient complexes between dark rhodopsin and transducin formed prior to light stimulation increase the reproducibility of single photon responses. Current limitations of the model are likely associated with the yet unknown mechanisms governing the shutoff of the cascade.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine-5′-triphosphate
- Arr, arrestin
- BG, background illumination
- CNG, cyclic nucleotide-gated (channel)
- CSM, completely substituted mutant of rhodopsin
- CV, coefficient of variation
- DM, deterministic model
- Dynamic modeling
- E, effector of the phototransduction cascade, activated PDE
- FFT, fast Fourier-transform
- GC, guanylate cyclase
- GCAPs, guanylate cyclase-activating proteins
- GDP, guanosine-5′-diphosphate
- GPCR, G protein-coupled receptor
- GTP, guanosine-5′-triphosphate
- Gt, G protein/transducin
- Gα, α-subunit of the G protein
- Gβγ, β- and γ-subunit of the G protein
- HSDM, hybrid stochastic/deterministic model
- Light adaptation
- MPR, multiple photon response
- PDE, phosphodiesterase 6
- Ph, photons
- Phototransduction
- R, rhodopsin
- RGS, regulator of G protein signaling
- RK, rhodopsin kinase
- ROS, rod outer segment
- Rec, recoverin
- Rn, activated rhodopsin that has been phosphorylated n times
- SD, standard deviation
- SPR, single photon response
- Stochastic simulation
- Systems biology
- TTP, time to peak
- cGMP, cyclic guanosine monophosphate
- ΔJ, photocurrent
- ΔU, photovoltage
Collapse
|
14
|
Marino V, Dal Cortivo G, Maltese PE, Placidi G, De Siena E, Falsini B, Bertelli M, Dell’Orco D. Impaired Ca 2+ Sensitivity of a Novel GCAP1 Variant Causes Cone Dystrophy and Leads to Abnormal Synaptic Transmission Between Photoreceptors and Bipolar Cells. Int J Mol Sci 2021; 22:ijms22084030. [PMID: 33919796 PMCID: PMC8070792 DOI: 10.3390/ijms22084030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/23/2023] Open
Abstract
Guanylate cyclase-activating protein 1 (GCAP1) is involved in the shutdown of the phototransduction cascade by regulating the enzymatic activity of retinal guanylate cyclase via a Ca2+/cGMP negative feedback. While the phototransduction-associated role of GCAP1 in the photoreceptor outer segment is widely established, its implication in synaptic transmission to downstream neurons remains to be clarified. Here, we present clinical and biochemical data on a novel isolate GCAP1 variant leading to a double amino acid substitution (p.N104K and p.G105R) and associated with cone dystrophy (COD) with an unusual phenotype. Severe alterations of the electroretinogram were observed under both scotopic and photopic conditions, with a negative pattern and abnormally attenuated b-wave component. The biochemical and biophysical analysis of the heterologously expressed N104K-G105R variant corroborated by molecular dynamics simulations highlighted a severely compromised Ca2+-sensitivity, accompanied by minor structural and stability alterations. Such differences reflected on the dysregulation of both guanylate cyclase isoforms (RetGC1 and RetGC2), resulting in the constitutive activation of both enzymes at physiological levels of Ca2+. As observed with other GCAP1-associated COD, perturbation of the homeostasis of Ca2+ and cGMP may lead to the toxic accumulation of second messengers, ultimately triggering cell death. However, the abnormal electroretinogram recorded in this patient also suggested that the dysregulation of the GCAP1–cyclase complex further propagates to the synaptic terminal, thereby altering the ON-pathway related to the b-wave generation. In conclusion, the pathological phenotype may rise from a combination of second messengers’ accumulation and dysfunctional synaptic communication with bipolar cells, whose molecular mechanisms remain to be clarified.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
| | | | - Giorgio Placidi
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Elisa De Siena
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benedetto Falsini
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy; (G.P.); (E.D.S.)
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (B.F.); (D.D.); Tel.: +39-06-3015-6344 (B.F.); +39-045-802-7637 (D.D.)
| | - Matteo Bertelli
- MAGI’S Lab S.R.L., 38068 Rovereto, Italy; (P.E.M.); (M.B.)
- MAGI Euregio, 39100 Bolzano, Italy
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37129 Verona, Italy; (V.M.); (G.D.C.)
- Correspondence: (B.F.); (D.D.); Tel.: +39-06-3015-6344 (B.F.); +39-045-802-7637 (D.D.)
| |
Collapse
|
15
|
Avesani A, Marino V, Zanzoni S, Koch KW, Dell'Orco D. Molecular properties of human guanylate cyclase-activating protein 2 (GCAP2) and its retinal dystrophy-associated variant G157R. J Biol Chem 2021; 296:100619. [PMID: 33812995 PMCID: PMC8113879 DOI: 10.1016/j.jbc.2021.100619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
In murine and bovine photoreceptors, guanylate cyclase-activating protein 2 (GCAP2) activates retinal guanylate cyclases (GCs) at low Ca2+ levels, thus contributing to the Ca2+/cGMP negative feedback on the cyclase together with its paralog guanylate cyclase-activating protein 1, which has the same function but different Ca2+ sensitivity. In humans, a GCAP2 missense mutation (G157R) has been associated with inherited retinal degeneration (IRD) via an unknown molecular mechanism. Here, we characterized the biochemical properties of human GCAP2 and the G157R variant, focusing on its dimerization and the Ca2+/Mg2+-binding processes in the presence or absence of N-terminal myristoylation. We found that human GCAP2 and its bovine/murine orthologs significantly differ in terms of oligomeric properties, cation binding, and GC regulation. Myristoylated GCAP2 endothermically binds up to 3 Mg2+ with high affinity and forms a compact dimer that may reversibly dissociate in the presence of Ca2+. Conversely, nonmyristoylated GCAP2 does not bind Mg2+ over the physiological range and remains as a monomer in the absence of Ca2+. Both myristoylated and nonmyristoylated GCAP2 bind Ca2+ with high affinity. At odds with guanylate cyclase-activating protein 1 and independently of myristoylation, human GCAP2 does not significantly activate retinal GC1 in a Ca2+-dependent fashion. The IRD-associated G157R variant is characterized by a partly misfolded, molten globule-like conformation with reduced affinity for cations and prone to form aggregates, likely mediated by hydrophobic interactions. Our findings suggest that GCAP2 might be mostly implicated in processes other than phototransduction in human photoreceptors and suggest a possible molecular mechanism for G157R-associated IRD.
Collapse
Affiliation(s)
- Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Biological Chemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
16
|
Souzeau E, Weisschuh N, Craig JE, Pasutto F, Koch KW. An Assessment of GUCA1C Variants in Primary Congenital Glaucoma. Genes (Basel) 2021; 12:genes12030359. [PMID: 33801495 PMCID: PMC7998521 DOI: 10.3390/genes12030359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia;
- Correspondence: ; Tel.: +61-8-8204-5064
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany;
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, SA 5042, Australia;
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26129 Oldenburg, Germany;
- Research Center for Neurosensory Sciences, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
17
|
Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Pflugers Arch 2021; 473:1393-1410. [PMID: 33537894 PMCID: PMC8329130 DOI: 10.1007/s00424-021-02523-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
This article presents a brief overview of the main biochemical and cellular processes involved in regulation of cyclic GMP production in photoreceptors. The main focus is on how the fluctuations of free calcium concentrations in photoreceptors between light and dark regulate the activity of retinal membrane guanylyl cyclase (RetGC) via calcium sensor proteins. The emphasis of the review is on the structure of RetGC and guanylyl cyclase activating proteins (GCAPs) in relation to their functional role in photoreceptors and congenital diseases of photoreceptors. In addition to that, the structure and function of retinal degeneration-3 protein (RD3), which regulates RetGC in a calcium-independent manner, is discussed in detail in connections with its role in photoreceptor biology and inherited retinal blindness.
