1
|
Jia M, Li Y, Wang C, Gao X, Guan Y, Ai H. Fluorescence Detection and Inhibition Mechanisms of DNTPH on Aβ42 Oligomers Characterized as Products in the Four Stages of Aggregation. ACS Chem Neurosci 2024; 15:4220-4228. [PMID: 39494683 DOI: 10.1021/acschemneuro.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Aβ42 aggregation was implicated in the pathogenesis of Alzheimer's disease (AD) without effective treatment available currently. Future efforts in clinical trials should instead focus on applying those antiamyloid treatment strategies to the preclinical stage and "the earlier, the better". How to identify and inhibit Aβ42 oligomers in the different stages of aggregation is therefore becoming the key to controlling primary aggregation and consequent AD development. Aggregation-induced emission probe DNTPH was demonstrated recently, enabling detection of amyloid at wavelengths up to 710 nm and exhibiting strong inhibitory effects on Aβ fibrosis at low dose. However, the detection and inhibition mechanisms of Aβ oligomers at various early stages of aggregation remain unknown. To this end, we built four different morphologies of Aβ42 pentamers characterized by products in monomeric aggregate (PM), primary nucleation (PP), secondary nucleation (PS), and fibril stages (PF) to explore the distinguishable ability and inhibition mechanisms of DNTPH with different concentrations upon binding. The results showcased that DNTPH does detect the four different Aβ42 oligomers with conspicuous fluorescence (λPM = 657 nm, λPP = 639 nm, λPS = 630 nm, and λPF = 648 nm) but fails to distinguish them, indicating that additional improvements are required further for the probe to achieve it. The inhibition mechanisms of DNTPH on the four Aβ42 aggregation are however of amazing differences. For PM and PP, aggregation was inhibited by altering the secondary structural composition, i.e., by decreasing the β-sheet and toxic turn (residues 22-23) probabilities, respectively. For PS, inhibition was achieved by segregating and keeping the two disordered monomeric species (PSM) away from the ordered secondary seed species (PSF) and consequently blocking further growth of the PSF seed. The inhibition mechanism for PS is first probed and proposed so far, as far as we know, and the corresponding aggregation stage of PS is the most important one among the four stages. The inhibition of PF was triggered by distorting the fibril chains, disrupting the ordered fibril surface for the contact of monomers. In addition, the optimal inhibitory concentrations of DNTPH for PM, PP, and PF were determined to be 1:3, while for PS, it was 1:5. This outcome offers a novel perspective for designing drugs targeting Aβ42 oligomers at different aggregation stages.
Collapse
Affiliation(s)
- Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Zibo City Engineering Research Center for New Pollution Monitoring and Governance, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
2
|
Yang K, Lv Z, Zhao W, Lai G, Zheng C, Qi F, Zhao C, Hu K, Chen X, Fu F, Li J, Xie G, Wang H, Wu X, Zheng W. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1468850. [PMID: 39508052 PMCID: PMC11537895 DOI: 10.3389/fphar.2024.1468850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD), as a refractory neurological disorder with complex etiology, currently lacks effective therapeutic agents. Natural products (NPs), derived from plants, animals, or microbes, have shown promising effects in PD models through their antioxidative and anti-inflammatory properties, as well as the enhancement of mitochondrial homeostasis and autophagy. The misfolding and deposition of α-Synuclein (α-Syn), due to abnormal overproduction and impaired clearance, being central to the death of dopamine (DA) neurons. Thus, inhibiting α-Syn misfolding and aggregation has become a critical focus in PD discovery. This review highlights NPs that can reduce α-Syn aggregation by preventing its overproduction and misfolding, emphasizing their potential as novel drugs or adjunctive therapies for PD treatment, thereby providing further insights for clinical translation.
Collapse
Affiliation(s)
- Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zheng
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haifeng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wu Zheng
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Dabas A, Goyal B. Structural Reorganization Mechanism of the Aβ 42 Fibril Mediated by N-Substituted Oligopyrrolamide ADH-353. ACS Chem Neurosci 2024; 15:3136-3151. [PMID: 39158263 DOI: 10.1021/acschemneuro.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
The inhibition of amyloid-β (Aβ) fibrillation and clearance of Aβ aggregates have emerged as a potential pharmacological strategy to alleviate Aβ aggregate-induced neurotoxicity in Alzheimer's disease (AD). Maity et al. shortlisted ADH-353 from a small library of positively charged N-substituted oligopyrrolamides for its notable ability to inhibit Aβ fibrillation, disintegrate intracellular cytotoxic Aβ oligomers, and alleviate Aβ-induced cytotoxicity in the SH-SY5Y and N2a cells. However, the molecular mechanism through which ADH-353 interacts with the Aβ42 fibrils, leading to their disruption and subsequent clearance, remains unclear. Thus, a detailed molecular mechanism underlying the disruption of neurotoxic Aβ42 fibrils (PDB ID 2NAO) by ADH-353 has been illuminated in this work using molecular dynamics simulations. Interestingly, conformational snapshots during simulation depicted the shortening and disappearance of β-strands and the emergence of a helix conformation, indicating a loss of the well-organized β-sheet-rich structure of the disease-relevant Aβ42 fibril on the incorporation of ADH-353. ADH-353 binds strongly to the Aβ42 fibril (ΔGbinding= -142.91 ± 1.61 kcal/mol) with a notable contribution from the electrostatic interactions between positively charged N-propylamine side chains of ADH-353 with the glutamic (Glu3, Glu11, and Glu22) and aspartic (Asp7 and Asp23) acid residues of the Aβ42 fibril. This aligns well with heteronuclear single quantum coherence NMR studies, which depict that the binding of ADH-353 with the Aβ peptide is driven by electrostatic and hydrophobic contacts. Furthermore, a noteworthy decrease in the binding affinity of Aβ42 fibril chains on the incorporation of ADH-353 indicates the weakening of interchain interactions leading to the disruption of the double-horseshoe conformation of the Aβ42 fibril. The illumination of key interactions responsible for the destabilization of the Aβ42 fibril by ADH-353 in this work will greatly aid in designing new chemical scaffolds with enhanced efficacy for the clearance of Aβ aggregates in AD.
Collapse
Affiliation(s)
- Arushi Dabas
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| |
Collapse
|
4
|
Kaur G, Mankoo OK, Kaur A, Goyal D, Goyal B. Insights into the baicalein-induced destabilization of LS-shaped Aβ 42 protofibrils using computer simulations. Phys Chem Chem Phys 2024; 26:16674-16686. [PMID: 38809059 DOI: 10.1039/d3cp06006c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Amyloid-β (Aβ) peptides aggregate spontaneously into various aggregating species comprising oligomers, protofibrils, and mature fibrils in Alzheimer's disease (AD). Disrupting β-sheet rich neurotoxic smaller soluble Aβ42 oligomers formed at early stages is considered a potent strategy to interfere with AD pathology. Previous experiments have demonstrated the inhibition of the early stages of Aβ aggregation by baicalein; however, the molecular mechanism behind inhibition remains largely unknown. Thus, in this work, molecular dynamics (MD) simulations have been employed to illuminate the molecular mechanism of baicalein-induced destabilization of preformed Aβ42 protofibrils. Baicalein binds to chain A of the Aβ42 protofibril through hydrogen bonds, π-π interactions, and hydrophobic contacts with the central hydrophobic core (CHC) residues of the Aβ42 protofibril. The binding of baicalein to the CHC region of the Aβ42 protofibril resulted in the elongation of the kink angle and disruption of K28-A42 salt bridges, which resulted in the distortion of the protofibril structure. Importantly, the β-sheet content was notably reduced in Aβ42 protofibrils upon incorporation of baicalein with a concomitant increase in the coil content, which is consistent with ThT fluorescence and AFM images depicting disaggregation of pre-existing Aβ42 fibrils on the incorporation of baicalein. Remarkably, the interchain binding affinity in Aβ42 protofibrils was notably reduced in the presence of baicalein leading to distortion in the overall structure, which agrees with the structural stability analyses and conformational snapshots. This work sheds light on the molecular mechanism of baicalein in disrupting the Aβ42 protofibril structure, which will be beneficial to the design of therapeutic candidates against disrupting β-sheet rich neurotoxic Aβ42 oligomers in AD.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Opinder Kaur Mankoo
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India.
| | - Bhupesh Goyal
- Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala-147004, Punjab, India.
| |
Collapse
|
5
|
Ghosh D, Biswas A, Radhakrishna M. Advanced computational approaches to understand protein aggregation. BIOPHYSICS REVIEWS 2024; 5:021302. [PMID: 38681860 PMCID: PMC11045254 DOI: 10.1063/5.0180691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Protein aggregation is a widespread phenomenon implicated in debilitating diseases like Alzheimer's, Parkinson's, and cataracts, presenting complex hurdles for the field of molecular biology. In this review, we explore the evolving realm of computational methods and bioinformatics tools that have revolutionized our comprehension of protein aggregation. Beginning with a discussion of the multifaceted challenges associated with understanding this process and emphasizing the critical need for precise predictive tools, we highlight how computational techniques have become indispensable for understanding protein aggregation. We focus on molecular simulations, notably molecular dynamics (MD) simulations, spanning from atomistic to coarse-grained levels, which have emerged as pivotal tools in unraveling the complex dynamics governing protein aggregation in diseases such as cataracts, Alzheimer's, and Parkinson's. MD simulations provide microscopic insights into protein interactions and the subtleties of aggregation pathways, with advanced techniques like replica exchange molecular dynamics, Metadynamics (MetaD), and umbrella sampling enhancing our understanding by probing intricate energy landscapes and transition states. We delve into specific applications of MD simulations, elucidating the chaperone mechanism underlying cataract formation using Markov state modeling and the intricate pathways and interactions driving the toxic aggregate formation in Alzheimer's and Parkinson's disease. Transitioning we highlight how computational techniques, including bioinformatics, sequence analysis, structural data, machine learning algorithms, and artificial intelligence have become indispensable for predicting protein aggregation propensity and locating aggregation-prone regions within protein sequences. Throughout our exploration, we underscore the symbiotic relationship between computational approaches and empirical data, which has paved the way for potential therapeutic strategies against protein aggregation-related diseases. In conclusion, this review offers a comprehensive overview of advanced computational methodologies and bioinformatics tools that have catalyzed breakthroughs in unraveling the molecular basis of protein aggregation, with significant implications for clinical interventions, standing at the intersection of computational biology and experimental research.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Department of Biological Sciences and Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Anushka Biswas
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | | |
Collapse
|
6
|
Kaku T, Ikebukuro K, Tsukakoshi K. Structure of cytotoxic amyloid oligomers generated during disaggregation. J Biochem 2024; 175:575-585. [PMID: 38430131 PMCID: PMC11155694 DOI: 10.1093/jb/mvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Amyloidosis is characterized by the abnormal accumulation of amyloid proteins. The causative proteins aggregate from monomers to oligomers and fibrils, among which some intermediate oligomers are considered as major toxins. Cytotoxic oligomers are generated not only by aggregation but also via fibril disaggregation. However, little is known about the structural characteristics and generation conditions of cytotoxic oligomers produced during disaggregation. Herein, we summarized the structural commonalities of cytotoxic oligomers formed under various disaggregation conditions, including the addition of heat shock proteins or small compounds. In vitro experimental data demonstrated the presence of high-molecular-weight oligomers (protofibrils or protofilaments) that exhibited a fibrous morphology and β-sheet structure. Molecular dynamics simulations indicated that the distorted β-sheet structure contributed to their metastability. The tendency of these cytotoxic oligomers to appear under mild disaggregation conditions, implied formation during the early stages of disaggregation. This review will aid researchers in exploring the characteristics of highly cytotoxic oligomers and developing drugs that target amyloid aggregates.
