1
|
Guarrochena X, Kaudela B, Mindt TL. Automated solid-phase synthesis of metabolically stabilized triazolo-peptidomimetics. J Pept Sci 2023; 29:e3488. [PMID: 36912359 PMCID: PMC10909554 DOI: 10.1002/psc.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
The use of 1,4-disubstituted 1,2,3-triazoles as trans-amide bond surrogates has become an important tool for the synthesis of metabolically stabilized peptidomimetics. These heterocyclic bioisosters are generally incorporated into the peptide backbone by applying a diazo-transfer reaction followed by CuAAC (click chemistry) with an α-amino alkyne. Even though the manual synthesis of backbone-modified triazolo-peptidomimetics has been reported by us and others, no procedure has yet been described for an automated synthesis using peptide synthesizers. In order to efficiently adapt these reactions to an automated setup, different conditions were explored, putting special emphasis on the required long-term stability of both the diazo-transfer reagent and the Cu(I) catalyst in solution. ISA·HCl is the reagent of choice to accomplish the diazo-transfer reaction; however, it was found instable in DMF, the most commonly used solvent for SPPS. Thus, an aqueous solution of ISA·HCl was used to prevent its degradation over time, and the composition in the final diazo-transfer reaction was adjusted to preserve suitable swelling conditions of the resins applied. The CuAAC reaction was performed without difficulties using [Cu (CH3 CN)4 ]PF6 as a catalyst and TBTA as a stabilizer to prevent oxidation to Cu(II). The optimized automated two-step procedure was applied to the synthesis of structurally diverse triazolo-peptidomimetics to demonstrate the versatility of the developed methodology. Under the optimized conditions, five triazolo-peptidomimetics (8-5 amino acid residues) were synthesized efficiently using two different resins. Analysis of the crude products by HPLC-MS revealed moderate to good purities of the desired triazolo-peptidomimetics (70-85%). The synthesis time ranged between 9 and 12.5 h.
Collapse
Affiliation(s)
- Xabier Guarrochena
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna, Medical University of ViennaViennaAustria
| | - Barbara Kaudela
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
| | - Thomas L. Mindt
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsAKH Wien c/o Sekretariat NuklearmedizinViennaAustria
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear MedicineMedical University of ViennaViennaAustria
- Joint Applied Medicinal Radiochemistry FacilityUniversity of Vienna, Medical University of ViennaViennaAustria
| |
Collapse
|
2
|
Barbosa M, Alves PM, Costa F, Monteiro C, Parreira P, Teixeira C, Gomes P, Martins MCL. Influence of Immobilization Strategies on the Antibacterial Properties of Antimicrobial Peptide-Chitosan Coatings. Pharmaceutics 2023; 15:pharmaceutics15051510. [PMID: 37242752 DOI: 10.3390/pharmaceutics15051510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
It is key to fight bacterial adhesion to prevent biofilm establishment on biomaterials. Surface immobilization of antimicrobial peptides (AMP) is a promising strategy to avoid bacterial colonization. This work aimed to investigate whether the direct surface immobilization of Dhvar5, an AMP with head-to-tail amphipathicity, would improve the antimicrobial activity of chitosan ultrathin coatings. The peptide was grafted by copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry by either its C- or N- terminus to assess the influence of peptide orientation on surface properties and antimicrobial activity. These features were compared with those of coatings fabricated using previously described Dhvar5-chitosan conjugates (immobilized in bulk). The peptide was chemoselectively immobilized onto the coating by both termini. Moreover, the covalent immobilization of Dhvar5 by either terminus enhanced the antimicrobial effect of the chitosan coating by decreasing colonization by both Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Relevantly, the antimicrobial performance of the surface on Gram-positive bacteria depended on how Dhvar5-chitosan coatings were produced. An antiadhesive effect was observed when the peptide was grafted onto prefabricated chitosan coatings (film), and a bactericidal effect was exhibited when coatings were prepared from Dhvar5-chitosan conjugates (bulk). This antiadhesive effect was not due to changes in surface wettability or protein adsorption but rather depended on variations in peptide concentration, exposure, and surface roughness. Results reported in this study show that the antibacterial potency and effect of immobilized AMP vary greatly with the immobilization procedure. Overall, independently of the fabrication protocol and mechanism of action, Dhvar5-chitosan coatings are a promising strategy for the development of antimicrobial medical devices, either as an antiadhesive or contact-killing surface.
