1
|
Taubel J, Nelson NR, Bansal A, Curran GL, Wang L, Wang Z, Berg HM, Vernon CJ, Min HK, Larson NB, DeGrado TR, Kandimalla KK, Lowe VJ, Pandey MK. Design, Synthesis, and Preliminary Evaluation of [ 68Ga]Ga-NOTA-Insulin as a PET Probe in an Alzheimer's Disease Mouse Model. Bioconjug Chem 2022; 33:892-906. [PMID: 35420782 PMCID: PMC9121347 DOI: 10.1021/acs.bioconjchem.2c00126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aberrant insulin signaling has been considered one of the risk factors for the development of Alzheimer's disease (AD) and has drawn considerable attention from the research community to further study its role in AD pathophysiology. Herein, we describe the development of an insulin-based novel positron emission tomography (PET) probe, [68Ga]Ga-NOTA-insulin, to noninvasively study the role of insulin in AD. The developed PET probe [68Ga]Ga-NOTA-insulin showed a significantly higher uptake (0.396 ± 0.055 SUV) in the AD mouse brain compared to the normal (0.140 ± 0.027 SUV) mouse brain at 5 min post injection and also showed a similar trend at 10, 15, and 20 min post injection. In addition, [68Ga]Ga-NOTA-insulin was found to have a differential uptake in various brain regions at 30 min post injection. Among the brain regions, the cortex, thalamus, brain stem, and cerebellum showed a significantly higher standard uptake value (SUV) of [68Ga]Ga-NOTA-insulin in AD mice as compared to normal mice. The inhibition of the insulin receptor (IR) with an insulin receptor antagonist peptide (S961) in normal mice showed a similar brain uptake profile of [68Ga]Ga-NOTA-insulin as it was observed in the AD case, suggesting nonfunctional IR in AD and the presence of an alternative insulin uptake route in the absence of a functional IR. The Gjedde-Patlak graphical analysis was also performed to predict the input rate of [68Ga]Ga-NOTA-insulin into the brain using MicroPET imaging data and supported the in vivo results. The [68Ga]Ga-NOTA-insulin PET probe was successfully synthesized and evaluated in a mouse model of AD in comparison with [18F]AV1451 and [11C]PIB to noninvasively study the role of insulin in AD pathophysiology.
Collapse
Affiliation(s)
- Jillissa
C. Taubel
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States
| | - Nicholas R. Nelson
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States
| | - Aditya Bansal
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States
| | - Geoffrey L. Curran
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States
| | - Lushan Wang
- Department
of Pharmaceutics, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zengtao Wang
- Department
of Pharmaceutics, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Heather M. Berg
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States
| | - Cynthia J. Vernon
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States
| | - Hoon-Ki Min
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States
| | - Nicholas B. Larson
- Department
of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Timothy R. DeGrado
- Department
of Radiology, University of Colorado Anschutz
Medical Campus, Aurora, Colorado 80045, United States
| | - Karunya K. Kandimalla
- Department
of Pharmaceutics, College of Pharmacy, University
of Minnesota, Minneapolis, Minnesota 55455, United States,
| | - Val J. Lowe
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States,
| | - Mukesh K. Pandey
- Division
of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minnesota 55905, United States,
| |
Collapse
|
2
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
3
|