Collapse
Affiliation(s)
- Toshisuke Kaku
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
7
|
Kim M, Huh S, Park HJ, Cho SH, Lee MY, Jo S, Jung YS. Surface-functionalized SERS platform for deep learning-assisted diagnosis of Alzheimer's disease. Biosens Bioelectron 2024; 251:116128. [PMID: 38367567 DOI: 10.1016/j.bios.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/16/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Early diagnosis of Alzheimer's disease is crucial to stall the deterioration of brain function, but conventional diagnostic methods require complicated analytical procedures or inflict acute pain on the patient. Then, label-free Surface-enhanced Raman spectroscopy (SERS) analysis of blood-based biomarkers is a convenient alternative to rapidly obtain spectral information from biofluids. However, despite the rapid acquisition of spectral information from biofluids, it is challenging to distinguish spectral features of biomarkers due to interference from biofluidic components. Here, we introduce a deep learning-assisted, SERS-based platform for separate analysis of blood-based amyloid β (1-42) and metabolites, enabling the diagnosis of Alzheimer's disease. SERS substrates consisting of Au nanowire arrays are fabricated and functionalized in two characteristic ways to compare the validity of different Alzheimer's disease biomarkers measured on our SERS system. The 6E10 antibody is immobilized for the capture of amyloid β (1-42) and analysis of its oligomerization process, while various self-assembled monolayers are attached for different dipole interactions with blood-based metabolites. Ultimately, SERS spectra of blood plasma of Alzheimer's disease patients and human controls are measured on the substrates and classified via advanced deep learning techniques that automatically extract informative features to learn generalizable representations. Accuracies up to 99.5% are achieved for metabolite-based analyses, which are verified with an explainable artificial intelligence technique that identifies key spectral features used for classification and for deducing significant biomarkers.
Collapse
Affiliation(s)
- Minjoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sejoon Huh
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyung Joon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghee H Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Young Lee
- Department of Nano-Bio Convergence, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon-si, Gyeongsangnam-do, 51508, Republic of Korea.
| | - Sungho Jo
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Moukham H, Lambiase A, Barone GD, Tripodi F, Coccetti P. Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review. Nutrients 2024; 16:1298. [PMID: 38732545 PMCID: PMC11085272 DOI: 10.3390/nu16091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.
Collapse
Affiliation(s)
- Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
9
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Uttarkar A, Rao V, Bhat D, Niranjan V. Disaggregation of amyloid-beta fibrils via natural metabolites using long timescale replica exchange molecular dynamics simulation studies. J Mol Model 2024; 30:61. [PMID: 38321243 DOI: 10.1007/s00894-024-05860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
CONTEXT Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with several presently incurable diseases such as Alzheimer's. disease that is characterized by the accumulation of amyloid fibrils in the brain, which leads to the formation of plaques and the death of brain cells. Disaggregation of amyloid fibrils is considered a promising approach to cure Alzheimer's disease. The mechanism of amyloid fibril formation is complex and not fully understood, making it difficult to develop drugs that can target the process. Diacetonamine and cystathionine are potential lead compounds to induce disaggregation of amyloid fibrils. METHODS In the current research, we have used long timescale molecular simulation studies and replica exchange molecular dynamics (REMD) for 1000 ns (1 μs) to examine the mechanisms by which natural metabolites can disaggregate amyloid-beta fibrils. Molecular docking was carried out using Glide and with prior protein minimization and ligand preparation. We focused on a screening a database of natural metabolites, as potential candidates for disaggregating amyloid fibrils. We used Desmond with OPLS 3e as a force field. MM-GBSA calculations were performed. Blood-brain barrier permeability, SASA, and radius of gyration parameters were calculated.
Collapse
Affiliation(s)
- Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vibha Rao
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Dhrithi Bhat
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India.
| |
Collapse
|
11
|
Tufail S, Sherwani MA, Shamim Z, Abdullah, Goh KW, Alomary MN, Ansari MA, Almosa AA, Ming LC, Abdullah ADI, Khan FB, Menhali AA, Mirza S, Ayoub MA. 2D nanostructures: Potential in diagnosis and treatment of Alzheimer's disease. Biomed Pharmacother 2024; 170:116070. [PMID: 38163396 DOI: 10.1016/j.biopha.2023.116070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions.
Collapse
Affiliation(s)
- Saba Tufail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Zahid Shamim
- Department of Electrical Engineering, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Abdullah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Khang Wen Goh
- Faculty Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Abdulaziz Abdullah Almosa
- Wellness and Preventive Medicine Institute, King AbdulAziz City of Science and Technology, Riyadh, Saudi Arabia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Amar Daud Iskandar Abdullah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Sameer Mirza
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Monteiro KLC, de Aquino TM, da Silva-Júnior EF. Natural Compounds as Inhibitors of Aβ Peptide and Tau Aggregation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1234-1250. [PMID: 38018200 DOI: 10.2174/0118715273273539231114095300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
13
|
Chen C, Yan ZS, Ma YQ, Ding HM. Effect of Terahertz Waves on the Structure of the Aβ42 Monomer, Dimer, and Protofibril: Insights from Molecular Dynamics Simulations. ACS Chem Neurosci 2023; 14:4128-4138. [PMID: 37983764 DOI: 10.1021/acschemneuro.3c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Amyloid-β (Aβ) and its assemblies play important roles in the pathogenesis of Alzheimer's disease (AD). Recent studies conducted by experimental and computational researchers have extensively explored the structure, assembly, and influence of biomolecules and cell membranes on Aβ. However, the impact of terahertz waves on the structures of Aβ monomers and aggregates remains largely unexplored. In this study, we systematically investigate the molecular mechanisms by which terahertz waves affect the structure of the Aβ42 monomer, dimer, and tetramer through all-atom molecular dynamics (MD) simulations. Our findings indicate that terahertz waves at a specific frequency (42.55 THz) can enhance intramolecular and intermolecular interactions in the Aβ42 monomer and dimer, respectively, by resonating with the symmetric stretching mode of the -COO- groups and the symmetric bending/stretching mode of -CH3 groups. Consequently, the β-structure content of the Aβ42 monomer is greatly increased, and the binding energy between the monomers in the Aβ42 dimer is significantly enhanced. Additionally, our observations suggest that terahertz waves can mildly stabilize the structure of tetrameric protofibrils by enhancing the interactions among peripheral peptides. Furthermore, we also investigated the effect of the frequency of terahertz waves on the structure of Aβ42. The present study contributes to a better understanding of the impact of external fields on the biobehavior of Aβ42 peptides and may shed some light on the potential risks associated with electromagnetic field radiation.
Collapse
Affiliation(s)
- Chen Chen
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zeng-Shuai Yan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
Jerom JP, Madhukumar S, Nair RH, Narayanan SP. Anti-amyloid potential of some phytochemicals against Aβ-peptide and α-synuclein, tau, prion, and Huntingtin protein. Drug Discov Today 2023; 28:103802. [PMID: 37858630 DOI: 10.1016/j.drudis.2023.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Some molecules self-assemble to create complex structures through molecular self-assembly. Hydrogel preparation, tissue repair, and therapeutic drug delivery are a few applications of molecular self-assembly. However, the self-assembly of amino acids, peptides, and proteins forms amyloid fibrils, resulting in various disorders, most notably neurodegenerative ailments. Examples include the self-assembly of phenylalanine, which causes phenylketonuria; Aβ, which causes Alzheimer's disease; the tau protein, which causes both Alzheimer's and Parkinson's diseases; and α-synuclein, which causes Parkinson's illness. This review provides information related to phytochemicals of great significance that can prevent the formation of, or destabilize, amino acid, peptide, and protein self-assemblies.