Collapse
Affiliation(s)
- Mariana Barbosa
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-391 Porto, Portugal
| | - Pedro M Alves
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-391 Porto, Portugal
| | - Fabíola Costa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cláudia Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Parreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria Cristina L Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-013 Porto, Portugal
| |
Collapse
|
3
|
Wang K, Gladysz JA. Azide- and Fluorine-Containing Polystyrenes as Potential ″Phosphine Sponges″ Based upon Staudinger Reactions: Application to the Phase Transfer Activation of Grubbs’ Catalyst. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine Wang
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
4
|
Cornier PG, Delpiccolo CM, Martiren NL, Mata EG, Mendez L, Permingeat Squizatto C, Pizzio MG. Transition Metal‐Catalyzed Reactions and Solid‐Phase Synthesis: A Convenient Blend. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patricia G. Cornier
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Carina M.L. Delpiccolo
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Nadia L. Martiren
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| | - Ernesto G Mata
- Instituto de Química Rosario Chemistry Suipacha 531 2000 Rosario ARGENTINA
| | - Luciana Mendez
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 ROSARIO ARGENTINA
| | | | - Marianela G. Pizzio
- Instituto de Química Rosario: Instituto de Quimica Rosario Organic Chemistry Suipacha 531 S2000 Rosario ARGENTINA
| |
Collapse
|
5
|
Arbour CA, Imperiali B. Backbone-Anchoring, Solid-Phase Synthesis Strategy To Access a Library of Peptidouridine-Containing Small Molecules. Org Lett 2022; 24:2170-2174. [PMID: 35271284 DOI: 10.1021/acs.orglett.2c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleoside diphosphate sugar (NDP-sugar) substrates provide the inspiration for nucleoside analogue inhibitor scaffolds. By employing solid-phase synthesis, we provide a method to access a library of peptidouridine inhibitors with both minimal compound handling and purification steps. Specifically, this strategy is exemplified by generating uridine diphosphate sugar (UDP-sugar) mimics, which allow for compound elaboration by altering the dipeptide composition, the N-terminal linkage, and a pendant aryl group. To exemplify the versatility, 41 unique nucleoside analogues are presented.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Improved Diazo-Transfer Reaction for DNA-Encoded Chemistry and Its Potential Application for Macrocyclic DEL-Libraries. Molecules 2021; 26:molecules26061790. [PMID: 33810133 PMCID: PMC8004608 DOI: 10.3390/molecules26061790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
DNA-encoded libraries (DEL) are increasingly being used to identify new starting points for medicinal chemistry in drug discovery. Herein, we discuss the development of methods that allow the conversion of both primary amines and anilines, attached to DNA, to their corresponding azides in excellent yields. The scope of these diazo-transfer reactions was investigated, and a proof-of-concept has been devised to allow for the synthesis of macrocycles on DNA.
Collapse
|
7
|
Grob NM, Schmid S, Schibli R, Behe M, Mindt TL. Design of Radiolabeled Analogs of Minigastrin by Multiple Amide-to-Triazole Substitutions. J Med Chem 2020; 63:4496-4505. [PMID: 32302130 DOI: 10.1021/acs.jmedchem.9b01937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The insertion of single 1,4-disubstituted 1,2,3-triazoles as metabolically stable bioisosteres of trans-amide bonds (triazole scan) was recently applied to the 177Lu-labeled tumor-targeting analog of minigastrin, [Nle15]MG11. The reported novel mono-triazolo-peptidomimetics of [Nle15]MG11 showed either improved resistance against enzymatic degradation or a significantly increased affinity toward the target receptor but never both. To enhance further the tumor-targeting properties of the minigastrin analogs, we studied conjugates with multiple amide-to-triazole substitutions for additive or synergistic effects. Promising candidates were identified by modification of two or three amide bonds, which yielded both improved stability and increased receptor affinity of the peptidomimetics in vitro. Biodistribution studies of radiolabeled multi-triazolo-peptidomimetics in mice bearing receptor-positive tumor xenografts revealed up to 4-fold increased tumor uptake in comparison to the all-amide reference compound [Nle15]MG11. In addition, we report here for the first time a linear peptidomimetic with three triazole insertions in its backbone and maintained biological activity.