Collapse
|
18
|
Vladimirov VI, Baksheeva VE, Mikhailova IV, Ismailov RG, Litus EA, Tikhomirova NK, Nazipova AA, Permyakov SE, Zernii EY, Zinchenko DV. A Novel Approach to Bacterial Expression and Purification of Myristoylated Forms of Neuronal Calcium Sensor Proteins. Biomolecules 2020; 10:biom10071025. [PMID: 32664359 PMCID: PMC7407513 DOI: 10.3390/biom10071025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
N-terminal myristoylation is a common co-and post-translational modification of numerous eukaryotic and viral proteins, which affects their interaction with lipids and partner proteins, thereby modulating various cellular processes. Among those are neuronal calcium sensor (NCS) proteins, mediating transduction of calcium signals in a wide range of regulatory cascades, including reception, neurotransmission, neuronal growth and survival. The details of NCSs functioning are of special interest due to their involvement in the progression of ophthalmological and neurodegenerative diseases and their role in cancer. The well-established procedures for preparation of native-like myristoylated forms of recombinant NCSs via their bacterial co-expression with N-myristoyl transferase from Saccharomyces cerevisiae often yield a mixture of the myristoylated and non-myristoylated forms. Here, we report a novel approach to preparation of several NCSs, including recoverin, GCAP1, GCAP2, neurocalcin δ and NCS-1, ensuring their nearly complete N-myristoylation. The optimized bacterial expression and myristoylation of the NCSs is followed by a set of procedures for separation of their myristoylated and non-myristoylated forms using a combination of hydrophobic interaction chromatography steps. We demonstrate that the refolded and further purified myristoylated NCS-1 maintains its Са2+-binding ability and stability of tertiary structure. The developed approach is generally suited for preparation of other myristoylated proteins.
Collapse
Affiliation(s)
- Vasiliy I. Vladimirov
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
| | - Viktoriia E. Baksheeva
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
| | - Irina V. Mikhailova
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
- Faculty of BioMedPharmTechnological, Pushchino State Institute of Natural Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Ramis G. Ismailov
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Ekaterina A. Litus
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Natalia K. Tikhomirova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
| | - Aliya A. Nazipova
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Sergei E. Permyakov
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia; (R.G.I.); (E.A.L.); (A.A.N.); (S.E.P.)
| | - Evgeni Yu. Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.E.B.); (N.K.T.); (E.Y.Z.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry V. Zinchenko
- Laboratory of pharmacokinetics, Department of Biological Testing, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences in Puschino, Pushchino, 142290 Moscow Region, Russia; (V.I.V.); (I.V.M.)
- Correspondence:
| |
Collapse
|
19
|
Dal Cortivo G, Marino V, Bonì F, Milani M, Dell'Orco D. Missense mutations affecting Ca 2+-coordination in GCAP1 lead to cone-rod dystrophies by altering protein structural and functional properties. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118794. [PMID: 32650103 DOI: 10.1016/j.bbamcr.2020.118794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Guanylate cyclase activating protein 1 (GCAP1) is a neuronal calcium sensor (NCS) involved in the early biochemical steps underlying the phototransduction cascade. By switching from a Ca2+-bound form in the dark to a Mg2+-bound state following light activation of the cascade, GCAP1 triggers the activation of the retinal guanylate cyclase (GC), thus replenishing the levels of 3',5'-cyclic monophosphate (cGMP) necessary to re-open CNG channels. Here, we investigated the structural and functional effects of three missense mutations in GCAP1 associated with cone-rod dystrophy, which severely perturb the homeostasis of cGMP and Ca2+. Substitutions affect residues directly involved in Ca2+ coordination in either EF3 (D100G) or EF4 (E155A and E155G) Ca2+ binding motifs. We found that all GCAP1 variants form relatively stable dimers showing decreased apparent affinity for Ca2+ and blocking the enzyme in a constitutively active state at physiological levels of Ca2+. Interestingly, by corroborating spectroscopic experiments with molecular dynamics simulations we show that beside local structural effects, mutation of the bidentate glutamate in an EF-hand calcium binding motif can profoundly perturb the flexibility of the adjacent EF-hand as well, ultimately destabilizing the whole domain. Therefore, while Ca2+-binding to GCAP1 per se occurs sequentially, allosteric effects may connect EF hand motifs, which appear to be essential for the integrity of the structural switch mechanism in GCAP1, and perhaps in other NCS proteins.
Collapse
Affiliation(s)
- Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Francesco Bonì
- CNR-IBF, Istituto di Biofisica, Via Celoria 26, I-20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Mario Milani
- CNR-IBF, Istituto di Biofisica, Via Celoria 26, I-20133 Milano, Italy; Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy.
| |
Collapse
|
20
|
Abbas S, Marino V, Weisschuh N, Kieninger S, Solaki M, Dell’Orco D, Koch KW. Neuronal Calcium Sensor GCAP1 Encoded by GUCA1A Exhibits Heterogeneous Functional Properties in Two Cases of Retinitis Pigmentosa. ACS Chem Neurosci 2020; 11:1458-1470. [PMID: 32298085 DOI: 10.1021/acschemneuro.0c00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic heterogeneity leading to retinal disorders impairs biological processes by causing, for example, severe disorder of signal transduction in photoreceptor outer segments. A normal balance of the second messenger homeostasis in photoreceptor cells seems to be a crucial factor for healthy and normal photoreceptor function. Genes like GUCY2D coding for guanylate cyclase GC-E and GUCA1A coding for the Ca2+-sensor guanylate cyclase-activating protein GCAP1 are critical for a precisely controlled synthesis of the second messenger cGMP. Mutations in GUCA1A frequently correlate in patients with cone dystrophy and cone-rod dystrophy. Here, we report two mutations in the GUCA1A gene that were found in patients diagnosed with retinitis pigmentosa, a phenotype that was rarely detected among previous cases of GUCA1A related retinopathies. One patient was heterozygous for the missense variant c.55C > T (p.H19Y), while the other patient was heterozygous for the missense variant c.479T > G (p.V160G). Using heterologous expression and cell culture systems, we examined the functional and molecular consequences of these point mutations. Both variants showed a dysregulation of guanylate cyclase activity, either a profound shift in Ca2+-sensitivity (H19Y) or a nearly complete loss of activating potency (V160G). Functional heterogeneity became also apparent in Ca2+/Mg2+-binding properties and protein conformational dynamics. A faster progression of retinal dystrophy in the patient carrying the V160G mutation seems to correlate with the more severe impairment of this variant.
Collapse
Affiliation(s)
- Seher Abbas
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Maria Solaki
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
21
|
Takeda Y, Kubota D, Oishi N, Maruyama K, Gocho K, Yamaki K, Igarashi T, Takahashi H, Kameya S. Novel GUCY2D Variant (E843Q) at Mutation Hotspot Associated with Macular Dystrophy in a Japanese Patient. J NIPPON MED SCH 2020; 87:92-99. [PMID: 32009068 DOI: 10.1272/jnms.jnms.2020_87-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The GUCY2D (guanylate cyclase 2D) gene encodes a photoreceptor guanylate cyclase (GC-E), that is predominantly expressed in the cone outer segments. Mutations in the GUCY2D lead to severe retinal disorders such as autosomal dominant cone-rod dystrophy (adCRD) and autosomal recessive Leber congenital amaurosis type 1. The purpose of this study was to identify the phenotype of a Japanese patient with a probably pathogenic GUCY2D variant. METHODS Detailed ophthalmic examinations were performed, and whole exome sequencing was performed on DNA obtained from the patient. The variants identified by exome sequencing and targeted analysis were further confirmed by direct sequencing. RESULTS A 47-year-old man had atrophic and pigmentary changes in the macula of both eyes. Amplitudes and implicit times on full-field electroretinograms (ERGs) were within normal limits; however, the densities of multifocal ERGs in the central area were reduced in both eyes. Whole exome sequencing identified heterozygous variant c.2527G>C, p.Glu843Gln in the GUCY2D gene within the mutation hot spot for adCRD. The allelic frequencies of this variant are extremely low and, according to American College of Medical Genetics and Genomics standards and guidelines, the variants are classified as likely pathogenic. CONCLUSIONS This is the first report of a heterozygous variant, c.2527G>C, p.Glu843Gln, in the GUCY2D, in a patient presenting with mild macular dystrophy without a general reduction in cone function. Our findings expand the spectrum of the clinical phenotypes of GUCY2D-adCRD and help clarify the morphological and functional changes caused by defects of dimerization of GC-E in the phototransduction cascade.