Collapse
Affiliation(s)
| | - Sooryalekshmi Madhukumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
15
|
Xu W, Mei J, Wang C, Yang H, Ma X, Gao W, Ahmad S, Ai H. Origin of stronger binding of ionic pair (IP) inhibitor to Aβ42 than the equimolar neutral counterparts: synergy mechanism of IP in disrupting Aβ42 protofibril and inhibiting Aβ42 aggregation under two pH conditions. Phys Chem Chem Phys 2023; 25:21612-21630. [PMID: 37551434 DOI: 10.1039/d3cp01683h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fibrous aggregates of beta-amyloid (Aβ) is a hallmark of Alzheimer's disease (AD). Several major strategies of drugs or inhibitors, including neutral molecules, positive or negative ions, and dual-inhibitor, are used to inhibit the misfolding or aggregation of Aβ42, among which a kind of dual-inhibitor composed of a pair of positive and negative ions is emerging as the most powerful candidate. This knowledge lacks the origin of the strong inhibitory effect and synergy mechanisms blocking the development and application of such inhibitors. To this end, we employed 1 : 1 ionic pairs (IP) of oppositely charged benzothiazole molecules (+)BAM1-EG6 (Pos) and (-)BAM1-EG6 (Neg) as well as equimolar neutral BAM1-EG6 (Neu) counterpart at two pH conditions (5.5 and 7.0) to bind Aβ42 targets, Aβ42 monomer (AβM), soluble pentamer (AβP), and pentameric protofibril (AβF) models, respectively, corresponding to the products of three toxic Aβ42 development pathways, lag, exponential and fibrillation phases. Simulated results illustrated the details of the inhibitory mechanisms of IP and Neu for the AβY (Y = M, P, or F) in the three different phases, characterizing the roles of Pos and Neg of IP as well as their charged, hydrophobic groups and linker playing in the synergistic interaction, and elucidated a previously unknown molecular mechanism governing the IP-Aβ42 interaction. Most importantly, we first revealed the origin of the stronger binding of IP inhibitors to Aβ42 than that of the equimolar neutral counterparts, observing a perplexing phenomenon that the physiological condition (pH = 7.0) than the acidic one (pH = 5.5) is more favorable to the enhancement of IP binding, and finally disclosed that solvation is responsible to the enhancement because at pH 7.0, AβP and AβF act as anionic membranes, where solvation plays a critical role in the chemoelectromechanics. The result not only provides a new dimension in dual-inhibitor/drug design and development but also a new perspective for uncovering charged protein disaggregation under IP-like inhibitors.
Collapse
Affiliation(s)
- Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Huijuan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaohong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wenqi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
16
|
Fang J, He Y, Cao Y, Shi Y, Wang H, Hong Z, Chai Y. Effect of P-Glycoprotein on the Blood-Brain Barrier Transport of the Major Active Constituents of Salvia miltiorrhiza Based on the MDCK-MDR1 Cell Model. ACS Chem Neurosci 2023; 14:766-772. [PMID: 36704945 DOI: 10.1021/acschemneuro.2c00757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Salvia miltiorrhiza Bunge (S. miltiorrhiza) is a traditional Chinese medicine that has been widely used in the treatment of various central nervous system (CNS) diseases. However, the mechanism of active components of S. miltiorrhiza crossing the blood-brain barrier (BBB) stays unclear. The purpose of this study was to clarify the mechanism of four ingredients of S. miltiorrhiza, i.e., cryptotanshinone (CTS), dihydrotanshinone I (DTS I), tanshinone IIA (TS IIA), and protocatechuic acid (PCTA) crossing the BBB using the in vitro model. The bidirectional transport of detectable components was tested using the MDCK-MDR1 monolayers. High performance liquid chromatography coupled to triple-quadrupole mass spectrometry (HPLC-QQQ/MS) was used to detect the content changes of S. miltiorrhiza monomer components transported through the BBB. Papp of CTS, DTS I, and TS IIA in the absorption direction were lower than 1.0 × 10-6 cm/s, suggesting that these components were poorly absorbed, while PCTA was moderately absorbed through the BBB. The efflux ratio (ER) of CTS, DTS I, TS IIA, and PCTA were 1.65, 0.92, 4.27, and 1.48, respectively. After treatment with P-gp inhibitor tariquidar, the efflux ratio (ER) of CTS, DTS I, and TS IIA significantly decreased from 1.65 to 1.27, 0.92 to 0.36, and 4.27 to 0.86 (P < 0.05), respectively, while the efflux ratio of PCTA decreased without significance from 1.48 to 0.80. This indicated that the transport of CTS, DTS I, and TS IIA might be related to P-gp. TS IIA and CTS were verified as the substrates of P-gp among the four components since the ER of TS IIA and CTS is greater than 1.5. For PCTA and DTS I, their transport mechanism may be related to other transport proteins or passive transport. The results were confirmed by molecular docking in our current work. In this study, an in vitro BBB model was established and applied to the trans-BBB study of active components in S. miltiorrhiza for the first time, which may provide a basis for further research on the mechanisms of other TCMs in treating CNS diseases and is of great significance in promoting the rational and effective use of TCMs.
Collapse
Affiliation(s)
- Jiahao Fang
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Yuzhen He
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Yuhong Cao
- Zhejiang Institute for Food and Drug Control, Hangzhou310057, China
| | - Yiwei Shi
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Hui Wang
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai200433, China
| |
Collapse
|
17
|
Ke L, Zhong C, Chen Z, Zheng Z, Li S, Chen B, Wu Q, Yao H. Tanshinone I: Pharmacological activities, molecular mechanisms against diseases and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154632. [PMID: 36608501 DOI: 10.1016/j.phymed.2022.154632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tanshinone I (Tan I) is known as one of the important active components in Salvia miltiorrhiza. In recent years, Tan I has received a substantial amount of attention from the research community for various studies being updated and has been shown to possess favorable activities including anti-oxidative stress, regulation of cell autophagy or apoptosis, inhibition of inflammation, etc. PURPOSE: To summarize the investigation progress on the anti-disease efficacy and effect mechanism of Tan I in recent years, and provide perspectives for future study on the active ingredient. METHOD Web of Science and PubMed databases were used to search for articles related to "Tanshinone I" published from 2010 to 2022. Proteins or genes and signaling pathways referring to Tan I against diseases were summarized and classified along with its different therapeutic actions. Protein-protein interaction (PPI) analysis was then performed, followed by molecular docking between proteins with high node degree and Tan I, as well as bioinformactic analysis including GO, KEGG and DO enrichment analysis with the collected proteins or genes. RESULTS Tan I shows multiple therapeutic effects, including protection of the cardiovascular system, anti-cancer, anti-inflammatory, anti-neurodegenerative diseases, etc. The targets (proteins or genes) affected by Tan I against diseases involve Bcl-2, Bid, ITGA2, PPAT, AURKA, VEGF, PI3K, AKT, PRK, JNK, MMP9, ABCG2, CASP3, Cleaved-caspase-3, AMPKα, PARP, etc., and the regulatory pathways refer to Akt/Nrf2, SAPK/JNK, PI3K/Akt/mTOR, JAK/STAT3, ATF-2/ERK, etc. What's more, AKT1, CASP3, and STAT3 were predicted as the key action targets for Tan I by PPI analysis combined with molecular docking, and the potential therapeutic effects mechanisms against diseases were also further predicted by bioinformatics analyses based on the reported targets, providing new insights into the future investigation and helping to facilitate the drug development of Tan I.
Collapse
Affiliation(s)
- Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijie Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qiaoyi Wu
- Department of Trauma and Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Chazhong Road, Fuzhou, 350004, China.
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
18
|
Khan AN, Khan RH. Protein misfolding and related human diseases: A comprehensive review of toxicity, proteins involved, and current therapeutic strategies. Int J Biol Macromol 2022; 223:143-160. [PMID: 36356861 DOI: 10.1016/j.ijbiomac.2022.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Most of the cell's chemical reactions and structural components are facilitated by proteins. But proteins are highly dynamic molecules, where numerous modifications or changes in the cellular environment can affect their native conformational fold leading to protein aggregation. Various stress conditions, such as oxidative stress, mutations and metal toxicity may cause protein misfolding and aggregation by shifting the conformational equilibrium towards more aggregation-prone states. Most of the protein misfolding diseases (PMDs) involve aggregation of protein. We have discussed such proteins like Aβ peptide, α-synuclein, amylin and lysozyme involved in Alzheimer's, Parkinson's, type II diabetes and non-neuropathic systemic amyloidosis respectively. Till date, all advances in PMDs therapeutics help symptomatically but do not prevent the root cause of the disease, i.e., the aggregation of protein involved in the diseases. Current efforts focused on developing therapies for PMDs have employed diverse strategies; repositioning pre-existing drugs as it saves time and money; natural compounds that are touted as potential drug candidates have an advantage of being taken in diet normally and will induce lesser side effects. This review also covers recently developed therapeutic strategies like antisense drugs and disaggregases which has yielded therapeutic agents that have transitioned from preclinical studies into human clinical trials.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | | |
Collapse
|
19
|
Neurological disorders of COVID-19: insights to applications of natural products from plants and microorganisms. Arch Pharm Res 2022; 45:909-937. [PMCID: PMC9702705 DOI: 10.1007/s12272-022-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
In addition to the typical respiratory manifestations, various disorders including involvement of the nerve system have been detected in COVID-19 ranging from 22 to 36%. Although growing records are focusing on neurological aspects of COVID-19, the pathophysiological mechanisms and related therapeutic methods remain obscure. Considering the increased concerns of SARS-CoV-2 potential for more serious neuroinvasion conditions, the present review attempts to focus on the neuroprotective effects of natural compounds as the principle source of therapeutics inhibiting multiple steps of the SARS-CoV-2 infection cycle. The great majority of the natural products with anti-SARS-CoV-2 activity mainly inhibit the attachment, entry and gene expression rather than the replication, assembly, or release. Although microbial-derived natural products comprise 38.5% of the known natural products with neuroprotective effects following viral infection, the neuroprotective potential of the majority of microorganisms is still undiscovered. Among natural products, chrysin, huperzine A, ginsenoside Rg1, pterostilbene, and terrein have shown potent in vitro neuroprotective activity and can be promising for new or repurpose drugs for neurological complications of SARS-CoV-2.
Collapse
|
20
|
Zhang X, Kang X, Du L, Zhang L, Huang Y, Wang J, Wang S, Chang Y, Liu Y, Zhao Y. Tanshinone IIA loaded chitosan nanoparticles decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Free Radic Biol Med 2022; 193:81-94. [PMID: 36195161 DOI: 10.1016/j.freeradbiomed.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases that characterized by the accumulation of β-amyloid peptide (Aβ). Overexpressions of Aβ could induce oxidative stress that might be a key insult to initiate the cascades of Aβ accumulation. As a result, anti-oxidative stress and attenuating Aβ accumulation might be one promising intervention for AD treatment. Tanshinone IIA (Tan IIA), a major component of lipophilic tanshinones in Danshen, is proven to be effective in several diseases, including AD. Due to the poor solubility in water, the clinical application of Tan IIA was limited. Therefore, a great number of nanoparticles were designed to overcome this issue. In the current study, we choose chitson as delivery carrier to load Tanshinone IIA (CS@Tan IIA) and explore the protective effects of CS@Tan IIA on the CL2006 strain, a transgenic C. elegans of AD model organism. Compared with Tan IIA monomer, CS@Tan IIA could significantly prolong the lifespan and attenuate the AD-like symptoms, including reducing paralysis and the Aβ deposition by inhibiting the oxidative stress. The mechanism study showed that the protection of CS@Tan IIA was attenuated by knockdown of daf-16 gene, but not skn-1. The results indicated that DAF-16/SOD-3 pathway was required in the protective effects of CS@Tan IIA. Besides DAF-16/SOD-3 pathway, the Tan IIA-loaded CS nanoparticles might protect the C. elegans against the AD insults via promoting autophagy. All the results consistently suggested that coating by chitosan could improve the solubility of Tan IIA and effectively enhance the protective effects of Tan IIA on AD, which might provide a potential drug loading approach for the hydrophobic drugs as Tan IIA.