Petrosino S, Cordaro M, Verde R, Schiano Moriello A, Marcolongo G, Schievano C, Siracusa R, Piscitelli F, Peritore AF, Crupi R, Impellizzeri D, Esposito E, Cuzzocrea S, Di Marzo V. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. Front Pharmacol 2018; 9:249. [PMID: 29615912 PMCID: PMC5870042 DOI: 10.3389/fphar.2018.00249] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a pleiotropic lipid mediator with established anti-inflammatory and anti-hyperalgesic activity. Ultramicronized PEA (PEA-um) has superior oral efficacy compared to naïve (non-micronized) PEA. The aim of the present study was two-fold: (1) to evaluate whether oral PEA-um has greater absorbability compared to naïve PEA, and its ability to reach peripheral and central tissues under healthy and local inflammatory conditions (carrageenan paw edema); (2) to better characterize the molecular pathways involved in PEA-um action, particularly at the spinal level. Rats were dosed with 30 mg/kg of [13C]4-PEA-um or naïve [13C]4-PEA by oral gavage, and [13C]4-PEA levels quantified, as a function of time, by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry. Overall plasma levels were higher in both healthy and carrageenan-injected rats administered [13C]4-PEA-um as compared to those receiving naïve [13C]4-PEA, indicating the greater absorbability of PEA-um. Furthermore, carrageenan injection markedly favored an increase in levels of [13C]4-PEA in plasma, paw and spinal cord. Oral treatment of carrageenan-injected rats with PEA-um (10 mg/kg) confirmed beneficial peripheral effects on paw inflammation, thermal hyperalgesia and tissue damage. Notably, PEA-um down-regulated distinct spinal inflammatory and oxidative pathways. These last findings instruct on spinal mechanisms involved in the anti-hyperalgesic effect of PEA-um in inflammatory pain.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | | | | | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Alessio F. Peritore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| |
Collapse
|
4
|
Sonti S, Duclos RI, Tolia M, Gatley SJ. N-Docosahexaenoylethanolamine (synaptamide): Carbon-14 radiolabeling and metabolic studies. Chem Phys Lipids 2017; 210:90-97. [PMID: 29126855 DOI: 10.1016/j.chemphyslip.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/13/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022]
Abstract
N-Docosahexaenoylethanolamine (synaptamide) is structurally similar to the endocannabinoid N-arachidonoylethanolamine (anandamide), but incorporates the omega-3 22:6 fatty acid docosahexaenoic acid (DHA) in place of the omega-6 20:4 fatty acid arachidonic acid (AA). Some brain membrane lipid effects may be mediated via synaptamide. In competition experiments with mouse brain homogenate in vitro, we found that synaptamide was an order-of-magnitude poorer inhibitor of radioactive anandamide hydrolysis than was anandamide itself. Also, enzyme-mediated hydrolysis of synaptamide was observed to occur at a slower rate than for anandamide. We have synthesized synaptamide radiolabeled with carbon-14 in both the ethanolamine ([α,β-14C2]synaptamide) and in the DHA ([1-14C]synaptamide) moieties. The brain penetration, distribution, and metabolism of radiolabeled synaptamide were studied in mice in vivo relative to anandamide, DHA, and AA. Brain uptake of labeled synaptamide was greater than for labeled DHA, consistent with previous studies of labeled anandamide and AA in our laboratory. After administering either isotopomer of radiolabeled synaptamide, radiolabeled phospholipids were found in mouse brain. Pretreatment of mice with PF3845, a potent, specific inhibitor of fatty acid amide hydrolase (FAAH), eliminated formation of labeled phospholipids measured after 15min, suggesting that synaptamide is hydrolyzed nearly exclusively by FAAH, though it is a poorer substrate for FAAH than anandamide.