Collapse
Affiliation(s)
- Yukito Takeda
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| | - Daiki Kubota
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| | - Noriko Oishi
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| | - Kaori Maruyama
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| | - Kiyoko Gocho
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| | - Kunihiko Yamaki
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| | | | | | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital
| |
Collapse
|
22
|
Li X, Spelat R, Bartolini A, Cesselli D, Ius T, Skrap M, Caponnetto F, Manini I, Yang Y, Torre V. Mechanisms of malignancy in glioblastoma cells are linked to mitochondrial Ca 2 + uniporter upregulation and higher intracellular Ca 2+ levels. J Cell Sci 2020; 133:jcs.237503. [PMID: 32051286 DOI: 10.1242/jcs.237503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant brain tumours and, despite advances in treatment modalities, it remains largely incurable. Ca2+ regulation and dynamics play crucial roles in different aspects of cancer, but they have never been investigated in detail in GBM. Here, we report that spontaneous Ca2+ waves in GBM cells cause unusual intracellular Ca2+ ([Ca2+]i) elevations (>1 μM), often propagating through tumour microtubes (TMs) connecting adjacent cells. This unusual [Ca2+]i elevation is not associated with the induction of cell death and is concomitant with overexpression of mitochondrial Ca2+ uniporter (MCU). We show that MCU silencing decreases proliferation and alters [Ca2+]i dynamics in U87 GBM cells, while MCU overexpression increases [Ca2+]i elevation in human astrocytes (HAs). These results suggest that changes in the expression level of MCU, a protein involved in intracellular Ca2+ regulation, influences GBM cell proliferation, contributing to GBM malignancy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiaoyun Li
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Anna Bartolini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy.,Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy
| | | | - Ivana Manini
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Yili Yang
- Joint SISSA-ISM Laboratory, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, 215000 Suzhou, Jiangsu, China
| | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy .,Joint SISSA-ISM Laboratory, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, 215000 Suzhou, Jiangsu, China
| |
Collapse
|
23
|
Constitutive Activation of Guanylate Cyclase by the G86R GCAP1 Variant Is Due to "Locking" Cation-π Interactions that Impair the Activator-to-Inhibitor Structural Transition. Int J Mol Sci 2020; 21:ijms21030752. [PMID: 31979372 PMCID: PMC7037459 DOI: 10.3390/ijms21030752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Guanylate Cyclase activating protein 1 (GCAP1) mediates the Ca2+-dependent regulation of the retinal Guanylate Cyclase (GC) in photoreceptors, acting as a target inhibitor at high [Ca2+] and as an activator at low [Ca2+]. Recently, a novel missense mutation (G86R) was found in GUCA1A, the gene encoding for GCAP1, in patients diagnosed with cone-rod dystrophy. The G86R substitution was found to affect the flexibility of the hinge region connecting the N- and C-domains of GCAP1, resulting in decreased Ca2+-sensitivity and abnormally enhanced affinity for GC. Based on a structural model of GCAP1, here, we tested the hypothesis of a cation-π interaction between the positively charged R86 and the aromatic W94 as the main mechanism underlying the impaired activator-to-inhibitor conformational change. W94 was mutated to F or L, thus, resulting in the double mutants G86R+W94L/F. The double mutants showed minor structural and stability changes with respect to the single G86R mutant, as well as lower affinity for both Mg2+ and Ca2+, moreover, substitutions of W94 abolished "phase II" in Ca2+-titrations followed by intrinsic fluorescence. Interestingly, the presence of an aromatic residue in position 94 significantly increased the aggregation propensity of Ca2+-loaded GCAP1 variants. Finally, atomistic simulations of all GCAP1 variants in the presence of Ca2+ supported the presence of two cation-π interactions involving R86, which was found to act as a bridge between W94 and W21, thus, locking the hinge region in an activator-like conformation and resulting in the constitutive activation of the target under physiological conditions.
Collapse
|
24
|
Tang S, Xia Y, Dai Y, Liu Y, Li J, Pan X, Chen P. Functional characterization of a novel GUCA1A missense mutation (D144G) in autosomal dominant cone dystrophy: A novel pathogenic GUCA1A variant in COD. Mol Vis 2019; 25:921-xxx. [PMID: 32025184 PMCID: PMC6982429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 10/26/2022] Open
Abstract
Purpose To elucidate the clinical phenotypes and pathogenesis of a novel missense mutation in guanylate cyclase activator A1A (GUCA1A) associated with autosomal dominant cone dystrophy (adCOD). Methods The members of a family with adCOD were clinically evaluated. Relevant genes were captured before being sequenced with targeted next-generation sequencing and confirmed with Sanger sequencing. Sequence analysis was made of the conservativeness of mutant residues. An enzyme-linked immunosorbent assay (ELISA) was implemented to detect the cyclic guanosine monophosphate (cGMP) concentration. Then limited protein hydrolysis and an electrophoresis shift were used to assess possible changes in the structure. Coimmunoprecipitation was employed to analyze the interaction between GCAP1 and retGC1. Immunofluorescence staining was performed to observe the colocalization of GCAP1 and retGC1 in human embryonic kidney (HEK)-293 cells. Results A pathogenic mutation in GUCA1A (c.431A>G, p.D144G, exon 5) was revealed in four generations of a family with adCOD. GUCA1A encodes guanylate cyclase activating protein 1 (GCAP1). D144, located in the EF4 loop involving calcium binding, was highly conserved in the species. GCAP1-D144G was more susceptible to hydrolysis, and the mobility of the D144G band became slower in the presence of Ca2+. At high Ca2+ concentrations, GCAP1-D144G stimulated retGC1 in the HEK-293 membrane to significantly increase intracellular cGMP protein concentrations. Compared with wild-type (WT) GCAP1, GCAP1-D144G had an increased interaction with retGC1, as detected in the coimmunoprecipitation assay. Conclusions The newly discovered missense mutation in GUCA1A (p.D144G) might lead to an imbalance of Ca2+ and cGMP homeostasis and eventually, cause a significant variation in adCOD.
Collapse
Affiliation(s)
- Suzhen Tang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yaning Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Jingshuo Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| | - Xiaojing Pan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao266071, Shandong Province, China
| |
Collapse
|
25
|
Normal GCAPs partly compensate for altered cGMP signaling in retinal dystrophies associated with mutations in GUCA1A. Sci Rep 2019; 9:20105. [PMID: 31882816 PMCID: PMC6934868 DOI: 10.1038/s41598-019-56606-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/12/2019] [Indexed: 01/20/2023] Open
Abstract
Missense mutations in the GUCA1A gene encoding guanylate cyclase-activating protein 1 (GCAP1) are associated with autosomal dominant cone/cone-rod (CORD) dystrophies. The nature of the inheritance pattern implies that a pool of normal GCAP proteins is present in photoreceptors together with the mutated variant. To assess whether human GCAP1 and GCAP2 may similarly regulate the activity of the retinal membrane guanylate cyclase GC-1 (GC-E) in the presence of the recently discovered E111V-GCAP1 CORD-variant, we combined biochemical and in silico assays. Surprisingly, human GCAP2 does not activate GC1 over the physiological range of Ca2+ whereas wild-type GCAP1 significantly attenuates the dysregulation of GC1 induced by E111V-GCAP1. Simulation of the phototransduction cascade in a well-characterized murine system, where GCAP2 is able to activate the GC1, suggests that both GCAPs can act in a synergic manner to mitigate the effects of the CORD-mutation. We propose the existence of a species-dependent compensatory mechanism. In murine photoreceptors, slight increases of wild-type GCAPs levels may significantly attenuate the increase in intracellular Ca2+ and cGMP induced by E111V-GCAP1 in heterozygous conditions. In humans, however, the excess of wild-type GCAP1 may only partly attenuate the mutant-induced dysregulation of cGMP signaling due to the lack of GC1-regulation by GCAP2.