Collapse
Affiliation(s)
- Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoxuan Kang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jihan Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Sihan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei, Shijiazhuang, China.
| | - Yang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuming Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Gao W, Li Y, Xu W, Mei J, Wang C, Sajjad A, Ai H. Inhibitory Mechanisms of Three Modified Small Molecules on the Misfolding of Cu
2+
‐Aβ42 Complex in Different pH Conditions: Insights from MD/QM Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenqi Gao
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Ye Li
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Wen Xu
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Ahmad Sajjad
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| |
Collapse
|
22
|
Sampei T, Wu Y, Shigemori H. Amyloid Polypeptide Disaggregation Activity of Passion Fruit Seed-Derived Polyphenol Compounds. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221092710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In an aging society, the prevalence of Alzheimer disease (AD) and type 2 diabetes (T2D) has increased. It is currently hypothesized that these diseases are caused by the aggregation of amyloid β (Aβ) in the brain and human islet amyloid polypeptide (hIAPP) in the islets of Langerhans, respectively. Therefore, the disaggregation of these existing amyloid aggregates is a promising approach to the prevention and treatment of both diseases. In our previous studies, we found a remarkable Aβ and hIAPP aggregation inhibitory activity of polyphenolic compounds containing catechol moieties. Compared to previous reports on their aggregation inhibitory activity, there are few on the disaggregation activity of polyphenolic compounds. Additionally, there are few findings on the disaggregation activity of polyphenolic compounds on hIAPP. In this study, we investigated the Aβ and hIAPP disaggregation activity of scirpusin B, a polyphenolic compound found in passion fruit seeds, and related compounds. Thioflavin T (Th-T) assays and transmission electron microscopy (TEM) were performed on these compounds to evaluate their Aβ42 and hIAPP disaggregation activities. The results showed that scirpusin B and its related compounds showed remarkable disaggregation activity. The structure–activity relationship of these compounds revealed that the presence of catechol moieties is important for this activity. This study also showed that polyphenols from passion fruit seeds have significant disaggregation activity against amyloid polypeptide aggregation.
Collapse
Affiliation(s)
- Tatsuya Sampei
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yingxue Wu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideyuki Shigemori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
24
|
Khan AN, Nabi F, Ajmal MR, Ali SM, Almutairi FM, Alalawy AI, Khan RH. Moxifloxacin Disrupts and Attenuates Aβ42 Fibril and Oligomer Formation: Plausibly Repositioning an Antibiotic as Therapeutic against Alzheimer's Disease. ACS Chem Neurosci 2022; 13:2529-2539. [PMID: 35930676 DOI: 10.1021/acschemneuro.2c00371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aggregation of Aβ42 is established as a key factor in the development of Alzheimer's disease (AD). Consequently, molecules that inhibit aggregation of peptide may lead to therapies to prevent or control AD. Several studies suggest that oligomeric intermediates present during aggregation may be more cytotoxic than fibrils themselves. In this work, we examine the inhibitory activity of an antibiotic MXF on aggregation (fibrils and oligomers) and disaggregation of Aβ42 using various biophysical and microscopic studies. Computational analysis was done to offer mechanistic insight. The amyloid formation of Aβ42 is suppressed by MXF, as demonstrated by the decrease in both the corresponding ThT fluorescence intensity and other biophysical techniques. The lag phase of amyloid formation doubled from 4.53 to 9.66 h in the presence of MXF. The addition of MXF at the completion of the fibrillation reaction, as monitored by ThT, led to a rapid, concentration dependent, exponential decrease in fluorescence signal that was consistent with loss of fibrils. We used TEM to directly demonstrate that MXF caused fibrils to disassemble. Our docking results show that MXF binds to both monomeric and fibrillar forms of Aβ42 with significant affinities. We also observed breaking of fibrils in the presence of MXF through molecular dynamics simulation. These findings suggest that antibiotic MXF could be a promising lead compound with dual role as fibril/oligomer inhibitor and disaggregase for further development as potential repurposed therapeutic against AD.
Collapse
Affiliation(s)
- Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | - Mohammad Rehan Ajmal
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | - Fahad M Almutairi
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Adel I Alalawy
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | |
Collapse
|
25
|
Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, Qi Y, Han L, Xu L. Dioscin alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 2022; 152:113248. [PMID: 35691153 DOI: 10.1016/j.biopha.2022.113248] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with amyloid beta (Aβ) deposition and intracellular neurofibrillary tangles (NFTs) as its characteristic pathological changes. Ameliorating oxidative stress and inflammation has become a new trend in the prevention and treatment of AD. Dioscin, a natural steroidal saponin which exists in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in Alzheimer's disease (AD) is still unknown. In the present work, effect of dioscin on AD was evaluated in injured SH-SY5Y cells induced by H2O2 and C57BL/6 mice with AD challenged with AlCl₃ combined with D-galactose. Results showed that dioscin obviously increased cell viability and decreased reactive oxygen species (ROS) level in injured SH-SY5Y cells. In vivo, dioscin obviously improved the spatial learning and memory abilities as well as gait and interlimb coordination disorders of mice with AD. Moreover, dioscin distinctly restored the levels of malondialdehyde (MDA), superoxide dismutase (SOD), amyloid beta 42 (Aβ42), acetylcholine (ACh) and acetylcholinesterase (AChE) of mice, and reversed the histopathological changes of brain tissue. Mechanism studies revealed that dioscin markedly down-regulated the expression levels of RAGE and NOX4. Subsequently, dioscin markedly up-regulated the expression levels of Nrf2 and HO-1 related to oxidative stress, and down-regulated the levels of p-NF-κB(p-p65)/NF-κB(p65), AP-1 and inflammatory factors involved in inflammatory pathway. RAGE siRNAs transfection further clarified that the pharmacological activity of dioscin in AD was achieved by regulating RAGE/NOX4 pathway. In conclusion, dioscin showed excellent anti-AD effect by adjusting RAGE/NOX4-mediated oxidative stress and inflammation, which provided the basis for the further research and development against AD.
Collapse
Affiliation(s)
- Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhang Mao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sen Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Guanlin Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yurong Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lan Han
- School of pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
26
|
Das A, Gangarde YM, Pariary R, Bhunia A, Saraogi I. An amphiphilic small molecule drives insulin aggregation inhibition and amyloid disintegration. Int J Biol Macromol 2022; 218:981-991. [PMID: 35907468 DOI: 10.1016/j.ijbiomac.2022.07.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
The aggregation of proteins into ordered fibrillar structures called amyloids, and their disintegration represent major unsolved problems that limit the therapeutic applications of several proteins. For example, insulin, commonly used for the treatment of diabetes, is susceptible to amyloid formation upon exposure to non-physiological conditions, resulting in a loss of its biological activity. Here, we report a novel amphiphilic molecule called PAD-S, which acts as a chemical chaperone and completely inhibits fibrillation of insulin and its biosimilars. Mechanistic investigations and molecular docking lead to the conclusion that PAD-S binds to key hydrophobic regions of native insulin, thereby preventing its self-assembly. PAD-S treated insulin was biologically active as indicated by its ability to phosphorylate Akt, a protein in the insulin signalling pathway. PAD-S is non-toxic and protects cells from insulin amyloid induced cytotoxicity. The high aqueous solubility and easy synthetic accessibility of PAD-S facilitates its potential use in commercial insulin formulations. Notably, PAD-S successfully disintegrated preformed insulin fibrils to non-toxic smaller fragments. Since the structural and mechanistic features of amyloids are common to several human pathologies, the understanding of the amyloid disaggregation activity of PAD-S will inform the development of small molecule disaggregators for other amyloids.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Yogesh M Gangarde
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ranit Pariary
- Department of Biophysics, Bose Institute, Sector V, EN 80, Bidhan Nagar, Kolkata 700 091, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Sector V, EN 80, Bidhan Nagar, Kolkata 700 091, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India; Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| |
Collapse
|
27
|
Jaragh-Alhadad LA, Falahati M. Copper oxide nanoparticles promote amyloid-β-triggered neurotoxicity through formation of oligomeric species as a prelude to Alzheimer's diseases. Int J Biol Macromol 2022; 207:121-129. [PMID: 35259430 DOI: 10.1016/j.ijbiomac.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022]
Abstract
Protein oligomerization is involved in the progression of Alzheimer's disease (AD). In general, a particle that can accelerate protein oligomerization should be considered a toxic material. Several studies reported the progress of nanoparticles (NPs) such as copper oxide (CuO) in biomedical platforms, however, they may have the ability to promote the protein oligomerization process. Here, we aimed to study the effect of CuO NPs on amyloid β1-42 (Aβ1-42) oligomerization and relevant neurotoxicity. CuO NPs were synthesized by precipitation technique and characterized by several methods such as ThT, Congo red, CD spectroscopic methods, and TEM imaging. The outcomes indicated that the fabricated CuO NPs with a size of around 50 nm led to a remarkable acceleration in Aβ1-42 oligomerization in a concentration-dependent manner through shortening the nucleation step and promoting the fibrillization rate. Moreover, cellular assays revealed that Aβ1-42 oligomers aged with CuO NPs were more toxic than Aβ1-42 oligomers untreated against SH-SY5Y cells in triggering cell mortality, membrane leakage, oxidative stress, and apoptosis. In conclusion, this study provides important information about the adverse effects of CuO NPs against proteins in the central nervous system to promote the formation of cytotoxic oligomers.