Collapse
Affiliation(s)
- Nathalie M Grob
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Sarah Schmid
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland.,Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria.,Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Grob NM, Häussinger D, Deupi X, Schibli R, Behe M, Mindt TL. Triazolo-Peptidomimetics: Novel Radiolabeled Minigastrin Analogs for Improved Tumor Targeting. J Med Chem 2020; 63:4484-4495. [PMID: 32302139 DOI: 10.1021/acs.jmedchem.9b01936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MG11 is a truncated analog of minigastrin, a peptide with high affinity and specificity toward the cholecystokinin-2 receptor (CCK2R), which is overexpressed by different tumors. Thus, radiolabeled MG11 derivatives have great potential for use in cancer diagnosis and therapy. A drawback of MG11 is its fast degradation by proteases, leading to moderate tumor uptake in vivo. We introduced 1,4-disubstituted 1,2,3-triazoles as metabolically stable bioisosteres to replace labile amide bonds of the peptide. The "triazole scan" yielded peptidomimetics with improved resistance to enzymatic degradation and/or enhanced affinity toward the CCK2R. Remarkably, our lead compound achieved a 10-fold increase in receptor affinity, resulting in a 2.6-fold improved tumor uptake in vivo. Modeling of the ligand-CCK2R complex suggests that an additional cation-π interaction of the aromatic triazole moiety with the Arg356 residue of the receptor is accountable for these observations. We show for the first time that the amide-to-triazole substitution strategy offers new opportunities in drug development that go beyond the metabolic stabilization of bioactive peptides.
Collapse
Affiliation(s)
- Nathalie M Grob
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Xavier Deupi
- Condensed Matter Theory Group, Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, 5232 Villigen, Switzerland.,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland.,Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria.,Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Madsen D, Jørgensen FP, Palmer D, Roux ME, Olsen JV, Bols M, Schoffelen S, Diness F, Meldal M. Design and Combinatorial Development of Shield-1 Peptide Mimetics Binding to Destabilized FKBP12. ACS COMBINATORIAL SCIENCE 2020; 22:156-164. [PMID: 32027120 DOI: 10.1021/acscombsci.9b00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of computational design, a focused one-bead one-compound library has been prepared on microparticle-encoded PEGA1900 beads consisting of small tripeptides with a triazole-capped N-terminal. The library was screened towards a double point-mutated version of the human FKBP12 protein, known as the destabilizing domain (DD). Inspired by the decoded library hits, unnatural peptide structures were screened in a novel on-bead assay, which was useful for a rapid structure evaluation prior to off-bead resynthesis. Subsequently, a series of 19 compounds were prepared and tested using a competitive fluorescence polarization assay, which led to the discovery of peptide ligands with low micromolar binding affinity towards the DD. The methodology represents a rapid approach for identification of a novel structure scaffold, where the screening and initial structure refinement was accomplished using small quantities of library building blocks.