Collapse
|
26
|
Borsatto A, Marino V, Abrusci G, Lattanzi G, Dell'Orco D. Effects of Membrane and Biological Target on the Structural and Allosteric Properties of Recoverin: A Computational Approach. Int J Mol Sci 2019; 20:ijms20205009. [PMID: 31658639 PMCID: PMC6829511 DOI: 10.3390/ijms20205009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Recoverin (Rec) is a prototypical calcium sensor protein primarily expressed in the vertebrate retina. The binding of two Ca2+ ions to the functional EF-hand motifs induces the extrusion of a myristoyl group that increases the affinity of Rec for the membrane and leads to the formation of a complex with rhodopsin kinase (GRK1). Here, unbiased all-atom molecular dynamics simulations were performed to monitor the spontaneous insertion of the myristoyl group into a model multicomponent biological membrane for both isolated Rec and for its complex with a peptide from the GRK1 target. It was found that the functional membrane anchoring of the myristoyl group is triggered by persistent electrostatic protein-membrane interactions. In particular, salt bridges between Arg43, Arg46 and polar heads of phosphatidylserine lipids are necessary to enhance the myristoyl hydrophobic packing in the Rec-GRK1 assembly. The long-distance communication between Ca2+-binding EF-hands and residues at the interface with GRK1 is significantly influenced by the presence of the membrane, which leads to dramatic changes in the connectivity of amino acids mediating the highest number of persistent interactions (hubs). In conclusion, specific membrane composition and allosteric interactions are both necessary for the correct assembly and dynamics of functional Rec-GRK1 complex.
Collapse
Affiliation(s)
- Alberto Borsatto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
- Department of Physics, University of Trento, 38123 Trento, Italy.
| | - Valerio Marino
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56026 Pisa, Italy.
| | - Gianfranco Abrusci
- Department of Physics, University of Trento, 38123 Trento, Italy.
- Trento Institute for Fundamental Physics and Applications (INFN-TIFPA), Via Sommarive 14, Povo, 38123 Trento, Italy.
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, 38123 Trento, Italy.
- Trento Institute for Fundamental Physics and Applications (INFN-TIFPA), Via Sommarive 14, Povo, 38123 Trento, Italy.
| | - Daniele Dell'Orco
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
27
|
Marino V, Dal Cortivo G, Oppici E, Maltese PE, D'Esposito F, Manara E, Ziccardi L, Falsini B, Magli A, Bertelli M, Dell'Orco D. A novel p.(Glu111Val) missense mutation in GUCA1A associated with cone-rod dystrophy leads to impaired calcium sensing and perturbed second messenger homeostasis in photoreceptors. Hum Mol Genet 2019; 27:4204-4217. [PMID: 30184081 DOI: 10.1093/hmg/ddy311] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
Guanylate Cyclase-Activating Protein 1 (GCAP1) regulates the enzymatic activity of the photoreceptor guanylate cyclases (GC), leading to inhibition or activation of the cyclic guanosine monophosphate (cGMP) synthesis depending on its Ca2+- or Mg2+-loaded state. By genetically screening a family of patients diagnosed with cone-rod dystrophy, we identified a novel missense mutation with autosomal dominant inheritance pattern (c.332A>T; p.(Glu111Val); E111V from now on) in the GUCA1A gene coding for GCAP1. We performed a thorough biochemical and biophysical investigation of wild type (WT) and E111V human GCAP1 by heterologous expression and purification of the recombinant proteins. The E111V substitution disrupts the coordination of the Ca2+ ion in the high-affinity site (EF-hand 3, EF3), thus significantly decreasing the ability of GCAP1 to sense Ca2+ (∼80-fold higher Kdapp compared to WT). Both WT and E111V GCAP1 form dimers independently on the presence of cations, but the E111V Mg2+-bound form is prone to severe aggregation over time. Molecular dynamics simulations suggest a significantly increased flexibility of both the EF3 and EF4 cation binding loops for the Ca2+-bound form of E111V GCAP1, in line with the decreased affinity for Ca2+. In contrast, a more rigid backbone conformation is observed in the Mg2+-bound state compared to the WT, which results in higher thermal stability. Functional assays confirm that E111V GCAP1 interacts with the target GC with a similar apparent affinity (EC50); however, the mutant shifts the GC inhibition out of the physiological [Ca2+] (IC50E111V ∼10 μM), thereby leading to the aberrant constitutive synthesis of cGMP under conditions of dark-adapted photoreceptors.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK.,MAGI Euregio, Bolzano, Italy.,Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, Federico II University, Naples, Italy
| | | | | | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Adriano Magli
- Department of Pediatric Ophthalmology, University of Salerno, Fisciano (SA), Italy
| | - Matteo Bertelli
- MAGI'S Lab s.r.l., Rovereto, Italy.,MAGI Euregio, Bolzano, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
28
|
Marino V, Dell'Orco D. Evolutionary-Conserved Allosteric Properties of Three Neuronal Calcium Sensor Proteins. Front Mol Neurosci 2019; 12:50. [PMID: 30899213 PMCID: PMC6417375 DOI: 10.3389/fnmol.2019.00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Neuronal Calcium Sensors (NCS) are highly conserved proteins specifically expressed in neurons. Calcium (Ca2+)-binding to their EF-hand motifs results in a conformational change, which is crucial for the recognition of a specific target and the downstream biological process. Here we present a comprehensive analysis of the allosteric communication between Ca2+-binding sites and the target interfaces of three NCS, namely NCS1, recoverin (Rec), and GCAP1. In particular, Rec was investigated in different Ca2+-loading states and in complex with a peptide from the Rhodopsin Kinase (GRK1) while NCS1 was studied in a Ca2+-loaded state in complex with either the same GRK1 target or a peptide from the D2 Dopamine receptor. A Protein Structure Network (PSN) accounting for persistent non-covalent interactions between amino acids was built for each protein state based on exhaustive Molecular Dynamics simulations. Structural network analysis helped unveiling the role of key amino acids in allosteric mechanisms and their evolutionary conservation among homologous proteins. Results for NCS1 highlighted allosteric inter-domain interactions between Ca2+-binding motifs and residues involved in target recognition. Robust long range, allosteric protein-target interactions were found also in Rec, in particular originating from the EF3 motif. Interestingly, Tyr 86, involved the hydrophobic packing of the N-terminal domain, was found to be a key residue for both intra- and inter-molecular communication with EF3, regardless of the presence of target or Ca2+ ions. Finally, based on a comprehensive topological PSN analysis for Rec, NCS1, and GCAP1 and multiple sequence alignments with homolog proteins, we propose that an evolution-driven correlation may exist between the amino acids mediating the highest number of persistent interactions (high-degree hubs) and their conservation. Such conservation is apparently fundamental for the specific structural dynamics required in signaling events.
Collapse
Affiliation(s)
- Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniele Dell'Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
29
|
Mapping Calcium-Sensitive Regions in GCAPs by Site-Specific Fluorescence Labelling. Methods Mol Biol 2019. [PMID: 30710298 DOI: 10.1007/978-1-4939-9030-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Signal transduction processes that are under control of changes in cytoplasmic Ca2+-concentration involve Ca2+-sensor proteins, which often undergo pronounced conformational transitions triggered by Ca2+. Consequences of conformational changes can be the structural rearrangement of single amino acids, exposition of small patches of several amino acids, or the movement of whole protein regions or domains. Furthermore, these conformational changes can lead to the exposure or movement of posttranslationally attached acyl groups. These processes could then control the function of target proteins, for example, by Ca2+-dependent protein-protein interaction. Fluorescence spectroscopy allows for mapping these Ca2+-sensitive regions but needs site-specific fluorescence labelling. We describe the application of a new group of diaminoterephthalate-derived fluorescence probes targeting either cysteines in guanylate cyclase-activating proteins, named GCAPs, or azide moieties in covalently attached acyl groups. By monitoring Ca2+-dependent changes in fluorescence emission, we identify Ca2+-sensitive protein regions in GCAPs and correlate conformational changes to protein function.