Collapse
Affiliation(s)
- Laila Abdulmohsen Jaragh-Alhadad
- Department of Chemistry, College of Science, Kuwait University, Safat 13060, Kuwait; Cardiovascular and Metabolic Sciences Department, Learner Research Institute, Cleveland Clinic, OH 44195, USA.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands; Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
28
|
Saini V, Singh A, Shukla R, Jain K, Yadav AK. Silymarin-Encapsulated Xanthan Gum-Stabilized Selenium Nanocarriers for Enhanced Activity Against Amyloid Fibril Cytotoxicity. AAPS PharmSciTech 2022; 23:125. [PMID: 35474400 DOI: 10.1208/s12249-022-02274-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The accumulation of amyloid-beta at the neuronal sites is a major pathological hallmark involved in the etiology of Alzheimer's disease. To reduce the Aβ-induced neuronal cytotoxicity, selenium nanoparticles and silymarin were fabricated in a single polysaccharide matrix for dual antioxidant and Aβ fibril disaggregation activity. These nanoparticles were further stabilized by an exopolysaccharide xanthan gum. The nanoparticles were fabricated to reduce the amyloid-induced cytotoxicity in SH-SY5Y cells. A three-step method employing redox reaction of sodium selenite and ascorbic acid has been adopted for the synthesis of selenium nanoparticles. Consequently, xanthan gum powder was added to impart stability to the nanocarriers. The nanoparticles exhibited a particle size of 119.2 ± 2.8 nm, zeta potential of - 35.4 ± 3.8 mV, and % EE of 87.7 ± 2.23. HR-TEM with EDX analysis confirmed the presence of spherical nanoparticles. An in vitro drug release study exhibited 89.33 ± 5.4% release of silymarin from nanocarriers and was able to scavenge 90% free radicals of DPPH reagent. The thioflavin T (ThT) fibrillation kinetics study showed that the nanoparticles elicited maximum disaggregation of Aβ fibrils that was depicted by the quenched fluorescence intensity signal. The cell viability results revealed that the highest neuroprotection activity was observed in the cell group treated with SLY-XG-Se against Aβ 1-42-induced toxicity. The nanoparticles were able to internalize in SH-SY5Y cells. Our findings showed that the nanocarrier elicited anti-aggregation efficacy in neuronal cell lines and mitigated the Aβ-induced cytotoxicity, which represents the prospects of neuroprotection involved in the therapeutics of AD.
Collapse
|
29
|
Wang Y, Xie Y, Wang A, Wang J, Wu X, Wu Y, Fu Y, Sun H. Insights into interactions between food polyphenols and proteins: an updated overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yang Xie
- Pharmaceutical Engineering Center Chongqing Medical and Pharmaceutical College Chongqing China
| | - Aidong Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Xiaoran Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Key Laboratory of Drug Design Huangshan University Huangshan China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University Chongqing China
| |
Collapse
|
30
|
Chen B, Mou C, Guo F, Sun Q, Qu L, Li L, Cui W, Lu F, Jin C, Liu F. Tolcapone Derivative (Tol-D) Inhibits Aβ42 Fibrillogenesis and Ameliorates Aβ42-Induced Cytotoxicity and Cognitive Impairment. ACS Chem Neurosci 2022; 13:638-647. [PMID: 35148068 DOI: 10.1021/acschemneuro.1c00771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal aggregation and subsequent fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is important for the treatment of AD. Our previous study has proven that tolcapone inhibits Aβ fibrillogenesis and alleviates its cytotoxicity based on systematic in vitro and in vivo experiments. However, the severe hepatotoxicity of tolcapone seriously limits its further potential application in the treatment of AD. Herein, an inhibitory effect of a low-toxicity tolcapone derivative (Tol-D) on Aβ fibrillogenesis was explored. Based on the thioflavin T fluorescence data, Tol-D inhibited Aβ fibrillogenesis, and the inhibitory capacity increased with the increase of its concentrations with an IC50 of ∼8.99 μM. The results of cytotoxicity showed that Tol-D greatly reduced the cytotoxicity induced by Aβ42 fibrillogenesis. Moreover, Tol-D significantly alleviated Aβ deposits and extended the lifespan of nematodes in transgenic Caenorhabditis elegans models. Finally, Tol-D significantly relieved Aβ-induced cognitive dysfunction in mice experiments. Overall, the above experimental results indicated that Tol-D is a novel candidate therapeutic compound for the treatment of AD.
Collapse
Affiliation(s)
- Beibei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenye Mou
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Fangyan Guo
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Quancheng Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lili Qu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenghua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
31
|
Low KJY, Venkatraman A, Mehta JS, Pervushin K. Molecular mechanisms of amyloid disaggregation. J Adv Res 2022; 36:113-132. [PMID: 35127169 PMCID: PMC8799873 DOI: 10.1016/j.jare.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/13/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
Importance of disaggregation mechanism and innate disaggregation in living systems. Different types and mechanism of disaggregation reported in literature. Structural details of the interactions and the disaggregation mechanisms. Amyloid disaggregation in protein aggregation disorders as a potential treatment. Proposed amyloid disaggregation mechanism of an ATP-independent chaperone (L-PGDS).
Introduction Protein aggregation and deposition of uniformly arranged amyloid fibrils in the form of plaques or amorphous aggregates is characteristic of amyloid diseases. The accumulation and deposition of proteins result in toxicity and cause deleterious effects on affected individuals known as amyloidosis. There are about fifty different proteins and peptides involved in amyloidosis including neurodegenerative diseases and diseases affecting vital organs. Despite the strenuous effort to find a suitable treatment option for these amyloid disorders, very few compounds had made it to unsuccessful clinical trials. It has become a compelling challenge to understand and manage amyloidosis with the increased life expectancy and ageing population. Objective While most of the currently available literature and knowledge base focus on the amyloid inhibitory mechanism as a treatment option, it is equally important to organize and understand amyloid disaggregation strategies. Disaggregation strategies are important and crucial as they are present innately functional in many living systems and dissolution of preformed amyloids may provide a direct benefit in many pathological conditions. In this review, we have compiled the known amyloid disaggregation mechanism, interactions, and possibilities of using disaggregases as a treatment option for amyloidosis. Methods We have provided the structural details using protein-ligand docking models to visualize the interaction between these disaggregases with amyloid fibrils and their respective proposed amyloid disaggregation mechanisms. Results After reviewing and comparing the different amyloid disaggregase systems and their proposed mechanisms, we presented two different hypotheses for ATP independent disaggregases using L-PGDS as a model. Conclusion Finally, we have highlighted the importance of understanding the underlying disaggregation mechanisms used by these chaperones and organic compounds before the implementation of these disaggregases as a potential treatment option for amyloidosis.
Collapse
|
32
|
Nedaei H, Rezaei-Ghaleh N, Giller K, Becker S, Karami L, Moosavi-Movahedi AA, Griesinger C, Saboury AA. The Calcium-free form of Atorvastatin inhibits amyloid-β(1-42) aggregation in vitro. J Biol Chem 2022; 298:101662. [PMID: 35104501 PMCID: PMC8898965 DOI: 10.1016/j.jbc.2022.101662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of extraneuronal amyloid plaques composed of amyloid-beta (Aβ) fibrillar aggregates in the brains of patients. In mouse models, it has previously been shown that atorvastatin (Ator), a cholesterol-lowering drug, has some reducing effect on the production of cerebral Aβ. A meta-analysis on humans showed moderate effects in the short term but no improvement in the Alzheimer's Disease Assessment Scale—Cognitive Subscale behavioral test. Here, we explore a potential direct effect of Ator on Aβ42 aggregation. Using NMR-based monomer consumption assays and CD spectroscopy, we observed a promoting effect of Ator in its original form (Ator-calcium) on Aβ42 aggregation, as expected because of the presence of calcium ions. The effect was reversed when applying a CaCO3-based calcium ion scavenging method, which was validated by the aforementioned methods as well as thioflavin-T fluorescence assays and transmission electron microscopy. We found that the aggregation was inhibited significantly when the concentration of calcium-free Ator exceeded that of Aβ by at least a factor of 2. The 1H–15N heteronuclear single quantum correlation and saturation-transfer difference NMR data suggest that calcium-free Ator exerts its effect through interaction with the 16KLVF19 binding site on the Aβ peptide via its aromatic rings as well as hydroxyl and methyl groups. On the other hand, molecular dynamics simulations confirmed that the increasing concentration of Ator is necessary for the inhibition of the conformational transition of Aβ from an α-helix-dominant to a β-sheet-dominant structure.
Collapse
Affiliation(s)
- Hadi Nedaei
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Nasrollah Rezaei-Ghaleh
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Leila Karami
- Department of Cell and Molecular Biology, Kharazmi University, Tehran, Iran
| | - Ali Akbar Moosavi-Movahedi
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
33
|
Gao D, Wan J, Zou Y, Gong Y, Dong X, Xu Z, Tang J, Wei G, Zhang Q. Destructive Mechanism of Aβ 1-42 Protofibril by Norepinephrine revealed via Molecular Dynamics Simulations. Phys Chem Chem Phys 2022; 24:19827-19836. [DOI: 10.1039/d2cp01754g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid-β (Aβ) fibrillary plaques represent the main hallmarks of Alzheimer’s disease (AD), in addition to tau neurofibrillary tangles. Disrupting early-formed Aβ protofibril is considered as one of the primary therapeutic...
