1
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Wei L, Liu J, Jiang G. Nanoparticle-specific transformations dictate nanoparticle effects associated with plants and implications for nanotechnology use in agriculture. Nat Commun 2024; 15:7389. [PMID: 39191767 DOI: 10.1038/s41467-024-51741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Nanotechnology shows potential to promote sustainable and productive agriculture and address the growing population and food demand worldwide. However, the applications of nanotechnology are hindered by the lack of knowledge on nanoparticle (NP) transformations and the interactions between NPs and macromolecules within crops. In this Review, we discuss the beneficial and toxicity-relieving transformation products of NPs that provide agricultural benefits and the toxic and physiology-disturbing transformations that induce phytotoxicities. Based on knowledge related to the management of NP transformations and their long-term effects, we propose feasible design suggestions to attain nano-enabled efficient and sustainable agricultural applications.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
3
|
Zhao X, Lu Y, Dai L, Wang L, Zhou G, Liang T. Selenium spatial distribution and bioavailability of soil-plant systems in China: a comprehensive review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:341. [PMID: 39073467 DOI: 10.1007/s10653-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Selenium (Se) has a dual nature, with beneficial and harmful effects on plants, essential for both humans and animals, playing a crucial role in ecosystem regulation. Insufficient Se in specific terrestrial environments raises concerns due to its potential to cause diseases, while excess Se can lead to severe toxicity. Thus, maintaining an optimal Se level is essential for living organisms. This review focuses first on Se transformation, speciation, and geochemical properties in soil, and then provides a concise overview of Se distribution in Chinese soil and crops, with a focus on the relationship between soil Se levels and parent materials. Additionally, this paper explores Se bioavailability, considering parent materials and soil physicochemical properties, using partial least squares path modeling for analysis. This paper aimed to be a valuable resource for effectively managing Se-enriched soil resources, contributing to a better understanding of Se role in ecosystems.
Collapse
Affiliation(s)
- Xiaoyuan Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiqing Lu
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjin Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
He D, Wu H, Jiang H, Zhang Z, Wang C, Wang D, Wei G. Screening of Selenium/Glutathione-Enriched Candida utilis and Its Anti-inflammatory and Antioxidant Activities in Mice. Biol Trace Elem Res 2024; 202:2786-2796. [PMID: 37773483 DOI: 10.1007/s12011-023-03882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
This study aimed to screen a mutant of Candida utilis SE-172 with high selenite tolerance and glutathione (GSH) biosynthesis capability via 60Co γ-radiation mutagenesis to prepare selenium (Se)-enriched yeast. The maximal intracellular contents of GSH and organic Se of 22.94 mg/g and 1308.1 μg/g were obtained, respectively, under a batch culture of SE-172. The physiological mechanism underlying increased GSH and organic Se contents in Se/GSH-enriched C. utilis SE-172 was revealed based on assaying activities of γ-glutamylcysteine synthase (γ-GCS) involved in GSH biosynthesis and selenophosphate synthase (SPS) related to organic Se bioconversion, and by determining intracellular ATP and NADH contents and ATP/ADP and NADH/NAD+ ratios associated with energy supply and regeneration. Moreover, the effect of this selenized yeast on anti-inflammatory and antioxidant activities in mice with colitis was investigated. The supplementation of Se/GSH-enriched yeast decreased the dextran sodium sulfate-induced damage to colon tissues, reduced the expression of pro-inflammatory factors [interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α)] in serum, increased the antioxidant-related enzyme [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)] activities, and decreased the malondialdehyde content in colon. The Se/GSH-enriched C. utilis SE-172 showed potent anti-inflammatory and antioxidant activities in mice with colitis.
Collapse
Affiliation(s)
- Daohong He
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Huasheng Wu
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Huishu Jiang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
5
|
Pi K, Van Cappellen P, Li H, Gan Y, Tong L, Zhong X, Wang Y. Soil respiration induces co-emission of greenhouse gases and methylated selenium from cold-region Mollisols: Significance for selenium deficiency. ENVIRONMENT INTERNATIONAL 2024; 188:108758. [PMID: 38781702 DOI: 10.1016/j.envint.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Mollisols rich in natural organic matter are a significant sink of carbon (C) and selenium (Se). Climate warming and agricultural expansion to the cold Mollisol regions may enhance soil respiration and biogeochemical cycles, posing a growing risk of soil C and Se loss. Through field-mimicking incubation experiments with uncultivated and cultivated soils from the Mollisol regions of northeastern China, this research shows that soil respiration remained significant even during cold seasons and caused co-emission of greenhouse gases (CO2 and CH4) and methylated Se. Such stimulus effects were generally stronger in the cultivated soils, with maximum emission rates of 7.45 g/m2/d C and 1.42 μg/m2/d Se. For all soil types, the greatest co-emission of CO2 and dimethyl selenide occurred at 25 % soil moisture, whereas measurable CH4 emission was observed at 40 % soil moisture with higher percentages of dimethyl diselenide volatilization. Molecular characterization with three-dimensional fluorescence and ultra-high resolution mass spectrometry suggests that CO2 emission is sensitive to the availability of microbial protein-like substances and free energy from organic carbon biodegradation under variable moisture conditions. Predominant Se binding to biodegradable organic matter resulted in high dependence of Se volatilization on rates of greenhouse gas emissions. These findings together highlight the importance of dynamic organic carbon quality for soil respiration and consequent Mollisol Se loss risk, with implications for science-based management of C and Se resources in agricultural lands to combat with Se deficiency.
Collapse
Affiliation(s)
- Kunfu Pi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Canada; Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, N2L 3G1 Waterloo, Canada
| | - Hongyan Li
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, 100037 Beijing, China
| | - Yiqun Gan
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China; Heilongjiang Key Laboratory of Black Soil and Water Resources Research, 150036 Harbin, China
| | - Xinlin Zhong
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, 430074 Wuhan, China; School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| |
Collapse
|
6
|
Funkner K, Poehlein A, Jehmlich N, Egelkamp R, Daniel R, von Bergen M, Rother M. Proteomic and transcriptomic analysis of selenium utilization in Methanococcus maripaludis. mSystems 2024; 9:e0133823. [PMID: 38591896 PMCID: PMC11097638 DOI: 10.1128/msystems.01338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Methanococcus maripaludis utilizes selenocysteine- (Sec-) containing proteins (selenoproteins), mostly active in the organism's primary energy metabolism, methanogenesis. During selenium depletion, M. maripaludis employs a set of enzymes containing cysteine (Cys) instead of Sec. The genes coding for these Sec-/Cys-containing isoforms were the only genes known of which expression is influenced by the selenium status of the cell. Using proteomics and transcriptomics, approx. 7% and 12%, respectively, of all genes/proteins were found differentially expressed/synthesized in response to the selenium supply. Some of the genes identified involve methanogenesis, nitrogenase functions, and putative transporters. An increase of transcript abundance for putative transporters under selenium depletion indicated the organism's effort to tap into alternative sources of selenium. M. maripaludis is known to utilize selenite and dimethylselenide as selenium sources. To expand this list, a selenium-responsive reporter strain was assessed with nine other, environmentally relevant selenium species. While the effect of some was very similar to that of selenite, others were effectively utilized at lower concentrations. Conversely, selenate and seleno-amino acids were only utilized at unphysiologically high concentrations and two compounds were not utilized at all. To address the role of the selenium-regulated putative transporters, M. maripaludis mutant strains lacking one or two of the putative transporters were tested for the capability to utilize the different selenium species. Of the five putative transporters analyzed by loss-of-function mutagenesis, none appeared to be absolutely required for utilizing any of the selenium species tested, indicating they have redundant and/or overlapping specificities or are not dedicated selenium transporters. IMPORTANCE While selenium metabolism in microorganisms has been studied intensively in the past, global gene expression approaches have not been employed so far. Furthermore, the use of different selenium sources, widely environmentally interconvertible via biotic and abiotic processes, was also not extensively studied before. Methanococcus maripaludis JJ is ideally suited for such analyses, thanks to its known selenium usage and available genetic tools. Thus, an overall view on the selenium regulon of M. maripaludis was obtained via transcriptomic and proteomic analyses, which inspired further experimentation. This led to demonstrating the use of selenium sources M. maripaludis was previously not known to employ. Also, an attempt-although so far unsuccessful-was made to pinpoint potential selenium transporter genes, in order to deepen our understanding of trace element utilization in this important model organism.