Collapse
Affiliation(s)
- Shilpa Sonti
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Richard I Duclos
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Mansi Tolia
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Samuel J Gatley
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
5
|
Brain uptake and metabolism of the endocannabinoid anandamide labeled in either the arachidonoyl or ethanolamine moiety. Nucl Med Biol 2017; 45:43-50. [DOI: 10.1016/j.nucmedbio.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
|
6
|
Pandey MK, Bansal A, Engelbrecht HP, Byrne JF, Packard AB, DeGrado TR. Improved production and processing of 89Zr using a solution target. Nucl Med Biol 2016; 43:97-100. [DOI: 10.1016/j.nucmedbio.2015.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/01/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022]
|
7
|
Shimoda Y, Fujinaga M, Hatori A, Yui J, Zhang Y, Nengaki N, Kurihara Y, Yamasaki T, Xie L, Kumata K, Ishii H, Zhang MR. N-(3,4-Dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[(11)C]methylphenyl)thiazol-2-yl]-1-carboxamide: A promising positron emission tomography ligand for fatty acid amide hydrolase. Bioorg Med Chem 2015; 24:627-34. [PMID: 26740152 DOI: 10.1016/j.bmc.2015.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
To visualize fatty acid amide hydrolase (FAAH) in brain in vivo, we developed a novel positron emission tomography (PET) ligand N-(3,4-dimethylisoxazol-5-yl)piperazine-4-[4-(2-fluoro-4-[(11)C]methylphenyl)thiazol-2-yl]-1-carboxamide ([(11)C]DFMC, [(11)C]1). DFMC (1) was shown to have high binding affinity (IC50: 6.1nM) for FAAH. [(11)C]1 was synthesized by C-(11)C coupling reaction of arylboronic ester 2 with [(11)C]methyl iodide in the presence of Pd catalyst. At the end of synthesis, [(11)C]1 was obtained with a radiochemical yield of 20±10% (based on [(11)C]CO2, decay-corrected, n=5) and specific activity of 48-166GBq/μmol. After the injection of [(11)C]1 in mice, high uptake of radioactivity (>2% ID/g) was distributed in the lung, liver, kidney, and brain, organs with high FAAH expression. PET images of rat brains for [(11)C]1 revealed high uptakes in the cerebellar nucleus (SUV=2.4) and frontal cortex (SUV=2.0), two known brain regions with high FAAH expression. Pretreatment with the FAAH-selective inhibitor URB597 reduced the brain uptake. Higher than 90% of the total radioactivity in the rat brain was irreversible at 30min after the radioligand injection. The present results indicate that [(11)C]1 is a promising PET ligand for imaging of FAAH in living brain.
Collapse
Affiliation(s)
- Yoko Shimoda
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuki Nengaki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service Co. Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Yusuke Kurihara
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service Co. Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Tomoteru Yamasaki
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hideki Ishii
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
8
|
Kumata K, Yui J, Hatori A, Maeda J, Xie L, Ogawa M, Yamasaki T, Nagai Y, Shimoda Y, Fujinaga M, Kawamura K, Zhang MR. Development of [(11)C]MFTC for PET imaging of fatty acid amide hydrolase in rat and monkey brains. ACS Chem Neurosci 2015; 6:339-46. [PMID: 25398123 DOI: 10.1021/cn500269g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We developed 2-methylpyridin-3-yl-4-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)piperidine-1-[(11)C]carboxylate ([(11)C]MFTC) as a promising PET tracer for in vivo imaging of fatty acid amide hydrolase (FAAH) in rat and monkey brains. [(11)C]MFTC was synthesized by reacting 3-hydroxy-2-methylpyridine (2) with [(11)C]phosgene ([(11)C]COCl2), followed by reacting with 4-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)piperidine (3), with a 20 ± 4.6% radiochemical yield (decay-corrected, n = 30) based on [(11)C]CO2 and 40 min synthesis time from the end of bombardment. A biodistribution study in mice showed high uptake of radioactivity in FAAH-rich organs, including the lung, liver, and kidneys. Positron emission tomography (PET) summation images of rat brains showed high radioactivity in the frontal cortex, cerebellum, and hippocampus, which was consistent with the regional distribution pattern of FAAH in rodent brain. Pretreatment with MFTC or FAAH-selective URB597 significantly reduced the uptake in the brain. PET imaging of monkey brain showed relatively high uptake in the whole brain, particularly in the occipital cortex, which was also inhibited by treatment with MFTC or URB597. More than 96% of the total radioactivity was irreversible in the brain homogenate of rats 5 min after the radiotracer injection. The specific in vivo FAAH binding indicates that [(11)C]MFTC is a promising PET tracer for visualizing FAAH in the brain.
Collapse
Affiliation(s)
- Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Akiko Hatori
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Jun Maeda
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masanao Ogawa
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
- SHI Accelerator Service Co. Ltd., Tokyo 141-8686, Japan
| | - Tomoteru Yamasaki
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yuji Nagai
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yoko Shimoda
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|