Collapse
|
34
|
4‐(2‐Hydroxyethyl)‐1‐piperazine ethane sulfonic acid repositioning: Amyloid disaggregating agent and its
sustained‐release
system. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Saffari B, Amininasab M. Crocin Inhibits the Fibrillation of Human α-synuclein and Disassembles Mature Fibrils: Experimental Findings and Mechanistic Insights from Molecular Dynamics Simulation. ACS Chem Neurosci 2021; 12:4037-4057. [PMID: 34636232 DOI: 10.1021/acschemneuro.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aggregation of human alpha-synuclein (hαS) is pivotally implicated in the development of most types of synucleinopathies. Molecules that can inhibit or reverse the aggregation process of amyloidogenic proteins have potential therapeutic value. The anti-aggregating activity of multiple carotenoid compounds has been reported over the past decades against a growing list of amyloidogenic polypeptides. Here, we aimed to determine whether crocin, the main carotenoid glycoside component of saffron, would inhibit hαS aggregation or could disassemble its preformed fibrils. By employing a series of biochemical and biophysical techniques, crocin was exhibited to inhibit hαS fibrillation in a dose-dependent fashion by stabilizing very early aggregation intermediates in off-pathway non-toxic conformations with little β-sheet content. We also observed that crocin at high concentrations could efficiently destabilize mature fibrils and disassemble them into seeding-incompetent intermediates by altering their β-sheet conformation and reshaping their structure. Our atomistic molecular dynamics (MD) simulations demonstrated that crocin molecules bind to both the non amyloid-β component (NAC) region and C-terminal domain of hαS. These interactions could thereby stabilize the autoinhibitory conformation of the protein and prevent it from adopting aggregation-prone structures. MD simulations further suggested that ligand molecules prefer to reside longitudinally along the fibril axis onto the edges of the inter-protofilament interface where they establish hydrogen and hydrophobic bonds with steric zipper stabilizing residues. These interactions turned out to destabilize hαS fibrils by altering the interstrand twist angles, increasing the rigidity of the fibril core, and elevating its radius of gyration. Our findings suggest the potential pharmaceutical implication of crocin in synucleinopathies.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
36
|
Li F, Zhan C, Dong X, Wei G. Molecular mechanisms of resveratrol and EGCG in the inhibition of Aβ 42 aggregation and disruption of Aβ 42 protofibril: similarities and differences. Phys Chem Chem Phys 2021; 23:18843-18854. [PMID: 34612422 DOI: 10.1039/d1cp01913a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) into fibrillary deposits is implicated in Alzheimer's disease (AD), and inhibiting Aβ aggregation and clearing Aβ fibrils are considered as promising strategies to treat AD. It has been reported that resveratrol (RSV) and epigallocatechin-3-gallate (EGCG), two of the most extensively studied natural polyphenols, are able to inhibit Aβ fibrillization and remodel the preformed fibrillary aggregates into amorphous, non-toxic species. However, the mechanisms by which RSV inhibits Aβ42 aggregation and disrupts Aβ42 protofibril, as well as the inhibitory/disruptive mechanistic similarities and differences between RSV and EGCG, remain mostly elusive. Herein, we performed extensive all-atom molecular dynamics (MD) simulations on Aβ42 dimers (the early aggregation state of Aβ42) and protofibrils (the intermediate of Aβ42 fibril formation and elongation) in the absence/presence of RSV or EGCG molecules. Our simulations show that both RSV and EGCG can bind with Aβ42 monomers and inhibit the dimerization of Aβ42. The binding of RSV with Aβ42 peptide is mostly viaπ-π stacking interactions, while the binding of EGCG with Aβ42 is mainly through hydrophobic, π-π stacking, and hydrogen-bonding interactions. Moreover, both RSV and EGCG disrupt the β-sheet structure and K28-A42 salt bridges, leading to a disruption of Aβ42 protofibril structure. RSV mainly binds with residues whose side-chains point inwards from the surface of the protofibril, while EGCG mostly binds with residues whose side-chains point outwards from the surface of the protofibril. Furthermore, RSV interacts with Aβ42 protofibrils mostly viaπ-π stacking interactions, while EGCG interacts with Aβ42 protofibrils mainly via hydrogen-bonding and hydrophobic interactions. For comparison, we also explore the effects of RSV/EGCG molecules on the aggregation inhibition and protofibril disruption of the Iowa mutant (D23N) Aβ. Our findings may pave the way for the design of more effective drug candidates as well as the utilization of cocktail therapy using RSV and EGCG for the treatment of AD.
Collapse
Affiliation(s)
- Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, People's Republic of China.
| | | | | | | |
Collapse
|
37
|
Estolano-Cobián A, Alonso MM, Díaz-Rubio L, Ponce CN, Córdova-Guerrero I, Marrero JG. Tanshinones and their Derivatives: Heterocyclic Ring-Fused Diterpenes of Biological Interest. Mini Rev Med Chem 2021; 21:171-185. [PMID: 32348220 DOI: 10.2174/1389557520666200429103225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
The available scientific literature regarding tanshinones is very abundant, and after its review, it is noticeable that most of the articles focus on the properties of tanshinone I, cryptotanshinone, tanshinone IIA, sodium tanshinone IIA sulfonate and the dried root extract of Salvia miltiorrhiza (Tan- Shen). However, although these products have demonstrated important biological properties in both in vitro and in vivo models, their poor solubility and bioavailability have limited their clinical applications. For these reasons, many studies have focused on the search for new pharmaceutical formulations for tanshinones, as well as the synthesis of new derivatives that improve their biological properties. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2015) on tanshinones in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we offer an update on the last five years of new research on these quinones, focusing on their synthesis, biological activity on noncommunicable diseases and drug delivery systems, to support future research on its clinical applications.
Collapse
Affiliation(s)
- Arturo Estolano-Cobián
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Mariana Macías Alonso
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Laura Díaz-Rubio
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Cecilia Naredo Ponce
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Joaquín G Marrero
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| |
Collapse
|
38
|
Prajapati R, Park SE, Seong SH, Paudel P, Fauzi FM, Jung HA, Choi JS. Monoamine Oxidase Inhibition by Major Tanshinones from Salvia miltiorrhiza and Selective Muscarinic Acetylcholine M 4 Receptor Antagonism by Tanshinone I. Biomolecules 2021; 11:1001. [PMID: 34356625 PMCID: PMC8301926 DOI: 10.3390/biom11071001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Monoamine oxidases (MAOs) and muscarinic acetylcholine receptors (mAChRs) are considered important therapeutic targets for Parkinson's disease (PD). Lipophilic tanshinones are major phytoconstituents in the dried roots of Salvia miltiorrhiza that have demonstrated neuroprotective effects against dopaminergic neurotoxins and the inhibition of MAO-A. Since MAO-B inhibition is considered an effective therapeutic strategy for PD, we tested the inhibitory activities of three abundant tanshinone congeners against recombinant human MAO (hMAO) isoenzymes through in vitro experiments. In our study, tanshinone I (1) exhibited the highest potency against hMAO-A, followed by tanshinone IIA and cryptotanshinone, with an IC50 less than 10 µM. They also suppressed hMAO-B activity, with an IC50 below 25 µM. Although tanshinones are known to inhibit hMAO-A, their enzyme inhibition mechanism and binding sites have yet to be investigated. Enzyme kinetics and molecular docking studies have revealed the mode of inhibition and interactions of tanshinones during enzyme inhibition. Proteochemometric modeling predicted mAChRs as possible pharmacological targets of 1, and in vitro functional assays confirmed the selective M4 antagonist nature of 1 (56.1% ± 2.40% inhibition of control agonist response at 100 µM). These findings indicate that 1 is a potential therapeutic molecule for managing the motor dysfunction and depression associated with PD.
Collapse
Affiliation(s)
- Ritu Prajapati
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
| | - Se Eun Park
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan, Seoul 05505, Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
- Natural Product Research Division, Honam National Institute of Biological Resource, Mokpo 58762, Korea
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
- National Center for Natural Products Research, Research Institute of Pharmaceutical Science, The University of Mississippi, Oxford, MS 38677, USA
| | - Fazlin Mohd Fauzi
- Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia;
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbok National University, Jeonju 54896, Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (R.P.); (S.E.P.); (S.H.S.); (P.P.)
| |
Collapse
|
39
|
Liu J, Wang F, Sheng P, Xia Z, Jiang Y, Yan BC. A network-based method for mechanistic investigation and neuroprotective effect on treatment of tanshinone Ⅰ against ischemic stroke in mouse. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113923. [PMID: 33617968 DOI: 10.1016/j.jep.2021.113923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanshinone-Ⅰ (TSNⅠ), a member of the mainly active components of Salvia miltiorrhiza Bunge (Dan Shen), which is widely used for the treatment for modern clinical diseases including cardiovascular and cerebrovascular diseases, has been reported to show the properties of anti-oxidation, anti-inflammation, neuroprotection and other pharmacological actions. However, whether TSNⅠ can improve neuron survival and neurological function against transient focal cerebral ischemia (tMCAO) in mice is still a blank field. AIM OF THE STUDY This study aims to investigate the neuroprotective effects of TSNⅠ on ischemic stroke (IS) induced by tMCAO in mice and explore the potential mechanism of TSNⅠ against IS by combining network pharmacology approach and experimental verification. MATERIALS AND METHODS In this study, the pivotal candidate targets of TSNⅠ against IS were screened by network pharmacology firstly. Enrichment analysis and molecular docking of those targets were performed to identify the possible mechanism of TSNⅠ against IS. Afterwards, experiments were carried out to further verify the mechanism of TSNⅠ against IS. The infarct volume and neurological deficit were evaluated by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Longa respectively. Immunohistochemistry was used to observe neuronal death in the hippocampus and cortical regions by detecting the change of NeuN. The predicting pathways of signaling-related proteins were assessed by Western blot in vitro and in vivo experiments. RESULTS In vivo, TSNⅠ was found to dose-dependently decrease mice's cerebral infarct volume induced by tMCAO. In vitro, pretreatment with TSNⅠ could increase cell viability of HT-22 cell following oxygen-glucose deprivation (OGD/R). Moreover, the results showed that 125 candidate targets were identified, Protein kinase B (AKT) signaling pathway was significantly enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and mitogen-activated protein kinases 1 (MAPK1) and AKT1 could be bound to TSNⅠ more firmly by molecular docking analysis, which implies that TSNⅠ may play a role in neuroprotection through activating AKT and MAPK signaling pathways. Meanwhile, TSNⅠ was confirmed to significantly protect neurons from injury induced by IS through activating AKT and MAPK signaling pathways. CONCLUSION In conclusion, our study clarifies that the mechanism of TSNⅠ against IS might be related to AKT and MAPK signaling pathways, which may provide the basic evidence for further development and utilization of TSNⅠ.