Collapse
Affiliation(s)
- Katrina Funkner
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research GmbH–UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Michael Rother
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Qin Y, Zhang M, Zhang F, Ozer SN, Feng Y, Sun W, Zhao Y, Xu Z. Achieving ultrafast and highly selective capture of radiotoxic tellurite ions on iron-based metal-organic frameworks through coordination bond-dominated conversion. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133780. [PMID: 38401213 DOI: 10.1016/j.jhazmat.2024.133780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Chemically durable and effective adsorbents for radiotoxic TeOx2- (TeIV and TeVI) anions remain in great demand for contamination remediation. Herein, a low-cost iron-based metal-organic framework (MIL-101(Fe)) was used as an adsorbent to capture TeOx2- anions from contaminated solution with ultrafast kinetics and record-high adsorption capacity of 645 mg g-1 for TeO32- and 337 mg g-1 for TeO42-, outperforming previously reported adsorbents. Extended X-ray absorption fine structure (EXAFS) and density functional theory (DFT) calculations confirmed that the capture of TeOx2- by MIL-101(Fe) was mediated by the unique C-O-Te and Fe-O-Te coordination bonds at corresponding optimal adsorption sites, which enabled the selective adsorption of TeOx2- from solution and further irreversible immobilization under the geological environment. Meanwhile, MIL-101(Fe) works steadily over a wide pH range of 4-10 and at high concentrations of competing ions, and it is stable under β-irradiation even at high dose of 200 kGy. Moreover, the MIL-101(Fe) membrane was fabricated to efficiently remove TeO32- ions from seawater for practical use, overcoming the secondary contamination and recovery problems in powder adsorption. Finally, the good sustainability of MIL-101(Fe) was evaluated from three perspectives of technology, environment, and society. Our strategy provides an alternative to traditional removal methods that should be attractive for Te contamination remediation.
Collapse
Affiliation(s)
- Yongbo Qin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Meng Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Fuhao Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Seda Nur Ozer
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yujing Feng
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Wenlong Sun
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yongming Zhao
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhanglian Xu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| |
Collapse
|
8
|
Wei L, Liu J, Hou X, Chen W, Feng Y, Kong W, Tang Y, Zhong C, Zhang S, Wang T, Zhao G, Jiao S, Jiang G. Rice Seedlings and Microorganisms Mediate Biotransformation of Se in CdSe/ZnS Quantum Dots to Volatile Alkyl Selenides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20261-20271. [PMID: 37992251 DOI: 10.1021/acs.est.3c07094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Quantum dots (QDs) are widely applied and inevitably released into the environment. The biotransformation of Se in typical CdSe/ZnS QDs coated with glutathione (CdSe/ZnS-GSH) to volatile alkyl selenides and the fate of alkyl selenides in the hydroponically grown rice system were investigated herein. After a 10-day exposure to CdSe/ZnS-GSH (100 nmol L-1), seven alkyl selenides, dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), methyl selenol (MSeH), ethylmethyl selenide (EMSe), ethylmethyl diselenide (EMDSe), dimethyl selenenyl sulfide (DMSeS), and ethylmethyl selenenyl sulfide (EMSeS), were detected in the exposure system using the suspect screening strategy. CdSe/ZnS-GSH was first biotransformed to DMSe and DMDSe by plant and microorganisms. The generated DMSe was volatilized to the gas phase, adsorbed and absorbed by leaves and stems, downward transported, and released into the hydroponic solution, whereas DMDSe tended to be adsorbed/absorbed by roots and upward transported to stems. The airborne DMSe and DMDSe also partitioned from the gas phase to the hydroponic solution. DMSe and DMDSe in the exposure system were further transformed to DMSeS, EMSeS, EMSe, EMDSe, and MSeH. This study gives a comprehensive understanding on the behaviors of Se in CdSe/ZnS-GSH in a rice plant system and provides new insights into the environmental fate of CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yue Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanji Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ganghui Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Suning Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
9
|
Zhang CP, Wang TZ, Liang YF. Manganese-promoted reductive cross-coupling of disulfides with dialkyl carbonates. Chem Commun (Camb) 2023; 59:14439-14442. [PMID: 37982295 DOI: 10.1039/d3cc04862d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Manganese is a cheap and environmentally friendly metal on Earth. Herein, we report a manganese-promoted reductive cross-coupling using easily available and odorless disulfides as thiolating agents in an excellent 100% sulfur atom economy. The protocol featured a broad substrate scope, including various alkyl disulfides and excellent functional group compatibility, constructing diverse thioethers under simple conditions. Ultimately, thioethers can be prepared in gram-scale reactions and further transformed into structurally complex molecules.
Collapse
Affiliation(s)
- Chao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
10
|
Tendenedzai JT, Chirwa EMN, Brink HG. Harnessing selenium nanoparticles (SeNPs) for enhancing growth and germination, and mitigating oxidative stress in Pisum sativum L. Sci Rep 2023; 13:20379. [PMID: 37989844 PMCID: PMC10663618 DOI: 10.1038/s41598-023-47616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Selenium, an essential micronutrient for plants and animals, can cause selenium toxicity as an oxyanion or at elevated doses. However, the toxic selenite (SeO32-) oxyanion, can be converted into less harmful elemental nano-selenium (Se0), with various practical applications. This research aimed to investigate two methods for reducing SeO32-: abiotic reduction using cell-free extract from Enterococcus spp. (abiotic-SeNPs) and chemical reduction involving L-ascorbic acid (chemical-SeNPs). Analysis with XPS confirmed the presence of Se0, while FTIR analysis identified surface functional groups on all SeNPs. The study evaluated the effects of SeO32-, abiotic-SeNPs, and chemical-SeNPs at different concentrations on the growth and germination of Pisum sativum L. seeds. SeO32- demonstrated detrimental effects on germination at concentrations of 1 ppm (germination index (GI) = 0.3). Conversely, both abiotic- and chemical-SeNPs had positive impacts on germination, with GI > 120 at 10 ppm. Through the DPPH assay, it was discovered that SeNPs exhibited superior antioxidant capabilities at 80 ppm, achieving over 70% inhibition, compared to SeO32- (less than 20% inhibition), therefore evidencing significant antioxidant properties. This demonstrates that SeNPs have the potential to be utilized as an agricultural fertilizer additive, benefiting seedling germination and development, while also protecting against oxidative stress.