Collapse
|
10
|
Gironda-Martínez A, Neri D, Samain F, Donckele EJ. DNA-Compatible Diazo-Transfer Reaction in Aqueous Media Suitable for DNA-Encoded Chemical Library Synthesis. Org Lett 2019; 21:9555-9558. [DOI: 10.1021/acs.orglett.9b03726] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Florent Samain
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | | |
Collapse
|
11
|
Barbosa M, Vale N, Costa FM, Martins MCL, Gomes P. Tethering antimicrobial peptides onto chitosan: Optimization of azide-alkyne “click” reaction conditions. Carbohydr Polym 2017; 165:384-393. [DOI: 10.1016/j.carbpol.2017.02.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
|
12
|
De Leon-Rodriguez LM, Hemar Y, Mo G, Mitra AK, Cornish J, Brimble MA. Multifunctional thermoresponsive designer peptide hydrogels. Acta Biomater 2017; 47:40-49. [PMID: 27744067 DOI: 10.1016/j.actbio.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
We report the synthesis and characterization of multifunctional peptides comprised of a hydrogel forming β-sheet peptide segment and a matrix metalloproteinase 2 substrate containing a propargylglycinyl linker that is further derivatized with an RGD peptide sequence via "click" chemistry. In contrast to currently known systems, these multifunctional peptides formed gels that are stiffer than those formed by their respective precursors. All the peptides showed reversible thermoresponsive properties, which render them as suitable lead systems for a variety of possible biomedical applications. STATEMENT OF SIGNIFICANCE In general, it has been frequently observed that chemical biofunctionalization of peptide hydrogels adversely affects peptide assembly, hydrogel formation or mechanical properties, which severely compromises their application. A functionalization protocol that allows to generate peptide hydrogels that display significantly improved mechanical properties over their unfunctionalized counterparts is reported in this work. These peptides also showed thermoresponsive viscoelastic characteristics, including an example of a peptide hydrogel that displays lower critical solution temperature behaviour.
Collapse
Affiliation(s)
- Luis M De Leon-Rodriguez
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Thomas Building, Auckland 1010, New Zealand.
| | - Yacine Hemar
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Alok K Mitra
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Thomas Building, Auckland 1010, New Zealand
| | - Jillian Cornish
- Department of Medicine, The University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Thomas Building, Auckland 1010, New Zealand; School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
13
|
Ngambenjawong C, Pineda JMB, Pun SH. Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry. Bioconjug Chem 2016; 27:2854-2862. [PMID: 27779387 DOI: 10.1021/acs.bioconjchem.6b00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptide cyclization is a strategy used to improve stability and activity of peptides. The most commonly used cyclization method is disulfide bridge formation of cysteine-containing peptides, as is typically found in nature. Over the years, an increasing number of alternative chemistries for peptide cyclization with improved efficiency, kinetics, orthogonality, and stability have been reported. However, there has been less appreciation for the opportunity to fine-tune peptide activity via the diverse chemical entities introduced at the site of linkage by different cyclization strategies. Here, we demonstrate how cyclization optimization of an M2 "anti-inflammatory" macrophage-binding peptide (M2pep) resulted in a significant increase in binding affinity of the optimized analog to M2 macrophages while maintaining binding selectivity compared to M1 "pro-inflammatory" macrophages. In this study, we report synthesis and evaluation of four cyclic M2pep(RY) analogs with diverse cyclization strategies: (1) Asp-[amide]-Lys, (2) azido-Lys-[triazole(copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC))]-propargyl-Gly, (3) Cys-[decafluorobiphenyl (DFBP)]-Cys, and (4) Cys-[decafluorobiphenyl sulfone (DFS)]-Cys, whereby the chemical entity or linker at the linkage site is shown in the square bracket and is between the residues involved in cyclization. These peptides are compared to a disulfide-cyclized M2pep(RY) that we previously reported as a serum-stable, affinity-enhanced analog to the original linear M2pep. DFBP-cyclized M2pep(RY) exhibits the highest binding activity to M2 macrophages with apparent dissociation constant (KD) about 2.03 μM compared to 36.3 μM for the original disulfide-cyclized M2pep(RY) and 220 μM for the original linear peptide. DFS-cyclized M2pep(RY) also binds more strongly than the original cyclized analog, whereas amide- and triazole-cyclized M2pep(RY) analogs bind less strongly. We verified that DFBP alone has negligible binding to M2 macrophages and the incorporation of diphenylalanine to the original sequence improves binding activity at the expense of solubility and increased toxicity. In conclusion, we report development of cyclic M2pep(RY) analogs with diverse cyclization strategies leading to the discovery of DFBP-cyclized M2pep(RY) with enhanced M2 macrophage-binding activity.