Collapse
Affiliation(s)
- Jiajia Liu
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Fuxing Wang
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Peng Sheng
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Zihao Xia
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, 100084, PR China
| | - Bing Chun Yan
- Medical College, Institute of Translational Medicine, Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
40
|
Subedi L, Gaire BP. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol Res 2021; 169:105661. [PMID: 33971269 DOI: 10.1016/j.phrs.2021.105661] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Tanshinones, lipophilic diterpenes isolated from the rhizome of Salvia miltiorrhiza, have diverse pharmacological activities against human ailments including neurological diseases. In fact, tanshinones have been used to treat heart diseases, stroke, and vascular diseases in traditional Chinese medicine. During the last decade, tanshinones have been the most widely studied phytochemicals for their neuroprotective effects against experimental models of cerebral ischemia and Alzheimer's diseases. Importantly, tanshinone IIA, mostly studied tanshinone for biological activities, is recently reported to attenuate blood-brain barrier permeability among stroke patients, suggesting tanshinone IIA as an appealing therapeutic candidate for neurological diseases. Tanshinone I and IIA are also effective in experimental models of Parkinson's disease, Multiple sclerosis, and other neuroinflammatory diseases. In addition, several experimental studies suggested the pleiotropic neuroprotective effects of tanshinones such as anti-inflammatory, antioxidant, anti-apoptotic, and BBB protectant further value aiding to tanshinone as an appealing therapeutic strategy in neurological diseases. Therefore, in this review, we aimed to compile the recent updates and cellular and molecular mechanisms of neuroprotection of tanshinone IIA in diverse neurological diseases.
Collapse
Affiliation(s)
- Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
41
|
Dhage PA, Sharbidre AA, Dakua SP, Balakrishnan S. Leveraging hallmark Alzheimer's molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed Pharmacother 2021; 139:111634. [PMID: 33965726 DOI: 10.1016/j.biopha.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, severely distresses different brain regions. Characterized by various neuropathologies, it interferes with cognitive functions and neuropsychiatrical controls. This progressive deterioration has negative impacts not only on an individual's daily activity but also on social and occupational life. The pharmacological approach has always remained in the limelight for the treatment of AD. However, this approach is condemned with several side effects. Henceforth, a change in treatment approach has become crucial. Plant-based natural products are garnering special attention due to lesser side effects associated with their use. The current review emphasizes the anti-AD properties of phytoconstituents, throws light on those under clinical trials, and compiles information on their specific mode of actions against AD-related different neuropathologies. The phytoconstituents alone or in combinations will surely help discover new potent drugs for the effective treatment of AD with lesser side effects than the currently available pharmacological treatment.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sarada P Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
42
|
Tang Y, Liu Y, Zhang Y, Zhang D, Gong X, Zheng J. Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chem Neurosci 2021; 12:1419-1427. [PMID: 33780229 DOI: 10.1021/acschemneuro.1c00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence have shown a strong pathological correlation between cardiovascular disease (CVD) and Type II diabetes (T2D), both of which share many common risk factors (e.g., hyperglycemia, hypertension, hypercoagulability, and dyslipidemia) and mutually contribute to each other. Driven by such strong CVD-T2D correlation and marginal benefits from drug development for T2D, here we proposed to repurpose a CVD drug of cloridarol as human islet amyloid peptide (hIAPP) inhibitor against its abnormal misfolding and aggregation, which is considered as a common and critical pathological event in T2D. To this end, we investigated the inhibition activity of cloridarol on the aggregation and toxicity of hIAPP1-37 using combined experimental and computational approaches. Collective experimental data from ThT, AFM, and CD demonstrated the inhibition ability of cloridarol to prevent hIAPP aggregation from its monomeric and oligomeric states, leading to the overall reduction of hIAPP fibrils up to 57% at optimal conditions. MTT and LDH cell assays also showed that cloridarol can also effectively increase cell viability by 15% and decrease cell apoptosis by 28%, confirming its protection of islet β-cells from hIAPP-induced cell toxicity. Furthermore, comparative molecular dynamics simulations revealed that cloridarol was preferentially bound to the C-terminal β-sheet region of hIAPP oligomers through a combination of hydrophobic interactions, π-π stacking, and hydrogen bonding. Such multiple site bindings allowed cloridarol to disturb hIAPP structures, reduce β-sheet content, and block the lateral association pathway of hIAPP aggregates, thus explaining experimental findings. Different from other single-target hIAPP inhibitors, cloridarol is unique in that it works as both a CVD drug and hIAPP inhibitor, which can be used as a viable structural template (especially for benzofuran) for the further development of cloridarol-based or benzofuran-based inhibitors of amyloid proteins.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| | | | | | - Xiong Gong
- Department of Polymer Engineering The University of Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| |
Collapse
|
43
|
Ma L, Zheng J, Chen H, Zeng X, Wang S, Yang C, Li X, Xiao Y, Zheng L, Chen H, Huang K. A Systematic Screening of Traditional Chinese Medicine Identifies Two Novel Inhibitors Against the Cytotoxic Aggregation of Amyloid Beta. Front Pharmacol 2021; 12:637766. [PMID: 33897425 PMCID: PMC8062920 DOI: 10.3389/fphar.2021.637766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
The toxic aggregates of amyloid beta (Aβ) disrupt the cell membrane, induce oxidative stress and mitochondrial dysfunction, and eventually lead to Alzheimer’s disease (AD). Intervening with this cytotoxic aggregation process has been suggested as a potential therapeutic approach for AD and other protein misfolding diseases. Traditional Chinese Medicine (TCM) has been used to treat AD and related cognitive impairment for centuries with obvious efficacy. Extracts or active ingredients of TCMs have been reported to inhibit the aggregation and cytotoxicity of Aβ. However, there is a lack of systematic research on the anti-Aβ aggregation effects of TCM components. In this study, we performed a systematic screening to identify the active ingredients of TCM against the cytotoxic aggregation of Aβ42. Through a literature and database survey, we selected 19 TCM herbals frequently used in the treatment of AD, from which 76 major active chemicals without known anti-amyloid effects were further screened. This took place through two rounds of MTT-based screening detection of the cytotoxicity of these chemicals and their effects on Aβ42-induced cytotoxicity, respectively. Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) and sinapic acid (SA) were found to be less toxic, and they inhibited the cytotoxicity of Aβ42. Further studies demonstrated that TSG and SA concentration-dependently attenuated the amyloidosis and membrane disruption ability of Aβ42. Thus, we identified two novel chemicals (TSG and SA) against the cytotoxic aggregation of Aβ42. Nonetheless, further exploration of their therapeutic potential is warranted.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijing Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Zeng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilin Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuo Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Mei J, Yang H, Sun B, Liu C, Ai H. Small-Molecule Targeted Aβ 42 Aggregate Degradation: Negatively Charged Small Molecules Are More Promising than the Neutral Ones. ACS Chem Neurosci 2021; 12:1197-1209. [PMID: 33687193 DOI: 10.1021/acschemneuro.1c00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heavy evidence has confirmed that Aβ42 oligomers are the most neurotoxic aggregates and play a critical role in the occurrence and development of Alzheimer's disease by causing functional neuron death, cognitive damage, and dementia. Disordered Aβ42 oligomers are challenging therapeutic targets, and no drug is currently in clinical use that modifies the properties of their monomeric states. Here, a negatively charged molecule (ER), rather than the neutral TS1 one, is identified by a molecular dynamics simulation method to be more capable of binding and sequestering the intrinsically disordered amyloid-β peptide Aβ42 in its soluble pentameric state as well as its monomeric components. Results reveal that the ERs interact with Aβ and inhibit the primary nucleation pathways in its aggregation process in entropic expansion mechanism for both Aβ42 and Aβ40 oligomers but with opposite characteristics of hydrophobic surface area (HSA). The interaction between Aβ42 oligomer and either charged ER or neutral TS1/TS0 characterizes decreased HSA, and the decrease in ER-involved case is highly visible, consistent with the observations from in silico and in vitro studies. By contrast, the presence of these inhibitors causes the HSA of Aβ40 oligomer to change undetectably and there is even a bit of increase in the histidine isomerized Aβ40 oligomer. The HSA distinction between Aβ42 and Aβ40 oligomer is possibly derived from the different effects of M35-inhibitor interaction, which is analogous to the effect of M35 oxidation. In comparison with the neutral TS1/TS0 inhibitors, ER is more prone to bind the residues located in the central (β1) and C-terminal (β2) regions of Aβ42 peptide, two key nucleation regions for Aβ intramolecular folding, intermolecular aggregation, and assembly. Notably, ER can strongly bind the charged residues, such as K16, K28, D23, to greatly disturb the potential stabilizer (e.g., salt-bridge, etc.) in metastable Aβ42 oligomers and protofibrils. These results illustrate the strategy of overcoming Alzheimer's disease from inhibiting its early stage Aβ aggregation with two kinds of small molecules to alter their behavior for therapeutic purposes and strongly recommend paying more attention to the engineering and development of negatively charged inhibitors, the long-term underappreciated ones, targeting the early stage Aβ aggregates.
Collapse
Affiliation(s)
- Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huijuan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Bo Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chengqiang Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
45
|
Ovidi E, Laghezza Masci V, Zambelli M, Tiezzi A, Vitalini S, Garzoli S. Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040707. [PMID: 33917630 PMCID: PMC8067454 DOI: 10.3390/plants10040707] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 05/17/2023]
Abstract
Laurus nobilis, Salvia officinalis and Salvia sclarea essential oils (EOs) and hydrolates (HYs) were investigated to define their chemical compositions and biological properties. Gas-chromatography/Mass-spectrometry (GC/MS) and Headspace-GC/MS (HS-GC/MS) techniques were used to characterize the liquid and vapor phase chemical composition of EOs and HYs. 1,8-Cineole (42.2%, 33.5%) and α-pinene (16.7%, 39.0%) were the main compounds of L. nobilis EO; 1,8-cineole (30.3%, 48.4%) and camphor (17.1%, 8.7%) were for S. officinalis EO; linalyl acetate (62.6%, 30.1%) and linalool (11.1%, 28.9%) were for S. sclarea EO for the liquid and vapor phase, respectively. Chemical profile of HYs was characterized by 1,8-cineole (65.1%, 61.4%) as a main constituent of L. nobilis and S. officinalis HYs, while linalool (89.5%) was the main constituent of S. sclarea HY. The antioxidant activity of EOs and HYs was carried out by DPPH and ABTS assays and antimicrobial properties were also investigated by microdilution and the disc diffusion method for liquid and vapor phase against five different bacterial strains such as Escherichia coli ATCC 25922, Pseudomonas fluorescens ATCC 13525 and Acinetobacter bohemicus DSM 102855 among Gram-negative and Bacillus cereus ATCC 10876 and Kocuria marina DSM 16420 among Gram-positive. L. nobilis and S. officinalis EOs demonstrated considerable antibacterial activity, while S. sclarea EO proved to be less effective. Agar diffusion method and vapor phase test showed the EOs activity with the biggest halo inhibition diameters against A. bohemicus and B. cereus. A remarkably high antioxidant activity was determined for L. nobilis showing low EC50 values and also for S. sclarea; good EO results were obtained in both of the used assays. S. officinalis EC50 values were slightly higher to which corresponds to a lower antioxidant activity. Concerning the HYs, the EC50 values for L. nobilis, S. officinalis and S. sclarea were remarkably high corresponding to an extremely low antioxidant activity, as also obtained by expressing the values in Trolox equivalent antioxidant capacity (TEAC).