Collapse
Affiliation(s)
- Job T Tendenedzai
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa
| | - Evans M N Chirwa
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa
| | - Hendrik G Brink
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
11
|
Hosseini F, Hadian M, Lashani E, Moghimi H. Simultaneous bioreduction of tellurite and selenite by Yarrowia lipolytica, Trichosporon cutaneum, and their co-culture along with characterization of biosynthesized Te-Se nanoparticles. Microb Cell Fact 2023; 22:193. [PMID: 37749532 PMCID: PMC10519092 DOI: 10.1186/s12934-023-02204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Natural and anthropogenic activities, such as weathering of rocks and industrial processes, result in the release of toxic oxyanions such as selenium (Se) and tellurium (Te) into the environment. Due to the high toxicity of these compounds, their removal from the environment is vital. RESULTS In this study, two yeast strains, Yarrowia lipolytica and Trichosporon cutaneum, were selected as the superior strains for the bioremediation of tellurium and selenium. The reduction analyses showed that exposure to selenite induced more detrimental effects on the strains compared to tellurite. In addition, co-reduction of pollutants displayed almost the same results in selenite reduction and more than ~ 20% higher tellurite reduction in 50 h, which shows that selenite triggered higher tellurite reduction in both strains. The selenite and tellurite kinetics of removal were consistent with the first-order model because of their inhibitory behavior. The result of several characterization experiments, such as FE-SEM (Field emission scanning electron microscopy), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and dispersive X-ray (EDX) on Te-Se nanoparticles (NPs) revealed that the separated Te-Se NPs were needle-like, spherical, and amorphous, consisted of Te-Se NPs ranging from 25 to 171 nm in size, and their surface was covered with different biomolecules. CONCLUSIONS Remarkably, this work shows, for the first time, the simultaneous bioreduction of tellurite and selenite and the production of Te-Se NPs using yeast strains, indicating their potential in this area, which may be applied to the nanotechnology industry and environmental remediation.
Collapse
Affiliation(s)
- Firooz Hosseini
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Hadian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elham Lashani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Tripathi A, Khan A, Kiran P, Shetty H, Srivastava R. Screening of AS101 analog, organotellurolate (IV) compound 2 for its in vitro biocompatibility, anticancer, and antibacterial activities. Amino Acids 2023:10.1007/s00726-023-03280-7. [PMID: 37227510 DOI: 10.1007/s00726-023-03280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Organotellurium compounds are being well researched as potential candidates for their functional roles in therapeutic and clinical biology. Here, we report the in vitro anticancer and antibacterial activities of an AS101 analog, cyclic zwitterionic organotellurolate (IV) compound 2 [Te-{CH2CH(NH3+)COO}(Cl)3]. Different concentrations of compound 2 were exposed to fibroblast L929 and breast cancer MCF-7 cell lines to study its effect on cell viability. The fibroblast cells with good viability confirmed the biocompatibility, and compound 2 also was less hemolytic on RBCs. A cytotoxic effect on MCF-7 breast cancer cell line investigated compound 2 to be anti-cancerous with IC50 value of 2.86 ± 0.02 µg/mL. The apoptosis was confirmed through the cell cycle phase arrest of the organotellurolate (IV) compound 2. Examination of the antibacterial potency compound 2 was done based on the agar disk diffusion, minimum inhibitory concentration, and time-dependent assay for the Gram-positive Bacillus subtilis and Gram-negative Pseudomonas putida. For both bacterial strains, tests were performed with the concentration range of 3.9-500 μg/mL, and the minimum inhibition concentration value was found to be 125 μg/mL. The time-dependent assay suggested the bactericidal activity of organotellurolate (IV) compound, 2 against the bacterial strains.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Harsha Shetty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
13
|
Neti SS, Wang B, Iwig DF, Onderko EL, Booker SJ. Enzymatic Fluoromethylation Enabled by the S-Adenosylmethionine Analog Te-Adenosyl- L-(fluoromethyl)homotellurocysteine. ACS CENTRAL SCIENCE 2023; 9:905-914. [PMID: 37252363 PMCID: PMC10214534 DOI: 10.1021/acscentsci.2c01385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/31/2023]
Abstract
Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.
Collapse
Affiliation(s)
- Syam Sundar Neti
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Bo Wang
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - David F. Iwig
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Elizabeth L. Onderko
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Squire J. Booker
- Department
of Chemistry, Department of Biochemistry and Molecular Biology, and Howard Hughes
Medical Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
14
|
Santelli CM, Sabuda MC, Rosenfeld CE. Time-Resolved Examination of Fungal Selenium Redox Transformations. ACS EARTH & SPACE CHEMISTRY 2023; 7:960-971. [PMID: 37228623 PMCID: PMC10204728 DOI: 10.1021/acsearthspacechem.2c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Selenium (Se) is both a micronutrient required for most life and an element of environmental concern due to its toxicity at high concentrations, and both bioavailability and toxicity are largely influenced by the Se oxidation state. Environmentally relevant fungi have been shown to aerobically reduce Se(IV) and Se(VI), the generally more toxic and bioavailable Se forms. The goal of this study was to shed light on fungal Se(IV) reduction pathways and biotransformation products over time and fungal growth stages. Two Ascomycete fungi were grown with moderate (0.1 mM) and high (0.5 mM) Se(IV) concentrations in batch culture over 1 month. Fungal growth was measured throughout the experiments, and aqueous and biomass-associated Se was quantified and speciated using analytical geochemistry, transmission electron microscopy (TEM), and synchrotron-based X-ray absorption spectroscopy (XAS) approaches. The results show that Se transformation products were largely Se(0) nanoparticles, with a smaller proportion of volatile, methylated Se compounds and Se-containing amino acids. Interestingly, the relative proportions of these products were consistent throughout all fungal growth stages, and the products appeared stable over time even as growth and Se(IV) concentration declined. This time-series experiment showing different biotransformation products throughout the different growth phases suggests that multiple mechanisms are responsible for Se detoxification, but some of these mechanisms might be independent of Se presence and serve other cellular functions. Knowing and predicting fungal Se transformation products has important implications for environmental and biological health as well as for biotechnology applications such as bioremediation, nanobiosensors, and chemotherapeutic agents.
Collapse
Affiliation(s)
- Cara M Santelli
- Department of Earth and Environmental Sciences, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Carla E Rosenfeld
- Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Ruiz-Fresneda MA, Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Jroundi F, Merroun ML. Impact of microbial processes on the safety of deep geological repositories for radioactive waste. Front Microbiol 2023; 14:1134078. [PMID: 37007474 PMCID: PMC10062484 DOI: 10.3389/fmicb.2023.1134078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, the increasing production of radioactive waste due to the extensive use of nuclear power is becoming a global environmental concern for society. For this reason, many countries have been considering the use of deep geological repositories (DGRs) for the safe disposal of this waste in the near future. Several DGR designs have been chemically, physically, and geologically well characterized. However, less is known about the influence of microbial processes for the safety of these disposal systems. The existence of microorganisms in many materials selected for their use as barriers for DGRs, including clay, cementitious materials, or crystalline rocks (e.g., granites), has previously been reported. The role that microbial processes could play in the metal corrosion of canisters containing radioactive waste, the transformation of clay minerals, gas production, and the mobility of the radionuclides characteristic of such residues is well known. Among the radionuclides present in radioactive waste, selenium (Se), uranium (U), and curium (Cm) are of great interest. Se and Cm are common components of the spent nuclear fuel residues, mainly as 79Se isotope (half-life 3.27 × 105 years), 247Cm (half-life: 1.6 × 107 years) and 248Cm (half-life: 3.5 × 106 years) isotopes, respectively. This review presents an up-to-date overview about how microbes occurring in the surroundings of a DGR may influence their safety, with a particular focus on the radionuclide-microbial interactions. Consequently, this paper will provide an exhaustive understanding about the influence of microorganisms in the safety of planned radioactive waste repositories, which in turn might improve their implementation and efficiency.