Collapse
|
30
|
Elbers D, Scholten A, Koch KW. Zebrafish Recoverin Isoforms Display Differences in Calcium Switch Mechanisms. Front Mol Neurosci 2018; 11:355. [PMID: 30323742 PMCID: PMC6172410 DOI: 10.3389/fnmol.2018.00355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Primary steps in vertebrate vision occur in rod and cone cells of the retina and require precise molecular switches in excitation, recovery, and adaptation. In particular, recovery of the photoresponse and light adaptation processes are under control of neuronal Ca2+ sensor (NCS) proteins. Among them, the Ca2+ sensor recoverin undergoes a pronounced Ca2+-dependent conformational change, a prototypical so-called Ca2+-myristoyl switch, which allows selective targeting of G protein-coupled receptor kinase. Zebrafish (Danio rerio) has gained attention as a model organism in vision research. It expresses four different recoverin isoforms (zRec1a, zRec1b, zRec2a, and zRec2b) that are orthologs to the one known mammalian variant. The expression pattern of the four isoforms cover both rod and cone cells, but the differential distribution in cones points to versatile functions of recoverin in these cell types. Initial functional studies on zebrafish larvae indicate different Ca2+-sensitive working modes for zebrafish recoverins, but experimental evidence is lacking so far. The aims of the present study are (1) to measure specific Ca2+-sensing properties of the different recoverin isoforms, (2) to ask whether switch mechanisms triggered by Ca2+ resemble that one observed with mammalian recoverin, and (3) to investigate a possible impact of an attached myristoyl moiety. For addressing these questions, we employ fluorescence spectroscopy, surface plasmon resonance (SPR), dynamic light scattering, and equilibrium centrifugation. Exposure of hydrophobic amino acids, due to the myristoyl switch, differed among isoforms and depended also on the myristoylation state of the particular recoverin. Ca2+-induced rearrangement of the protein-water shell was for all variants less pronounced than for the bovine ortholog indicating either a modified Ca2+-myristoyl switch or no switch. Our results have implications for a step-by-step response of recoverin isoforms to changing intracellular Ca2+ during illumination.
Collapse
Affiliation(s)
- Dana Elbers
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Alexander Scholten
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
31
|
Wimberg H, Lev D, Yosovich K, Namburi P, Banin E, Sharon D, Koch KW. Photoreceptor Guanylate Cyclase ( GUCY2D) Mutations Cause Retinal Dystrophies by Severe Malfunction of Ca 2+-Dependent Cyclic GMP Synthesis. Front Mol Neurosci 2018; 11:348. [PMID: 30319355 PMCID: PMC6167591 DOI: 10.3389/fnmol.2018.00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Over 100 mutations in GUCY2D that encodes the photoreceptor guanylate cyclase GC-E are known to cause two major diseases: autosomal recessive Leber congenital amaurosis (arLCA) or autosomal dominant cone-rod dystrophy (adCRD) with a poorly understood mechanism at the molecular level in most cases. Only few mutations were further characterized for their enzymatic and molecular properties. GC-E activity is under control of neuronal Ca2+-sensor proteins, which is often a possible route to dysfunction. We investigated five recently-identified GC-E mutants that have been reported in patients suffering from arLCA (one large family) and adCRD/maculopathy (four families). Microsatellite analysis revealed that one of the mutations, c.2538G > C (p.K846N), occurred de novo. To better understand the mechanism by which mutations that are located in different GC-E domains develop different phenotypes, we investigated the molecular consequences of these mutations by expressing wildtype and mutant GC-E variants in HEK293 cells. Analyzing their general enzymatic behavior, their regulation by Ca2+ sensor proteins and retinal degeneration protein 3 (RD3) dimerization domain mutants (p.E841K and p.K846N) showed a shift in Ca2+-sensitive regulation by guanylate cyclase-activating proteins (GCAPs). Mutations in the cyclase catalytic domain led to a loss of enzyme function in the mutant p.P873R, but not in p.V902L. Instead, the p.V902L mutation increased the guanylate cyclase activity more than 20-fold showing a high GCAP independent activity and leading to a constitutively active mutant. This is the first mutation to be described affecting the GC-E catalytic core in a complete opposite way.
Collapse
Affiliation(s)
- Hanna Wimberg
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Dorit Lev
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Yosovich
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Prasanthi Namburi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
32
|
Vallone R, Dal Cortivo G, D'Onofrio M, Dell'Orco D. Preferential Binding of Mg 2+ Over Ca 2+ to CIB2 Triggers an Allosteric Switch Impaired in Usher Syndrome Type 1J. Front Mol Neurosci 2018; 11:274. [PMID: 30174586 PMCID: PMC6107761 DOI: 10.3389/fnmol.2018.00274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022] Open
Abstract
Calcium and integrin binding protein 2 (CIB2) shares with the other members of the CIB family the ability to bind Ca2+ and Mg2+ via two functional EF-hand motifs, namely EF3 and EF4. As a cation sensor, CIB2 is able to switch to a conformation likely associated with specific biological functions yet to be clarified. Recent findings demonstrate the involvement of CIB2 in hearing physiology and a single, conservative point mutation (p.E64D) has been related to Usher Syndrome type 1J (USH1J) and non-syndromic hearing loss. We present an exhaustive biochemical and biophysical characterization of human wild type (WT) and E64D CIB2. We found that CIB2 does not possibly work as a calcium sensor under physiological conditions, its affinity for Ca2+ (Kdapp = 0.5 mM) being too low for detecting normal intracellular levels. Instead, CIB2 displays a significantly high affinity for Mg2+ (Kdapp = 290 μM), and it is probably Mg2+ -bound under physiological conditions. At odds with the homologous protein CIB1, CIB2 forms a non-covalent dimer under conditions that mimic the physiological ones, and as such it interacts with its physiological target α7B integrin. NMR spectroscopy revealed a long-range allosteric communication between the residue E64, located at the N-terminal domain, and the metal cation binding site EF3, located at the C-terminal domain. The conservative E64D mutation breaks up such inter-domain communication resulting in the impaired ability of CIB2 to switch to its Mg2+-bound form. The ability to bind the target integrin peptide was substantially conserved for E64D CIB2, thus suggesting that the molecular defect associated with USH1J resides in its inability to sense Mg2+ and adopt the required conformation.
Collapse
Affiliation(s)
- Rosario Vallone
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuditta Dal Cortivo
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Daniele Dell'Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
33
|
Vladimirov VI, Zernii EY, Baksheeva VE, Wimberg H, Kazakov AS, Tikhomirova NK, Nemashkalova EL, Mitkevich VA, Zamyatnin AA, Lipkin VM, Philippov PP, Permyakov SE, Senin II, Koch KW, Zinchenko DV. Photoreceptor calcium sensor proteins in detergent-resistant membrane rafts are regulated via binding to caveolin-1. Cell Calcium 2018; 73:55-69. [PMID: 29684785 DOI: 10.1016/j.ceca.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023]
Abstract
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1-101), or its short scaffolding domain (81-101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.
Collapse
Affiliation(s)
- Vasiliy I Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Evgeni Yu Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Viktoriia E Baksheeva
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Hanna Wimberg
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany
| | - Alexey S Kazakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Natalya K Tikhomirova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Ekaterina L Nemashkalova
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Valery M Lipkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Pavel P Philippov
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Ivan I Senin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Karl-W Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany
| | - Dmitry V Zinchenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| |
Collapse
|
34
|
Lim S, Roseman G, Peshenko I, Manchala G, Cudia D, Dizhoor AM, Millhauser G, Ames JB. Retinal guanylyl cyclase activating protein 1 forms a functional dimer. PLoS One 2018. [PMID: 29513743 PMCID: PMC5841803 DOI: 10.1371/journal.pone.0193947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retinal guanylyl cyclases (RetGCs) in vertebrate photoreceptors are regulated by the guanylyl cyclase activator proteins (GCAP1 and GCAP2). Here, we report EPR double electron-electron resonance (DEER) studies on the most ubiquitous GCAP isoform, GCAP1 and site-directed mutagenesis analysis to determine an atomic resolution structural model of a GCAP1 dimer. Nitroxide spin-label probes were introduced at individual GCAP1 residues: T29C, E57C, E133C, and E154C. The intermolecular distance of each spin-label probe (measured by DEER) defined restraints for calculating the GCAP1 dimeric structure by molecular docking. The DEER-derived structural model of the GCAP1 dimer was similar within the experimental error for both the Mg2+-bound activator and Ca2+-bound inhibitor states (RMSD < 2.0 Å). The GCAP1 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H19, Y22, F73 and V77. The structural model of the dimer was validated by GCAP1 mutations (H19R, Y22D, F73E, and V77E) at the dimer interface that each abolished protein dimerization. Previous studies have shown that each of these mutants either diminished or completely suppressed the ability of GCAP1 to activate the cyclase. These results suggest that GCAP1 dimerization may affect compartmentalization of GCAP1 in the photoreceptors and/or affect regulation of the cyclase activity.