Collapse
Affiliation(s)
- Elisa Ovidi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (M.Z.); (A.T.)
| | - Valentina Laghezza Masci
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (M.Z.); (A.T.)
| | - Marta Zambelli
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (M.Z.); (A.T.)
| | - Antonio Tiezzi
- Department for the Innovation in Biological, Agrofood and Forestal Systems, Tuscia University, 01100 Viterbo, Italy; (E.O.); (V.L.M.); (M.Z.); (A.T.)
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, University of Milan, 20122 Milano, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
46
|
Windsor PK, Plassmeyer SP, Mattock DS, Bradfield JC, Choi EY, Miller BR, Han BH. Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-β Disaggregation. Int J Mol Sci 2021; 22:ijms22062888. [PMID: 33809196 PMCID: PMC8001082 DOI: 10.3390/ijms22062888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Deposition of amyloid β (Aβ) fibrils in the brain is a key pathologic hallmark of Alzheimer’s disease. A class of polyphenolic biflavonoids is known to have anti-amyloidogenic effects by inhibiting aggregation of Aβ and promoting disaggregation of Aβ fibrils. In the present study, we further sought to investigate the structural basis of the Aβ disaggregating activity of biflavonoids and their interactions at the atomic level. A thioflavin T (ThT) fluorescence assay revealed that amentoflavone-type biflavonoids promote disaggregation of Aβ fibrils with varying potency due to specific structural differences. The computational analysis herein provides the first atomistic details for the mechanism of Aβ disaggregation by biflavonoids. Molecular docking analysis showed that biflavonoids preferentially bind to the aromatic-rich, partially ordered N-termini of Aβ fibril via the π–π interactions. Moreover, docking scores correlate well with the ThT EC50 values. Molecular dynamic simulations revealed that biflavonoids decrease the content of β-sheet in Aβ fibril in a structure-dependent manner. Hydrogen bond analysis further supported that the substitution of hydroxyl groups capable of hydrogen bond formation at two positions on the biflavonoid scaffold leads to significantly disaggregation of Aβ fibrils. Taken together, our data indicate that biflavonoids promote disaggregation of Aβ fibrils due to their ability to disrupt the fibril structure, suggesting biflavonoids as a lead class of compounds to develop a therapeutic agent for Alzheimer’s disease.
Collapse
Affiliation(s)
- Peter K. Windsor
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
| | - Stephen P. Plassmeyer
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
| | - Dominic S. Mattock
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
| | - Jonathan C. Bradfield
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
| | - Erika Y. Choi
- Department of Pharmacology, A.T. Still University, Kirksville, MO 63501, USA;
| | - Bill R. Miller
- Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.)
- Correspondence: (B.R.M.III); (B.H.H.)
| | - Byung Hee Han
- Department of Pharmacology, A.T. Still University, Kirksville, MO 63501, USA;
- Correspondence: (B.R.M.III); (B.H.H.)
| |
Collapse
|
47
|
Bednarikova Z, Gancar M, Wang R, Zheng L, Tang Y, Luo Y, Huang Y, Spodniakova B, Ma L, Gazova Z. Extracts from Chinese herbs with anti-amyloid and neuroprotective activities. Int J Biol Macromol 2021; 179:475-484. [PMID: 33675837 DOI: 10.1016/j.ijbiomac.2021.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/19/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023]
Abstract
Many Chinese herbs are well known for their neuroprotective and anti-oxidant properties. Extracts of Salvia miltiorrhiza and Anemarrhenae asphodeloides, tanshinone IIA (tanIIA), salvianolic acid B (Sal B) and sarsasapogenin (ML-1), were selected to study their dissociation potential towards Aβ42 peptide fibrils and neuroprotective effect on cells. Moreover, derivatives of sarsasapogenin (ML-2, ML-3 and ML-4) have been prepared by the addition of modified carbamate moiety. TanIIA and Sal B have shown to possess a strong ability to dissociate Aβ42 fibrils. The dissociation potential of ML-1 increased upon the introduction of carbamate moiety with N-heterocycles. In silico data revealed that derivatives ML-4 and Sal B interact with Aβ42 regions responsible for fibril stabilization through hydrogen bonds. Contrary, tanIIA binds close to a central hydrophobic region, which may lead to destabilization of fibrils. Sarsasapogenin derivative ML-2 decreased nitride oxide production, and derivative ML-4 enhanced the growth of neurites. The reported data highlight the possibility of using active compounds to design novel treatment agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Miroslav Gancar
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Lulu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Yating Luo
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Yan Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Barbora Spodniakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd., 200237 Shanghai, China
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
| |
Collapse
|
48
|
Soheili M, Karimian M, Hamidi G, Salami M. Alzheimer's disease treatment: The share of herbal medicines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:123-135. [PMID: 33953850 PMCID: PMC8061323 DOI: 10.22038/ijbms.2020.50536.11512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/07/2020] [Indexed: 11/25/2022]
Abstract
One of the most frequent forms of dementia in neurological disorders is Alzheimer's disease (AD). It is a chronic neurodegenerative disease characterized by impaired learning and memory. Pathological symptoms as extracellular amyloid-beta (Aβ) plaques and intracellular accumulation of neurofibrillary tangles occur in AD. Due to the aging of the population and increased prevalence of AD, discovery of new therapeutic agents with the highest effectiveness and fewer side effect seems to be necessary. Numerous synthetic medicines such as tacrine, donepezil, galantamine, rivastigmine, memantine, glutathione, ascorbic acid, ubiquinone, ibuprofen, and ladostigil are routinely used for reduction of the symptoms and prevention of disease progression. Nowadays, herbal medicines have attracted popular attention for numerous beneficial effects with little side effects. Lavandula angustifolia, Ginkgo biloba, Melissa officinalis, Crocus sativus, Ginseng, Salvia miltiorrhiza, and Magnolia officinalis have been widely used for relief of symptoms of some neurological disorders. This paper reviews the therapeutic effects of phytomedicines with prominent effects against various factors implicated in the emergence and progression of AD.
Collapse
Affiliation(s)
- Masoud Soheili
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Gholamali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
49
|
Makshakova ON, Bogdanova LR, Faizullin DA, Ermakova EA, Zuev YF, Sedov IA. Interaction-induced structural transformation of lysozyme and kappa-carrageenan in binary complexes. Carbohydr Polym 2021; 252:117181. [PMID: 33183628 DOI: 10.1016/j.carbpol.2020.117181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
The interactions between κ-carrageenan and hen egg-white lysozyme have been studied. In dilute solutions, the insoluble complexes with constant κ-carrageenan/lysozyme ratio of 0.3, or 12 disaccharide units per mole of protein are formed. FTIR-spectroscopy revealed that κ-carrageenan retains its unordered conformation and induces the rise of β-structure in lysozyme. In the complexes formed in concentrated mixtures, κ-carrageenan adopts helical conformation and lysozyme retains its native-like structure. These complexes contain 21 disaccharide units per mole of protein. Molecular modeling showed that flexible coil and rigid double helix of κ-carrageenan have different binding patterns to lysozyme surface. The latter has a strong preference to positively charged spots in lysozyme α-domain while the former also interacts to protein β-domain and stabilizes short-living β-structures. The obtained results confirm the preference of unordered κ-carrageenan to β-structure rich protein regions, which can be further used in the development of carrageenan-based protection of amyloid-like aggregation of proteins.
Collapse
Affiliation(s)
- O N Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia; Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.
| | - L R Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia; Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| | - D A Faizullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia
| | - E A Ermakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia; Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| | - Yu F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Str., 420111, Kazan, Russia
| | - I A Sedov
- Chemical Institute, Kazan Federal University, 18 Kremlevskaya Str., 420111, Kazan, Russia; Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| |
Collapse
|
50
|
Kapadia A, Sharma KK, Maurya IK, Singh V, Khullar M, Jain R. Structural and mechanistic insights into the inhibition of amyloid-β aggregation by Aβ 39-42 fragment derived synthetic peptides. Eur J Med Chem 2020; 212:113126. [PMID: 33395622 DOI: 10.1016/j.ejmech.2020.113126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
The inhibition of amyloid-β (Aβ) aggregation is a promising approach towards therapeutic intervention for Alzheimer's disease (AD). Thirty eight tetrapeptides based upon Aβ39-42C-terminus fragment of the parent Aβ peptide were synthesized. The sequential replacement/modification employing unnatural amino acids imparted scaffold diversity, augmented activity, enhanced blood brain barrier permeability and offered proteolytic stability to the synthetic peptides. Several peptides exhibited promising protection against Aβ aggregation-mediated-neurotoxicity in PC-12 cells at doses ranged between 10 μM and 0.1 μM, further confirmed by the thioflavin-T fluorescence assay. CD study illustrate that these peptides restrict the β-sheet formation, and the non-appearance of Aβ42 fibrillar structures in the electron microscopy confirm the inhibition of Aβ42 aggregation. HRMS and ANS fluorescence spectroscopic analysis provided additional mechanistic insights. Two selected lead peptides 5 and 16 depicted enhanced blood-brain penetration and stability against serum and proteolytic enzyme. Structural insights into ligand-Aβ interactions on the monomeric and proto-fibrillar units of Aβ were computationally studied. Promising inhibitory potential and short sequence of the lead peptides offers new avenues for the advancement of peptide-derived therapeutics for AD.
Collapse
Affiliation(s)
- Akshay Kapadia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India
| | - Indresh Kumar Maurya
- Department of Microbial Biotechnology, Punjab University, Sector 25, Chandigarh, 160 014, India
| | - Varinder Singh
- Post Graduate Institute of Medical Education and Research, Sector 11, Chandigarh, 160 014, India
| | - Madhu Khullar
- Post Graduate Institute of Medical Education and Research, Sector 11, Chandigarh, 160 014, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Punjab, 160 062, India.
| |
Collapse
|