Collapse
|
16
|
Xu M, Zhu S, Wang Q, Chen L, Li Y, Xu S, Gu Z, Shi G, Ding Z. Pivotal biological processes and proteins for selenite reduction and methylation in Ganoderma lucidum. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130409. [PMID: 36435045 DOI: 10.1016/j.jhazmat.2022.130409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microbial transformations, especially the reduction and methylation of Se oxyanion, have gained significance in recent years as effective detoxification methods. Ganoderma lucidum is a typical Se enrichment resource that can reduce selenite to elemental Se and volatile Se metabolites under high selenite conditions. However, the detailed biological processes and reduction mechanisms are unclear. In this study, G. lucidum reduced selenite to elemental Se and further aggregated it into Se nanoparticles with a diameter of < 200 nm, simultaneously accompanied by the production of pungent, odorous, and volatile methyl-selenium metabolites. Tandem mass tag-based quantitative proteomic analysis revealed thioredoxin 1, thioredoxin reductase (NADPH), glutathione reductase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, and cystathionine gamma-lyase as proteins involved in selenite reduction and methylation. Furthermore, the high expression of proteins associated with cell structures that prompted cell lysis may have facilitated Se release. The upregulation of proteins involved in the defense reactions was also detected, reflecting their roles in the self-defense mechanism. This study provides novel insights into the vital role of G. lucidum in mediating Se transformation in the biogeochemical Se cycle and contributes to the application of fungi in Se bioremediation.
Collapse
Affiliation(s)
- Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Ruiz-Fresneda MA, Fernández-Cantos MV, Gómez-Bolívar J, Eswayah AS, Gardiner PHE, Pinel-Cabello M, Solari PL, Merroun ML. Combined bioreduction and volatilization of Se VI by Stenotrophomonas bentonitica: Formation of trigonal selenium nanorods and methylated species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160030. [PMID: 36356742 DOI: 10.1016/j.scitotenv.2022.160030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, metal pollution due to the huge release of toxic elements to the environment has become one of the world's biggest problems. Bioremediation is a promising tool for reducing the mobility and toxicity of these contaminants (e.g. selenium), being an efficient, environmentally friendly, and inexpensive strategy. The present study describes the capacity of Stenotrophomonas bentonitica to biotransform SeVI through enzymatic reduction and volatilization processes. HAADF-STEM analysis showed the bacterium to effectively reduce SeVI (200 mM) into intra- and extracellular crystalline Se0 nanorods, made mainly of two different Se allotropes: monoclinic (m-Se) and trigonal (t-Se). XAS analysis appears to indicate a Se crystallization process based on the biotransformation of amorphous Se0 into stable t-Se nanorods. In addition, results from headspace analysis by gas chromatography-mass spectometry (GC-MS) revealed the formation of methylated volatile Se species such as DMSe (dimethyl selenide), DMDSe (dimethyl diselenide), and DMSeS (dimethyl selenenyl sulphide). The biotransformation pathways and tolerance are remarkably different from those reported with this bacterium in the presence of SeIV. The formation of crystalline Se0 nanorods could have positive environmental implications (e.g. bioremediation) through the production of Se of lower toxicity and higher settleability with potential industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Philip H E Gardiner
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | - Pier L Solari
- MARS Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
18
|
Hosseini F, Lashani E, Moghimi H. Simultaneous bioremediation of phenol and tellurite by Lysinibacillus sp. EBL303 and characterization of biosynthesized Te nanoparticles. Sci Rep 2023; 13:1243. [PMID: 36690691 PMCID: PMC9870877 DOI: 10.1038/s41598-023-28468-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Aromatic compounds and metalloid oxyanions are abundant in the environment due to natural resources and industrial wastes. The high toxicity of phenol and tellurite poses a significant threat to all forms of life. A halotolerant bacterium was isolated and identified as Lysinibacillus sp. EBL303. The remediation analysis shows that 500 mg/L phenol and 0.5 mM tellurite can be remediated entirely in separate cultures within 74 and 56 h, respectively. In addition, co-remediation of pollutants resulted in the same phenol degradation and 27% less tellurite reduction within 98 h. Since phenol and tellurite exhibited inhibitory behavior, their removal kinetics fitted well with the first-order model. In the characterization of biosynthesized tellurium nanoparticles (TeNPs), transmission electron microscopy, dynamic light scattering, FE-SEM, and dispersive X-ray (EDX) showed that the separated intracellular TeNPs were spherical and consisted of only tellurium with 22-148 nm in size. Additionally, investigations using X-ray diffraction and Fourier-transform infrared spectroscopy revealed proteins and lipids covering the surface of these amorphous TeNPs. Remarkably, this study is the first report to demonstrate the simultaneous bioremediation of phenol and tellurite and the biosynthesis of TeNPs, indicating the potential of Lysinibacillus sp. EBL303 in this matter, which can be applied to environmental remediation and the nanotechnology industry.
Collapse
Affiliation(s)
- Firooz Hosseini
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, 1417864411, Iran
| | - Elham Lashani
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, 1417864411, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, 1417864411, Iran.
| |
Collapse
|
19
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
20
|
Sinharoy A, Lens PNL. Selenite and tellurite reduction by Aspergillus niger fungal pellets using lignocellulosic hydrolysate. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129333. [PMID: 35728327 DOI: 10.1016/j.jhazmat.2022.129333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The performance of Aspergillus niger pellets to remove selenite and tellurite from wastewater using batch and continuous fungal pelleted bioreactors was investigated. The acid hydrolysate of brewer's spent grain (BSG) was utilized by A. niger as the electron donor for selenite and tellurite reduction. The dilution of BSG hydrolysate using mineral medium had a positive effect on the selenite and tellurite removal efficiency with a 1:3 ratio giving the best efficiency. However, selenite and tellurite inhibited fungal growth with a 40.9% and 27.3% decrease in the A. niger biomass yield in the presence of 50 mg/L selenite and tellurite, respectively. The maximum selenite and tellurite removal efficiency using 25% BSG hydrolysate in batch incubations amounted to 72.8% and 99.5% Two fungal pelleted bioreactors were operated in continuous mode using BSG hydrolysate as the substrate. Both the selenite and tellurite removal efficiencies during steady state operation were > 80% with tellurite showing a maximum removal efficiency of 98.5% at 10 mg/L influent concentration. Elemental Se nanospheres for selenite and both Te nanospheres and nanorods for tellurite were formed within the fungal pellets. This study demonstrates the suitability BSG hydrolysate as a low cost carbon source for removal of selenite and tellurite using fungal pellet bioreactors.
Collapse
Affiliation(s)
- Arindam Sinharoy
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland.
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland
| |
Collapse
|
21
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
22
|
Effects of Selenium in Different Valences on the Community Structure and Microbial Functions of Biofilms. WATER 2022. [DOI: 10.3390/w14152394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the wide application of selenium (Se) in industrial production, different Se-based compounds (selenate and selenite) are produced and released into aquatic environments. The potential impacts of such Se compounds on the biofilms (a complex microbial aggregate in aquatic systems) need to be substantially explored. Herein, we investigated the responses of bacterial community diversity, composition and structure, and function of biofilms after 21 days of exposure to low concentrations (100 µg/L) and high concentrations (1 mg/L) of sodium selenate and sodium selenite, respectively. Distinct effects of selenium in different valences on the community structure and microbial functions of biofilms were observed. Compared with the controls, the addition of selenate and selenite solutions altered the richness of biofilms but not the diversity, which is dependent on the concentration and valences, with sodium selenite (1 mg/L) exhibiting a strong inhibition effect on community richness. Significant changes of community composition and structure were observed, with a significant increase in Proteobacteria (31.08–58.00%) and a significant decrease in Bacteroidetes (32.15–11.45%) after exposure to sodium selenite with high concentration. Also, different responses of gamma-Proteobacteria and alpha-Proteobacteria were observed between the sodium selenite and sodium selenate treatments. Moreover, results showed that sodium selenite could strengthen the function of the metabolism of biofilms, and the higher the concentration is, the more apparent the enhancement effect is. All these results suggested that the effects of different valence states of selenium were obvious, and sodium selenite with high concentration strongly changed the diversity, structure and function of biofilms.