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA, United States of America
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States of America
| | - Igor Peshenko
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA, United States of America
| | - Grace Manchala
- Department of Chemistry, University of California, Davis, CA, United States of America
| | - Diana Cudia
- Department of Chemistry, University of California, Davis, CA, United States of America
| | - Alexander M. Dizhoor
- Pennsylvania College of Optometry, Salus University, Elkins Park, PA, United States of America
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, United States of America
| | - James B. Ames
- Department of Chemistry, University of California, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Sharon D, Wimberg H, Kinarty Y, Koch KW. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog Retin Eye Res 2018; 63:69-91. [DOI: 10.1016/j.preteyeres.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
|
36
|
Duda T, Pertzev A, Sharma RK. CO 2/bicarbonate modulates cone photoreceptor ROS-GC1 and restores its CORD6-linked catalytic activity. Mol Cell Biochem 2018; 448:91-105. [PMID: 29427171 DOI: 10.1007/s11010-018-3317-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 01/12/2023]
Abstract
This study with recombinant reconstituted system mimicking the cellular conditions of the native cones documents that photoreceptor ROS-GC1 is modulated by gaseous CO2. Mechanistically, CO2 is sensed by carbonic anhydrase (CAII), generates bicarbonate that, in turn, directly targets the core catalytic domain of ROS-GC1, and activates it to increased synthesis of cyclic GMP. This, then, functions as a second messenger for the cone phototransduction. The study demonstrates that, in contrast to the Ca2+-modulated phototransduction, the CO2 pathway is Ca2+-independent, yet is linked with it and synergizes it. It, through R787C mutation in the third heptad of the signal helix domain of ROS-GC1, affects cone-rod dystrophy, CORD6. CORD6 is caused firstly by lowered basal and GCAP1-dependent ROS-GC1 activity and secondly, by a shift in Ca2+ sensitivity of the ROS-GC1/GCAP1 complex that remains active in darkness. Remarkably, the first but not the second defect disappears with bicarbonate thus explaining the basis for CORD6 pathological severity. Because cones, but not rods, express CAII, the excessive synthesis of cyclic GMP would be most acute in cones.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA
| | - Alexander Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University, Elkins Park, PA, USA.
| |
Collapse
|
37
|
Hage C, Iacobucci C, Rehkamp A, Arlt C, Sinz A. The First Zero-Length Mass Spectrometry-Cleavable Cross-Linker for Protein Structure Analysis. Angew Chem Int Ed Engl 2017; 56:14551-14555. [DOI: 10.1002/anie.201708273] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/04/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Christoph Hage
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Anne Rehkamp
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| |
Collapse
|
38
|
Hage C, Iacobucci C, Rehkamp A, Arlt C, Sinz A. The First Zero-Length Mass Spectrometry-Cleavable Cross-Linker for Protein Structure Analysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Christoph Hage
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Anne Rehkamp
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Wolfgang-Langenbeck-Str. 4 06120 Halle/Saale Germany
| |
Collapse
|
39
|
Vocke F, Weisschuh N, Marino V, Malfatti S, Jacobson SG, Reiff CM, Dell'Orco D, Koch KW. Dysfunction of cGMP signalling in photoreceptors by a macular dystrophy-related mutation in the calcium sensor GCAP1. Hum Mol Genet 2017; 26:133-144. [PMID: 28025326 DOI: 10.1093/hmg/ddw374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022] Open
Abstract
Macular dystrophy leads to progressive loss of central vision and shows symptoms similar to age-related macular degeneration. Genetic screening of patients diagnosed with macular dystrophy disclosed a novel mutation in the GUCA1A gene, namely a c.526C > T substitution leading to the amino acid substitution p.L176F in the guanylate cyclase-activating protein 1 (GCAP1). The same variant was found in three families showing an autosomal dominant mode of inheritance. For a full functional characterization of the L176F mutant we expressed and purified the mutant protein and measured key parameters of its activating properties, its Ca2+/Mg2+-binding, and its Ca2+-induced conformational changes in comparison to the wildtype protein. The mutant was less sensitive to changes in free Ca2+, resulting in a constitutively active form under physiological Ca2+-concentration, showed significantly higher activation rates than the wildtype (90-fold versus 20-fold) and interacted with an higher apparent affinity with its target guanylate cyclase. However, direct Ca2+-binding of the mutant was nearly similar to the wildtype; binding of Mg2+ occurred with higher affinity. We performed molecular dynamics simulations for comparing the Ca2+-saturated inhibiting state of GCAP1 with the Mg2+-bound activating states. The L176F mutant exhibited significantly lower flexibility, when three Ca2+ or two Mg2+ were bound forming probably the structural basis for the modified GCAP1 function.
Collapse
Affiliation(s)
- Farina Vocke
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy and
| | - Silvia Malfatti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy and
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charlotte M Reiff
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy and
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
40
|
Marino V, Borsatto A, Vocke F, Koch KW, Dell'Orco D. CaF 2 nanoparticles as surface carriers of GCAP1, a calcium sensor protein involved in retinal dystrophies. NANOSCALE 2017; 9:11773-11784. [PMID: 28785759 DOI: 10.1039/c7nr03288a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CaF2-based nanoparticles (NP) are promising biocompatible tools for nanomedicine applications. The structure of the NP crystal lattice allows for specific interactions with Ca2+-binding proteins through their EF-hand cation binding motifs. Here we investigated the interaction of 23 nm citrate-coated CaF2 NP with a calcium sensor protein GCAP1 that is normally expressed in photoreceptor cells and involved in the regulation of the early steps of vision. Protein-NP interactions were thoroughly investigated for the wild type (WT) GCAP1 as well as for a variant carrying the Asp 100 to Glu mutation (D100E), which prevents the binding of Ca2+ to the highest affinity site and is linked to cone dystrophy. Circular dichroism and fluorescence spectroscopy showed that protein structure and Ca2+-sensing capability are conserved for both variants upon interaction with the NP surface, although the interaction mode depends on the specific occupation of Ca2+-binding sites. NP binding stabilizes the structure of the bound GCAP1 and occurs with nanomolar affinity, as probed by isothermal titration calorimetry. Surface plasmon resonance revealed a fully reversible binding compatible with physiologically relevant kinetics of protein release whereas biochemical assays indicated a residual capability for NP-dissociated GCAP1 to regulate the target retinal guanylate cyclase. Our study constitutes a proof of concept that CaF2 NP could be optimized to serve as biologically compatible carriers of high amounts of functional GCAP1 in photoreceptors affected by retinal dystrophies.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Alberto Borsatto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| | - Farina Vocke
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Biochemistry Group, University of Oldenburg, Oldenburg, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| |
Collapse
|
41
|
Ravichandran S, Duda T, Pertzev A, Sharma RK. Membrane Guanylate Cyclase catalytic Subdomain: Structure and Linkage with Calcium Sensors and Bicarbonate. Front Mol Neurosci 2017; 10:173. [PMID: 28638321 PMCID: PMC5461267 DOI: 10.3389/fnmol.2017.00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022] Open
Abstract
Membrane guanylate cyclase (MGC) is a ubiquitous multi-switching cyclic GMP generating signaling machine linked with countless physiological processes. In mammals it is encoded by seven distinct homologous genes. It is a single transmembrane spanning multi-modular protein; composed of integrated blocks and existing in homo-dimeric form. Its core catalytic domain (CCD) module is a common transduction center where all incoming signals are translated into the production of cyclic GMP, a cellular signal second messenger. Crystal structure of the MGC's CCD does not exist and its precise identity is ill-defined. Here, we define it at a sub-molecular level for the phototransduction-linked MGC, the rod outer segment guanylate cyclase type 1, ROS-GC1. (1) The CCD is a conserved 145-residue structural unit, represented by the segment V820-P964. (2) It exists as a homo-dimer and contains seven conserved catalytic elements (CEs) wedged into seven conserved motifs. (3) It also contains a conserved 21-residue neurocalcin δ-modulated structural domain, V836-L857. (4) Site-directed mutagenesis documents that each of the seven CEs governs the cyclase's catalytic activity. (5) In contrast to the soluble and the bacterium MGC which use Mn2+-GTP substrate for catalysis, MGC CCD uses the natural Mg2+-GTP substrate. (6) Strikingly, the MGC CCD requires anchoring by the Transmembrane Domain (TMD) to exhibit its major (∼92%) catalytic activity; in isolated form the activity is only marginal. This feature is not linked with any unique sequence of the TMD; there is minimal conservation in TMD. Finally, (7) the seven CEs control each of four phototransduction pathways- -two Ca2+-sensor GCAPs-, one Ca2+-sensor, S100B-, and one bicarbonate-modulated. The findings disclose that the CCD of ROS-GC1 has built-in regulatory elements that control its signal translational activity. Due to conservation of these regulatory elements, it is proposed that these elements also control the physiological activity of other members of MGC family.