Collapse
Affiliation(s)
- Chayanon Ngambenjawong
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| | - Julio Marco B Pineda
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Jadhav S, Käkelä M, Bourgery M, Rimpilä K, Liljenbäck H, Siitonen R, Mäkilä J, Laitala-Leinonen T, Poijärvi-Virta P, Lönnberg H, Roivainen A, Virta P. In Vivo Bone-Targeting of Bis(phosphonate)-Conjugated Double Helical RNA Monitored by Positron Emission Tomography. Mol Pharm 2016; 13:2588-95. [DOI: 10.1021/acs.molpharmaceut.6b00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Satish Jadhav
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Meeri Käkelä
- Turku
PET Centre, University of Turku, FI-20521 Turku, Finland
- Turku PET Centre, Turku University Hospital, FI-20521 Turku, Finland
| | - Matthieu Bourgery
- Department
of Cell Biology and Anatomy, University of Turku, FI-20520 Turku, Finland
| | - Kiira Rimpilä
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku, FI-20521 Turku, Finland
- Turku PET Centre, Turku University Hospital, FI-20521 Turku, Finland
- Turku
Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland
| | - Riikka Siitonen
- Turku
PET Centre, University of Turku, FI-20521 Turku, Finland
- Turku PET Centre, Turku University Hospital, FI-20521 Turku, Finland
| | - Jussi Mäkilä
- Turku
PET Centre, University of Turku, FI-20521 Turku, Finland
- Turku PET Centre, Turku University Hospital, FI-20521 Turku, Finland
- Department
of Cell Biology and Anatomy, University of Turku, FI-20520 Turku, Finland
| | | | | | - Harri Lönnberg
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Anne Roivainen
- Turku
PET Centre, University of Turku, FI-20521 Turku, Finland
- Turku PET Centre, Turku University Hospital, FI-20521 Turku, Finland
- Turku
Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
15
|
Castro V, Rodríguez H, Albericio F. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS COMBINATORIAL SCIENCE 2016; 18:1-14. [PMID: 26652044 DOI: 10.1021/acscombsci.5b00087] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.
Collapse
Affiliation(s)
- Vida Castro
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
| | - Hortensia Rodríguez
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- School
of Chemistry, Yachay Tech, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001-Durban, South Africa
| |
Collapse
|
16
|
Valverde IE, Vomstein S, Fischer CA, Mascarin A, Mindt TL. Probing the Backbone Function of Tumor Targeting Peptides by an Amide-to-Triazole Substitution Strategy. J Med Chem 2015; 58:7475-84. [DOI: 10.1021/acs.jmedchem.5b00994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ibai E. Valverde
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Sandra Vomstein
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Christiane A. Fischer
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Alba Mascarin
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| | - Thomas L. Mindt
- Division
of Radiopharmaceutical Chemistry, University of Basel Hospital, Petersgraben
4, 4031 Basel, Switzerland
| |
Collapse
|
17
|
Marine JE, Liang X, Song S, Rudick JG. Azide-rich peptides via an on-resin diazotransfer reaction. Biopolymers 2015; 104:419-26. [PMID: 25753459 PMCID: PMC4516611 DOI: 10.1002/bip.22634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Azide-containing amino acids are valuable building blocks in peptide chemistry, because azides are robust partners in several bioorthogonal reactions. Replacing polar amino acids with apolar, azide-containing amino acids in solid-phase peptide synthesis can be tricky, especially when multiple azide residues are to be introduced in the amino acid sequence. We present a strategy for effectively incorporating multiple azide-containing residues site-specifically.
Collapse
Affiliation(s)
- Jeannette E. Marine
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Xiaoli Liang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuang Song
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
18
|
Vutti S, Buch-Månson N, Schoffelen S, Bovet N, Martinez KL, Meldal M. Covalent and Stable CuAAC Modification of Silicon Surfaces for Control of Cell Adhesion. Chembiochem 2015; 16:782-91. [DOI: 10.1002/cbic.201402629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Indexed: 12/16/2022]
|
19
|
|
20
|
Stevens MY, Sawant RT, Odell LR. Synthesis of Sulfonyl Azides via Diazotransfer using an Imidazole-1-sulfonyl Azide Salt: Scope and 15N NMR Labeling Experiments. J Org Chem 2014; 79:4826-31. [DOI: 10.1021/jo500553q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Y. Stevens
- Organic
Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Rajiv T. Sawant
- Organic
Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| | - Luke R. Odell
- Organic
Pharmaceutical Chemistry,
Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, P.O.
Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|