Collapse
|
23
|
Žižić M, Stanić M, Aquilanti G, Bajuk-Bogdanović D, Branković G, Rodić I, Živić M, Zakrzewska J. Biotransformation of selenium in the mycelium of the fungus Phycomyces blakesleeanus. Anal Bioanal Chem 2022; 414:6213-6222. [PMID: 35759022 DOI: 10.1007/s00216-022-04191-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Biotransformation of toxic selenium ions to non-toxic species has been mainly focused on biofortification of microorganisms and production of selenium nanoparticles (SeNPs), while far less attention is paid to the mechanisms of transformation. In this study, we applied a combination of analytical techniques with the aim of characterizing the SeNPs themselves as well as monitoring the course of selenium transformation in the mycelium of the fungus Phycomyces blakesleeanus. Red coloration and pungent odor that appeared after only a few hours of incubation with 10 mM Se+4 indicate the formation of SeNPs and volatile methylated selenium compounds. SEM-EDS confirmed pure selenium NPs with an average diameter of 57 nm, which indicates potentially very good medical, optical, and photoelectric characteristics. XANES of mycelium revealed concentration-dependent mechanisms of reduction, where 0.5 mM Se+4 led to the predominant formation of Se-S-containing organic molecules, while 10 mM Se+4 induced production of biomethylated selenide (Se-2) in the form of volatile dimethylselenide (DMSe) and selenium nanoparticles (SeNPs), with the SeNPs/DMSe ratio rising with incubation time. Several structural forms of elemental selenium, predominantly monoclinic Se8 chains, together with trigonal Se polymer chain, Se8 and Se6 ring structures, were detected by Raman spectroscopy.
Collapse
Affiliation(s)
- Milan Žižić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| | - Marina Stanić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | | | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Goran Branković
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Ivanka Rodić
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Miroslav Živić
- Faculty of Biology, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Joanna Zakrzewska
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
24
|
Das A, Banik BK. Semiconductor characteristics of tellurium and its implementations. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Tellurium (Te) gained worldwide attention because of its excellent properties, distinctive chained structures, and potential usages. Bulk Te is a p-type elemental helical semiconductor at room temperature and it also having a very limited band gap. Te presents fascinating characteristics such as nonlinear optical response, photoconductivity, good thermoelectric and piezoelectric properties. These charming characteristics induce Te a possible nominee for applications in field-effect transistors, IR acousto-optic deflectors, solar cells, self-developing holographic recording devices, photoconductors, gas sensors, radiative cooling devices, and topological insulators. The developments in these areas are incorporated in great detail. This study opens up the possibility of designing novel devices and considering modern applications of Tellurium.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar , 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar , 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Sahoo BM, Banik BK, Tiwari A, Tiwari V, Jain A, Borah P. Synthesis and application of organotellurium compounds. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Organotellurium compounds define the compounds containing carbon (organic group) and tellurium bond (C–Te). The first organic compound containing tellurium was prepared by Wohler in 1840 after the discovery of the metal by the Austrian chemist F. J. Muller von Reichenstein in the year 1782. The term tellurium was derived from Latin tellus. Tellurium was observed first time in ores mined in the gold districts of Transylvania. Naturally occurring tellurium compounds are present in various forms based on their oxidation states such as TeO2 (+4) and TeO3 (+6). These oxidation states of tellurium compounds are more stable as compared to the other oxidation states. Tellurium is a rare element and is considered a non-essential, toxic element. Tellurium possesses only one crystalline form which consists of a network of spiral chains similar to that of hexagonal selenium. Tellurium is used for the treatment and prevention of microbial infections prior to the development of antibiotics. Hence, the utilization of organotellurium compounds plays a significant role as reagents and intermediates in various organic syntheses.
Collapse
Affiliation(s)
- Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences , Berhampur - 760010 , Odisha , India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies , Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Abhishek Tiwari
- Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh - 244102 , India
| | - Varsha Tiwari
- Faculty of Pharmacy , IFTM University , Moradabad , Uttar Pradesh - 244102 , India
| | - Adya Jain
- Department of Chemistry , MRK Educational Institutions, IGU , Rewari , Haryana , India
| | - Preetismita Borah
- CSIR-Central Scientific Instruments Organization , Chandigarh , India
| |
Collapse
|
26
|
Kessi J, Turner RJ, Zannoni D. Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria? Biol Res 2022; 55:17. [PMID: 35382884 PMCID: PMC8981825 DOI: 10.1186/s40659-022-00378-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
This opinion review explores the microbiology of tellurite, TeO32- and selenite, SeO32- oxyanions, two similar Group 16 chalcogen elements, but with slightly different physicochemical properties that lead to intriguing biological differences. Selenium, Se, is a required trace element compared to tellurium, Te, which is not. Here, the challenges around understanding the uptake transport mechanisms of these anions, as reflected in the model organisms used by different groups, are described. This leads to a discussion around how these oxyanions are subsequently reduced to nanomaterials, which mechanistically, has controversies between ideas around the molecule chemistry, chemical reactions involving reduced glutathione and reactive oxygen species (ROS) production along with the bioenergetics at the membrane versus the cytoplasm. Of particular interest is the linkage of glutathione and thioredoxin chemistry from the cytoplasm through the membrane electron transport chain (ETC) system/quinones to the periplasm. Throughout the opinion review we identify open and unanswered questions about the microbial physiology under selenite and tellurite exposure. Thus, demonstrating how far we have come, yet the exciting research directions that are still possible. The review is written in a conversational manner from three long-term researchers in the field, through which to play homage to the late Professor Claudio Vásquez.
Collapse
Affiliation(s)
- Janine Kessi
- Until 2018 - Dept of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Raymond J. Turner
- Dept of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Davide Zannoni
- Dept of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Synthesis of Tellurium Oxide (TeO 2) Nanorods and Nanoflakes and Evaluation of Its Efficacy Against Leishmania major In Vitro and In Vivo. Acta Parasitol 2022; 67:143-152. [PMID: 34173967 DOI: 10.1007/s11686-021-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Today, the use of natural products and nanostructures has increased. Given the reports on beneficial effects of various organotellurane compounds on types of visceral leishmaniasis, we decided to investigate the effect of TeO2 NPs on Leishmania major (L. major). Tellurium can cause cell apoptosis in cancer cells without activating the caspase-pathway. METHODS TeO2 NPs at first synthesized and the structure was checked by XRD, SEM and EDS tests. The cytotoxic effect of TeO2 NPs against L. major promastigotes, amastigotes and macrophages was assessed by MTT test or counting. The possible apoptosis of L. major by TeO2 NPs was evaluated by flow cytometry test. For in vivo assay, the lesions of infected BALB/c mice with L. major promastigotes were treated with TeO2 NPs, then the lesion size and survival rate were evaluated. RESULTS The synthesis of TeO2 with tetragonal structure was confirmed by XRD. The combination of nanorods and nanoflakes and the presence of Te were proven by SEM and EDS, respectively. According the effects of nanoparticle on promastigotes and amastigotes, the IC50 values of TeO2 after 72 h of incubation were 15.13 and 52.22 µg/ml, respectively. TeO2 NPs induced apoptosis in about 41% of promastigotes. The ulcer greatly healed and survival rate was higher in treated mice compared to those in control group. CONCLUSION Based on the data, favorable anti-leishmanial properties were observed by using TeO2 NPs. TeO2 NPs have cytotoxic impacts on L. major promastigotes and amastigotes in vitro and in vivo and may be regarded as a therapy option.