Collapse
Affiliation(s)
- Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., FredrickMD, United States
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| | - Alexandre Pertzev
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| | - Rameshwar K. Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins ParkPA, United States
| |
Collapse
|
42
|
Manes G, Mamouni S, Hérald E, Richard AC, Sénéchal A, Aouad K, Bocquet B, Meunier I, Hamel CP. Cone dystrophy or macular dystrophy associated with novel autosomal dominant GUCA1A mutations. Mol Vis 2017; 23:198-209. [PMID: 28442884 PMCID: PMC5389339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/31/2017] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Sixteen different mutations in the guanylate cyclase activator 1A gene (GUCA1A), have been previously identified to cause autosomal dominant cone dystrophy (adCOD), cone-rod dystrophy (adCORD), macular dystrophy (adMD), and in an isolated patient, retinitis pigmentosa (RP). The purpose of this study is to report on two novel mutations and the patients' clinical features. METHODS Clinical investigations included visual acuity and visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and full-field and multifocal electroretinogram (ERG) recordings. GUCA1A was screened by Sanger sequencing in a cohort of 12 French families with adCOD, adCORD, and adMD. RESULTS We found two novel GUCA1A mutations-one amino acid deletion, c.302_304delTAG (p.Val101del), and one missense mutation, c.444T>A (p.Asp148Glu)-each of which was found in one family. The p.Asp148Glu mutation affected one of the Ca2+-binding amino acids of the EF4 hand, while the p.Val101del mutation resulted in the in-frame deletion of Valine-101, localized between two Ca2+-binding aspartic acid residues at positions 100 and 102 of the EF3 hand. Both families complained of visual acuity loss worsening with age. However, the p.Asp148Glu mutation was present in one family with adCOD involving abnormal cone function and an absence of macular atrophy, whereas p.Val101del mutation was encountered in another family with adMD without a generalized cone defect. CONCLUSIONS The two novel mutations described in this study are associated with distinct phenotypes, MD for p.Val101del and COD for p.Asp148Glu, with no intrafamilial phenotypic heterogeneity.
Collapse
Affiliation(s)
- Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France
| | - Sonia Mamouni
- CHRU, Genetics of Sensory Diseases, Montpellier, France
| | | | | | - Audrey Sénéchal
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Karim Aouad
- Aravis Medical Center, Ophthalmology Department, Argonay, France
| | - Béatrice Bocquet
- University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| | - Isabelle Meunier
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, U1051, Institute for Neurosciences of Montpellier, Montpellier, France,University of Montpellier, Montpellier, France,CHRU, Genetics of Sensory Diseases, Montpellier, France
| |
Collapse
|
43
|
Label-free quantification of calcium-sensor targeting to photoreceptor guanylate cyclase and rhodopsin kinase by backscattering interferometry. Sci Rep 2017; 7:45515. [PMID: 28361875 PMCID: PMC5374524 DOI: 10.1038/srep45515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/28/2017] [Indexed: 01/26/2023] Open
Abstract
Quantification of protein binding to membrane proteins is challenging and a limited set of methods is available to study such systems. Here we employed backscattering interferometry (BSI), a free-solution label-free method with high sensitivity, to quantify the interaction of neuronal Ca2+-Sensor proteins with their targets operating in phototransduction. We tested direct binding of guanylate cyclase–activating proteins (GCAP1 and GCAP2) to their membrane target guanylate cyclase 1. The regulatory mechanism of GCAPs including their binding interface in the target is unresolved. Here we used a label-free, free-solution assay method based on BSI to determine binding constants of GCAP1 and GCAP2 to the full-length membrane-bound guanylate cyclase type 1. GCAP1 and GCAP2 bound to different regions on the target guanylate cyclase with submicromolar affinity (apparent KD-values of 663 ± 121 nM and 231 ± 63 nM for Ca2+-free GCAP1 and GCAP2, respectively). A guanylate cyclase construct containing the juxta-membrane and kinase homology domain harbored an exclusive binding site for GCAP1 with similar affinities as the full-length protein, whereas GCAP2 did not bind to this region. We provide a model in which GCAP1 and GCAP2 do not share a single binding site to the target, thus cannot exchange upon fluctuating Ca2+ levels.
Collapse
|
44
|
Marino V, Dell'Orco D. Allosteric communication pathways routed by Ca 2+/Mg 2+ exchange in GCAP1 selectively switch target regulation modes. Sci Rep 2016; 6:34277. [PMID: 27739433 PMCID: PMC5064319 DOI: 10.1038/srep34277] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022] Open
Abstract
GCAP1 is a neuronal calcium sensor protein that regulates the phototransduction cascade in vertebrates by switching between activator and inhibitor of the target guanylate cyclase (GC) in a Ca2+-dependent manner. We carried out exhaustive molecular dynamics simulations of GCAP1 and determined the intramolecular communication pathways involved in the specific GC activator/inhibitor switch. The switch was found to depend on the Mg2+/Ca2+ loading states of the three EF hands and on the way the information is transferred from each EF hand to specific residues at the GCAP1/GC interface. Post-translational myristoylation is fundamental to mediate long range allosteric interactions including the EF2-EF4 coupling and the communication between EF4 and the GC binding interface. Some hubs in the identified protein network are the target of retinal dystrophy mutations, suggesting that the lack of complete inhibition of GC observed in many cases is likely due to the perturbation of intra/intermolecular communication routes.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, strada le Grazie 8, I-37134 Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, strada le Grazie 8, I-37134 Verona, Italy.,Centre for BioMedical Computing (CBMC), University of Verona, strada le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
45
|
Sharma RK, Duda T, Makino CL. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology. Front Mol Neurosci 2016; 9:83. [PMID: 27695398 PMCID: PMC5023690 DOI: 10.3389/fnmol.2016.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.
Collapse
Affiliation(s)
- Rameshwar K Sharma
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Teresa Duda
- The Unit of Regulatory and Molecular Biology, Research Divisions of Biochemistry and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
46
|
Kulkarni M, Trifunović D, Schubert T, Euler T, Paquet-Durand F. Calcium dynamics change in degenerating cone photoreceptors. Hum Mol Genet 2016; 25:3729-3740. [PMID: 27402880 DOI: 10.1093/hmg/ddw219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/24/2016] [Accepted: 06/25/2016] [Indexed: 11/14/2022] Open
Abstract
Cone photoreceptors (cones) are essential for high-resolution daylight vision and colour perception. Loss of cones in hereditary retinal diseases has a dramatic impact on human vision. The mechanisms underlying cone death are poorly understood, and consequently, there are no treatments available. Previous studies suggest a central role for calcium (Ca2+) homeostasis deficits in photoreceptor degeneration; however, direct evidence for this is scarce and physiological measurements of Ca2+ in degenerating mammalian cones are lacking.Here, we took advantage of the transgenic HR2.1:TN-XL mouse line that expresses a genetically encoded Ca2+ biosensor exclusively in cones. We cross-bred this line with mouse models for primary ("cone photoreceptor function loss-1", cpfl1) and secondary ("retinal degeneration-1", rd1) cone degeneration, respectively, and assessed resting Ca2+ levels and light-evoked Ca2+ responses in cones using two-photon imaging. We found that Ca2+ dynamics were altered in cpfl1 cones, showing higher noise and variable Ca2+ levels, with significantly wider distribution than for wild-type and rd1 cones. Unexpectedly, up to 21% of cpfl1 cones still displayed light-evoked Ca2+ responses, which were larger and slower than wild-type responses. In contrast, genetically intact rd1 cones were characterized by lower noise and complete lack of visual function.Our study demonstrates alterations in cone Ca2+ dynamics in both primary and secondary cone degeneration. Our results are consistent with the view that higher (fluctuating) cone Ca2+ levels are involved in photoreceptor cell death in primary (cpfl1) but not in secondary (rd1) cone degeneration. These findings may guide the future development of therapies targeting photoreceptor Ca2+ homeostasis.