Collapse
|
28
|
Cysteine-Activated Small-Molecule H 2Se Donors Inspired by Synthetic H 2S Donors. J Am Chem Soc 2022; 144:3957-3967. [PMID: 35192764 DOI: 10.1021/jacs.1c12006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The importance of selenium (Se) in biology and health has become increasingly clear. Hydrogen selenide (H2Se), the biologically available and active form of Se, is suggested to be an emerging nitric oxide (NO)-like signaling molecule. Nevertheless, the research on H2Se chemical biology has technique difficulties due to the lack of well-characterized and controllable H2Se donors under physiological conditions, as well as a robust assay for direct H2Se quantification. Motivated by these needs, here, we demonstrate that selenocyclopropenones and selenoamides are tunable donor motifs that release H2Se upon reaction with cysteine (Cys) at pH 7.4 and that structural modifications enable the rate of Cys-mediated H2Se release to be tuned. We monitored the reaction pathways for the H2Se release and confirmed H2Se generation qualitatively using different methods. We further developed a quantitative assay for direct H2Se trapping and quantitation in an aqueous solution, which should also be operative for investigating future H2Se donor motifs. In addition, we demonstrate that arylselenoamide has the capability of Cys-mediated H2Se release in cellular environments. Importantly, mechanistic investigations and density functional theory (DFT) calculations illustrate the plausible pathways of Cys-activated H2Se release from arylselenoamides in detail, which may help understand the mechanistic issues of the H2S release from pharmacologically important arylthioamides. We anticipate that the well-defined chemistries of Cys-activated H2Se donor motifs will be useful for studying Se biology and for development of new H2Se donors and bioconjugate techniques.
Collapse
|
29
|
Enterococcus spp. Cell-Free Extract: An Abiotic Route for Synthesis of Selenium Nanoparticles (SeNPs), Their Characterisation and Inhibition of Escherichia coli. NANOMATERIALS 2022; 12:nano12040658. [PMID: 35214986 PMCID: PMC8876312 DOI: 10.3390/nano12040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022]
Abstract
Selenite (SeO32−), the most toxic and most reactive selenium (Se) oxyanion, can be reduced to elemental selenium (Se0) nanoparticles by a variety of bacteria, including Enterococcus spp. Previously, the orthodox view held that the reduction of SeO32− to Se0 by a wide range of bacteria was solely accomplished by biological processes; however, recent studies have shown that various bacterial strains secrete metal-reducing metabolites, thereby indirectly catalysing the reduction of these metal species. In the current study, selenium nanoparticles were synthesised from the abiotic reduction of selenite with the use of Enterococcus spp. cell-free extract. Once separated from the cell-free extract, the particles were analysed using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM) and a Zetasizer. The results revealed that the SeNPs were spherical in shape, containing both amorphous and crystalline properties, and the sizes with the highest frequency ranged close to 200 nm. Additionally, the obtained nanoparticles exhibited antimicrobial properties by directly inhibiting the viability of an E. coli bacterial strain. The results demonstrate not only the potential of abiotic production of SeNPs, but also the potential for these particles as microbial inhibitors in medical or similar fields.
Collapse
|
30
|
Yan S, Cheng KY, Ginige MP, Morris C, Deng X, Li J, Song S, Zheng G, Zhou L, Kaksonen AH. Sequential removal of selenate, nitrate and sulfate and recovery of elemental selenium in a multi-stage bioreactor process with redox potential feedback control. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127539. [PMID: 34800843 DOI: 10.1016/j.jhazmat.2021.127539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Bioreduction can facilitate oxyanions removal from wastewater. However, simultaneously removing selenate, nitrate and sulfate and recovering high-purity elemental selenium (Se0) from wastewater by a single system is difficult and may lead to carcinogenic selenium monosulfide (SeS) formation. To solve this issue, a two-stage biological fluidized bed (FBR) process with ethanol dosing based on oxidation-reduction potential (ORP) feedback control was developed in this study. FBR1 performance was first evaluated at various ORP setpoints (between -520 and -360 mV vs. Ag/AgCl) and elevated sulfate concentration. Subsequently, ethanol-fed FBR2 was used to reduce sulfate from FBR1 effluent, followed by an aerated sulfide oxidation reactor (SOR). At - 520 mV≤ ORPs≤ -480 mV, FBR1 removed 100 ± 0.1% nitrate and 99.7 ± 0.3% selenate without sulfate reduction. At ORPs ≥ -440 mV, selenate reduction was incomplete, whereas nitrate removal remained stable. Se0 recovery efficiency from FBR1 effluent was 37.5% with 71% Se purity. FBR2 converted 86% of the remaining sulfate in FBR1 effluent to hydrogen sulfide, but the over-oxidation of dissolved sulfide in SOR decreased the overall sulfate removal efficiency to ~46.3%. Overall, the two-stage FBR process with ORP feedback dosing of ethanol was effective for sequentially removing selenate, nitrate and sulfate and recovering Se0 from wastewater.
Collapse
Affiliation(s)
- Su Yan
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; College of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ka Yu Cheng
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia; School of Engineering and Information Technology, Murdoch University, Perth, WA 6150, Australia
| | - Maneesha P Ginige
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Christina Morris
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Xiao Deng
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Jian Li
- CSIRO Mineral Resources, Australian Resources and Research Centre, Kensington, WA 6151, Australia
| | - Shaokun Song
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia.
| |
Collapse
|
31
|
Lyu L, Wang H, Liu R, Xing W, Li J, Man YB, Wu F. Size-dependent transformation, uptake, and transportation of SeNPs in a wheat-soil system. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127323. [PMID: 34601411 DOI: 10.1016/j.jhazmat.2021.127323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Foliar application of selenium nanoparticles (SeNPs) has been used to enhance Se concentration in winter wheat, but soil application of SeNPs on Se uptake in the crop and their transformation in soil are still limited. This study investigated the effects of varying sizes (50, 100, 200 nm) and concentrations (0, 2, 5, 25, 100 mg kg-1) of chemical synthesized SeNPs in soil on uptake and accumulation of Se in the crop at maturity and related mechanisms. SeNPs not only posed very low toxic to plant growth, except for leaf, but also significantly enhanced grain Se concentration. Regardless of concentration of SeNPs added to soil, the transformation rate of the larger sized SeNPs (200 nm) in soil was significantly (p < 0.05) higher than that of the smaller one, which is mainly due to the latter was more easily adsorbed onto soil organic matter and reluctant to be oxidized. Significantly higher grain Se concentration under the larger sized SeNPs contributed to significantly higher transformation rate of SeNPs and concentration of available Se in soil. The present study showed that the larger sized SeNPs in soil had significant advantages including higher grain Se concentration and Se utilization efficiency for wheat Se biofortification.
Collapse
Affiliation(s)
- Lihui Lyu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hanqi Wang
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Wenjing Xing
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agricultural Environment of Northwest of Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
K.M. PK, B.C. VK, M.N. SK, P. RK, S. D, R.J. B, H.D. R. Synthesis, structural characterization, CT-DNA interaction study and antithrombotic activity of new ortho-vanillin-based chiral (Se,N,O) donor ligands and their Pd complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Ni X, Tian J, Chen C, Huang L, Lei J, Yu X, Wang X. Multiple exposures to high concentrations of selenate significantly improve selenate tolerability, red elemental selenium (Se 0) and selenoprotein biosynthesis in Herbaspirillum camelliae WT00C. World J Microbiol Biotechnol 2021; 38:5. [PMID: 34837115 DOI: 10.1007/s11274-021-03190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Herbaspirillum camelliae WT00C is a gram-negative endophyte isolated from the tea plant. It has an intact selenate metabolism pathway but poor selenate tolerability. In this study, microbiological properties of the strain WT00C were examined and compared with other three strains CT00C, NCT00C and NT00C, which were obtained respectively from four, six and eight rounds of 24-h exposures to 200 mM selenate. The selenate tolerability and the ability to generate red elemental selenium (Se0) and selenoproteins in H. camelliae WT00C has significantly improved by the forced evolution via 4-6 rounds of multiple exposures a high concentration of selenate. The original strain WT00C grew in 200 mM selenate with the lag phase of 12 h and 400 mM selenate with the lag phase of 60 h, whereas the strains CT00C and NCT00C grew in 800 mM selenate and showed a relatively short lag phase when they grew in 50-400 mM selenate. Besides selenate tolerance, the strains CT00C and NCT00C significantly improved the biosynthesis of red elemental selenium (Se0) and selenoproteins. Two strains exhibited more than 30% selenium conversion efficiency and 40% selenoprotein biosynthesis, compared to the original strain WT00C. These characteristics of the strains CT00C and NCT00C make them applicable in pharmaceuticals and feed industries. The strain NT00C obtained from eight rounds of 24-h exposures to 200 mM selenate was unable to grow in ≥ 400 mM selenate. Its selenium conversion efficiency and selenoprotein biosynthesis were similar to the strain WT00C, indicating that too many exposures may cause gene inactivation of some critical enzymes involving selenate metabolism and antioxidative stress. In addition, bacterial cells underwent obviously physiological and morphological changes, including gene activity, cell enlargement and surface-roughness alterations during the process of multiple exposures to high concentrations of selenate.
Collapse
Affiliation(s)
- Xuechen Ni
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Jinbao Tian
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Changmei Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Ling Huang
- Obstetrics and Gynecology Department, Fifth Hospital in Wuhan, Wuhan, China
| | - Jia Lei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China
| | - Xingguo Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, The Faculty of Life Science, Hubei University, Wuhan, China.
| |
Collapse
|
34
|
Zhou C, Wang ZJ, Huang JC, Zheng L, Gan X, Zhang M, He S, Zhou W. Se transformation and removal by a cattail litter treatment system inoculated with sulfur-based denitrification sludge: Role of the microbial community composition under various temperature and aeration conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126617. [PMID: 34271446 DOI: 10.1016/j.jhazmat.2021.126617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
With a narrow margin between deficiency and toxicity, rising levels of selenium (Se) are threatening aquatic ecosystems. To investigate the role of microorganisms in Se bioremediation, a cattail litter system inoculated with the sulfur-based denitrification sludge was conducted. The results show the litter, as a carrier and nutrient source for bacteria, efficiently removed Se by ~ 97.0% during a 12-d treatment with water circulating. As the major removal pathways, immobilization rates of selenite were ~ 2.9-fold higher than selenate, and the volatilization, contributing to ~ 87.7% of the total Se removal, was significantly correlated with temperature (positively) and oxidation-reduction potential (ORP; negatively). Using X-ray absorption spectroscopy to speciate litter-borne Se, more Se0 formed without aeration due to abundant Se-reducing bacteria, among which Azospira and Azospirillum were highly related to the removal of both Se oxyanions, while Desulfovibrio, Azoarcus, Sulfurospirillum, Thauera, Geobacter, Clostridium, and Pediococcus were the major contributors to selenate removal. Overall, our study suggests microbial Se metabolism in the litter system was significantly affected by temperature and ORP, which could be manipulated to enhance Se removal efficiency and the transformation of selenate/selenite into low toxic Se0 and volatile Se, reducing risks posed by the residual Se in the system.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Jing Wang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan, ROC
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan, ROC.
| | - Lixin Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinyu Gan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Dyachenko IV, Dyachenko VD, Abakarov GM, Nenajdenko VG. New Derivatives of (Carbamoselenoyl)acetic Acid for the Synthesis of Functionally Substituted Selenazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021070228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Pal A, Bhattacharjee S, Saha J, Sarkar M, Mandal P. Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Crit Rev Microbiol 2021; 48:327-355. [PMID: 34473592 DOI: 10.1080/1040841x.2021.1970512] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heavy metals bring long-term hazardous consequences and pose a serious threat to all life forms. Being non-biodegradable, they can remain in the food webs for a long period of time. Metal ions are essential for life and indispensable for almost all aspects of metabolism but can be toxic beyond threshold level to all living beings including microbes. Heavy metals are generally present in the environment, but many geogenic and anthropogenic activities has led to excess metal ion accumulation in the environment. To survive in harsh metal contaminated environments, bacteria have certain resistance mechanisms to metabolize and transform heavy metals into less hazardous forms. This also gives rise to different species of heavy metal resistant bacteria. Herein, we have tried to incorporate the different aspects of heavy metal toxicity in bacteria and provide an up-to-date and across-the-board review. The various aspects of heavy metal biology of bacteria encompassed in this review includes the biological notion of heavy metals, toxic effect of heavy metals on bacteria, the factors regulating bacterial heavy metal resistance, the diverse mechanisms governing bacterial heavy metal resistance, bacterial responses to heavy metal stress, and a brief overview of gene regulation under heavy metal stress.
Collapse
Affiliation(s)
- Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Sukanya Bhattacharjee
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Jayanti Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Sarkar
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
37
|
Pisarek P, Bueno M, Thiry Y, Nicolas M, Gallard H, Le Hécho I. Selenium distribution in French forests: Influence of environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:144962. [PMID: 33610987 DOI: 10.1016/j.scitotenv.2021.144962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Selenium is a trace element and an essential nutrient. Its long-lived radioisotope, selenium 79 is of potential radio-ecological concern in surface environment of deep geological repository for high-level radioactive waste. In this study, the influence of environmental, climatic and geochemical conditions on stable Se (as a surrogate of 79Se) accumulation was statistically assessed (PCA analysis, Kruskall-Wallis and Spearman tests) based on the analysis of its concentration in litterfall, humus, and soil samples collected at 51 forest sites located in France. Selenium concentrations were in the ranges: 22-369, 57-1608 and 25-1222 μg kg-1 respectively in litterfall, humus, and soil. The proximity of the ocean and oceanic climate promoted Se enrichment of litterfall, likely due to a significant reaction of wet deposits with forest canopy. Se content was enhanced by humification (up to 6 times) suggesting that Se concentrations in humus were affected by atmospheric inputs. Selenium stock in humus decreased in the order of decreasing humus biomass and increasing turnover of organic matter: mor > moder > mull. Positive correlations between Se content and geochemical parameters such as organic carbon content, total Al and total Fe confirmed the important role of organic matter (OM) and mineral Fe/Al oxides in Se retention in soils.