Collapse
Affiliation(s)
- Manoj Kulkarni
- Institute for Ophthalmic Research.,Werner Reichardt Centre for Integrative Neuroscience.,Graduate School of Cellular & Molecular Neuroscience
| | | | - Timm Schubert
- Institute for Ophthalmic Research.,Werner Reichardt Centre for Integrative Neuroscience
| | - Thomas Euler
- Institute for Ophthalmic Research (F.P-D.) (T.E.).,Werner Reichardt Centre for Integrative Neuroscience.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
47
|
Lamb TD, Kraft TW. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction. Mol Vis 2016; 22:674-96. [PMID: 27375353 PMCID: PMC4920504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/15/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To examine the predictions of alternative models for the stochastic shut-off of activated rhodopsin (R*) and their implications for the interpretation of experimentally recorded single-photon responses (SPRs) in mammalian rods. THEORY We analyze the transitions that an activated R* molecule undergoes as a result of successive phosphorylation steps and arrestin binding. We consider certain simplifying cases for the relative magnitudes of the reaction rate constants and derive the probability distributions for the time to arrestin binding. In addition to the conventional model in which R* catalytic activity declines in a graded manner with successive phosphorylations, we analyze two cases in which the activity is assumed to occur not via multiple small steps upon each phosphorylation but via a single large step. We refer to these latter two cases as the binary R* shut-off and three-state R* shut-off models. METHODS We simulate R*'s stochastic reactions numerically for the three models. In the simplifying cases for the ratio of rate constants in the binary and three-state models, we show that the probability distribution of the time to arrestin binding is accurately predicted. To simulate SPRs, we then integrate the differential equations for the downstream reactions using a standard model of the rod outer segment that includes longitudinal diffusion of cGMP and Ca(2+). RESULTS Our simulations of SPRs in the conventional model of graded shut-off of R* conform closely to the simulations in a recent study. However, the gain factor required to account for the observed mean SPR amplitude is higher than can be accounted for from biochemical experiments. In addition, a substantial minority of the simulated SPRs exhibit features that have not been reported in published experiments. Our simulations of SPRs using the model of binary R* shut-off appear to conform closely to experimental results for wild type (WT) mouse rods, and the required gain factor conforms to biochemical expectations. However, for the arrestin knockout (Arr(-/-)) phenotype, the predictions deviated from experimental findings and led us to invoke a low-activity state that R* enters before arrestin binding. Our simulations of this three-state R* shut-off model are very similar to those of the binary model in the WT case but are preferred because they appear to accurately predict the mean SPRs for four mutant phenotypes, Arr(+/-), Arr(-/-), GRK1(+/-), and GRK1(-/-), in addition to the WT phenotype. When we additionally treated the formation and shut-off of activated phosphodiesterase (E*) as stochastic, the simulated SPRs appeared even more similar to real SPRs, and there was very little change in the ensemble mean and standard deviation or in the amplitude distribution. CONCLUSIONS We conclude that the conventional model of graded reduction in R* activity through successive phosphorylation steps appears to be inconsistent with experimental results. Instead, we find that two variants of a model in which R* activity initially remains high and then declines abruptly after several phosphorylation steps appears capable of providing a better description of experimentally measured SPRs.
Collapse
Affiliation(s)
- Trevor D. Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research,
The Australian National University, Canberra, ACT, Australia
| | - Timothy W. Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
48
|
Sulmann S, Wallisch M, Scholten A, Christoffers J, Koch KW. Mapping Calcium-Sensitive Regions in the Neuronal Calcium Sensor GCAP2 by Site-Specific Fluorescence Labeling. Biochemistry 2016; 55:2567-77. [DOI: 10.1021/acs.biochem.6b00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Sulmann
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Melanie Wallisch
- Institut
für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Alexander Scholten
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut
für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Biochemistry
Group, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
49
|
Duda T, Pertzev A, Makino CL, Sharma RK. Bicarbonate and Ca(2+) Sensing Modulators Activate Photoreceptor ROS-GC1 Synergistically. Front Mol Neurosci 2016; 9:5. [PMID: 26858600 PMCID: PMC4729890 DOI: 10.3389/fnmol.2016.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Photoreceptor ROS-GC1, a prototype subfamily member of the membrane guanylate cyclase family, is a central component of phototransduction. It is a single transmembrane-spanning protein, composed of modular blocks. In rods, guanylate cyclase activating proteins (GCAPs) 1 and 2 bind to its juxtamembrane domain (JMD) and the C-terminal extension, respectively, to accelerate cyclic GMP synthesis when Ca(2+) levels are low. In cones, the additional expression of the Ca(2+)-dependent guanylate cyclase activating protein (CD-GCAP) S100B which binds to its C-terminal extension, supports acceleration of cyclic GMP synthesis at high Ca(2+) levels. Independent of Ca(2+), ROS-GC1 activity is also stimulated directly by bicarbonate binding to the core catalytic domain (CCD). Several enticing molecular features of this transduction system are revealed in the present study. In combination, bicarbonate and Ca(2+)-dependent modulators raised maximal ROS-GC activity to levels that exceeded the sum of their individual effects. The F(514)S mutation in ROS-GC1 that causes blindness in type 1 Leber's congenital amaurosis (LCA) severely reduced basal ROS-GC1 activity. GCAP2 and S100B Ca(2+) signaling modes remained functional, while the GCAP1-modulated mode was diminished. Bicarbonate nearly restored basal activity as well as GCAP2- and S100B-stimulated activities of the F(514)S mutant to normal levels but could not resurrect GCAP1 stimulation. We conclude that GCAP1 and GCAP2 forge distinct pathways through domain-specific modules of ROS-GC1 whereas the S100B and GCAP2 pathways may overlap. The synergistic interlinking of bicarbonate to GCAPs- and S100B-modulated pathways intensifies and tunes the dependence of cyclic GMP synthesis on intracellular Ca(2+). Our study challenges the recently proposed GCAP1 and GCAP2 "overlapping" phototransduction model (Peshenko et al., 2015b).
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Alexandre Pertzev
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| | - Clint L Makino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School Boston, MA, USA
| | - Rameshwar K Sharma
- Research Divisions of Biochemistry and Molecular Biology, The Unit of Regulatory and Molecular Biology, Salus University Elkins Park, PA, USA
| |
Collapse
|
50
|
A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Sci Rep 2016; 6:19252. [PMID: 26786712 PMCID: PMC4726125 DOI: 10.1038/srep19252] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/04/2015] [Indexed: 01/15/2023] Open
Abstract
Although sexual reproduction is believed to play a major role in the high diversification rates and species richness of diatoms, a mechanistic understanding of diatom life cycle control is virtually lacking. Diatom sexual signalling is controlled by a complex, yet largely unknown, pheromone system. Here, a sex-inducing pheromone (SIP+) of the benthic pennate diatom Seminavis robusta was identified by comparative metabolomics, subsequently purified, and physicochemically characterized. Transcriptome analysis revealed that SIP+ triggers the switch from mitosis-to-meiosis in the opposing mating type, coupled with the transcriptional induction of proline biosynthesis genes, and the release of the proline-derived attraction pheromone. The induction of cell cycle arrest by a pheromone, chemically distinct from the one used to attract the opposite mating type, highlights the existence of a sophisticated mechanism to increase chances of mate finding, while keeping the metabolic losses associated with the release of an attraction pheromone to a minimum.
Collapse
|