Collapse
Affiliation(s)
- Paulina Pisarek
- CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64053 Pau, France; Andra, Research and Development Division, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex, France.
| | - Maïté Bueno
- CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64053 Pau, France.
| | - Yves Thiry
- Andra, Research and Development Division, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex, France.
| | - Manuel Nicolas
- Office National des Forêts (ONF), Direction Forts et Risques Naturels, Département Recherche, Développement, Innovation, Boulevard de Constance, 77300 Fontainebleau, France.
| | - Hervé Gallard
- IC2MP UMR 7285, Université de Poitiers, 86073 Poitiers Cedex 9, France.
| | - Isabelle Le Hécho
- CNRS/Univ. Pau & Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64053 Pau, France.
| |
Collapse
|
38
|
Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. Int J Mol Sci 2021; 22:ijms22115924. [PMID: 34072929 PMCID: PMC8199023 DOI: 10.3390/ijms22115924] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metalloid tellurium is characterized as a chemical element belonging to the chalcogen group without known biological function. However, its compounds, especially the oxyanions, exert numerous negative effects on both prokaryotic and eukaryotic organisms. Recent evidence suggests that increasing environmental pollution with tellurium has a causal link to autoimmune, neurodegenerative and oncological diseases. In this review, we provide an overview about the current knowledge on the mechanisms of tellurium compounds' toxicity in bacteria and humans and we summarise the various ways organisms cope and detoxify these compounds. Over the last decades, several gene clusters conferring resistance to tellurium compounds have been identified in a variety of bacterial species and strains. These genetic determinants exhibit great genetic and functional diversity. Besides the existence of specific resistance mechanisms, tellurium and its toxic compounds interact with molecular systems, mediating general detoxification and mitigation of oxidative stress. We also discuss the similarity of tellurium and selenium biochemistry and the impact of their compounds on humans.
Collapse
|
39
|
Sulfur Amino Acid Status Controls Selenium Methylation in Pseudomonas tolaasii: Identification of a Novel Metabolite from Promiscuous Enzyme Reactions. Appl Environ Microbiol 2021; 87:e0010421. [PMID: 33811024 PMCID: PMC8174768 DOI: 10.1128/aem.00104-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selenium (Se) deficiency affects many millions of people worldwide, and the volatilization of methylated Se species to the atmosphere may prevent Se from entering the food chain. Despite the extent of Se deficiency, little is known about fluxes in volatile Se species and their temporal and spatial variation in the environment, giving rise to uncertainty in atmospheric transport models. To systematically determine fluxes, one can rely on laboratory microcosm experiments to quantify Se volatilization in different conditions. Here, it is demonstrated that the sulfur (S) status of bacteria crucially determines the amount of Se volatilized. Solid-phase microextraction gas chromatography mass spectrometry showed that Pseudomonas tolaasii efficiently and rapidly (92% in 18 h) volatilized Se to dimethyl diselenide and dimethyl selenyl sulfide through promiscuous enzymatic reactions with the S metabolism. However, when the cells were supplemented with cystine (but not methionine), a major proportion of the Se (∼48%) was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of the previously formed dimethyl diselenide and dimethyl selenyl sulfide (accounting for <4% of total Se). Ion chromatography and solid-phase extraction were used to isolate unknowns, and electrospray ionization ion trap mass spectrometry, electrospray ionization quadrupole time-of-flight mass spectrometry, and microprobe nuclear magnetic resonance spectrometry were used to identify the major unknown as a novel Se metabolite, 2-hydroxy-3-(methylselanyl)propanoic acid. Environmental S concentrations often exceed Se concentrations by orders of magnitude. This suggests that in fact S status may be a major control of selenium fluxes to the atmosphere. IMPORTANCE Volatilization from soil to the atmosphere is a major driver for Se deficiency. “Bottom-up” models for atmospheric Se transport are based on laboratory experiments quantifying volatile Se compounds. The high Se and low S concentrations in such studies poorly represent the environment. Here, we show that S amino acid status has in fact a decisive effect on the production of volatile Se species in Pseudomonas tolaasii. When the strain was supplemented with S amino acids, a major proportion of the Se was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of volatile compounds. This hierarchical control of the microbial S amino acid status on Se cycling has been thus far neglected. Understanding these interactions—if they occur in the environment—will help to improve atmospheric Se models and thus predict drivers of Se deficiency.
Collapse
|
40
|
Preconcentration of tellurium using magnetic hydrogel-assisted dispersive solid-phase extraction and its determination by slotted quartz tube-flame atomic absorption spectrophotometry. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01645-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Wang S, Yan C, Zhao W, Liu X, Yuan CS, Zhang HL, Shao X. A tellura-Baeyer-Villiger oxidation: one-step transformation of tellurophene into chiral tellurinate lactone. Chem Sci 2021; 12:5811-5817. [PMID: 34168805 PMCID: PMC8179672 DOI: 10.1039/d1sc00397f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Baeyer-Villiger (BV) oxidation is a fundamental organic reaction, whereas the hetero-BV oxidation is uncharted. Herein, a tellura-BV oxidation is discovered. By oxidizing a tellurophene-embedded and electron-rich polycycle (1) with mCPBA or Oxone, an oxygen atom is inserted into the Te-C bond of the tellurophene to form tellurinate lactone mono-2. This reaction proceeds as follows: (i) 1 is oxidized to the tellurophene Te-oxide form (IM-1); (ii) IM-1 undergoes tellura-BV oxidation to give mono-2. Moreover, the hybrid trichalcogenasumanenes 7 and 8 are, respectively, converted to tellurinate lactones mono-9 and mono-10 under the same conditions, indicating that tellura-BV oxidation shows high chemoselectivity. Due to the strong secondary bonding interactions between the Te[double bond, length as m-dash]O groups on tellurinate lactones, mono-2, mono-9, and mono-10 are dimerized to form U-shaped polycycles 2, 9, and 10, respectively. Notably, mono-2, mono-9, mono-10, and their dimers show chirality. This work enables one-step transformation of tellurophene into tellurinate lactone and construction of intricate polycycles.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Wenlong Zhao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Xiaolan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Cheng-Shan Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| |
Collapse
|
42
|
Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021; 26:molecules26040881. [PMID: 33562416 PMCID: PMC7914768 DOI: 10.3390/molecules26040881] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.
Collapse
|
43
|
Yan S, Cheng KY, Ginige MP, Zheng G, Zhou L, Kaksonen AH. Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123770. [PMID: 33254781 DOI: 10.1016/j.jhazmat.2020.123770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
Electron donors are a major cost-factor in biological removal of oxyanions, such as nitrate and selenate from wastewater. In this study, an online ethanol dosing strategy based on feedback control of oxidation-reduction potential (ORP) was designed to optimize the performance of a lab-scale fluidized bed reactor (FBR) in treating selenate and nitrate (5 mM each) containing wastewater. The FBR performance was evaluated at various ORP setpoints ranging between -520 mV and -240 mV (vs. Ag/AgCl). Results suggested that both nitrate and selenate were completely removed at ORPs between -520 mV and -360 mV, with methylseleninic acid, selenocyanate, selenosulfate and ammonia being produced at low ORPs between -520 mV and -480 mV, likely due to overdosing of ethanol. At ORPs between -300 mV and -240 mV, limited ethanol dosing resulted in an apparent decline in selenate removal whereas nitrate removal remained stable. Resuming the ORP to -520 mV successfully restored complete selenate reduction. An optimal ORP of -400 mV was identified for the FBR, whereby selenate and nitrate were nearly completely removed with a minimal ethanol consumption. Overall, controlling ORP via feedback-dosing of the electron donor was an effective strategy to optimize FBR performance for reducing selenate and nitrate in wastewater.
Collapse
Affiliation(s)
- Su Yan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, 147 Underwood Avenue, Floreat WA, 6014, Australia; Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ka Yu Cheng
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, 147 Underwood Avenue, Floreat WA, 6014, Australia; School of Engineering and Information Technology, Murdoch University, Perth WA, Australia
| | - Maneesha P Ginige
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, 147 Underwood Avenue, Floreat WA, 6014, Australia
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land and Water, 147 Underwood Avenue, Floreat WA, 6014, Australia; School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia.
| |
Collapse
|
44
|
Altaf S, Haider A, Naz S, Ul-Hamid A, Haider J, Imran M, Shahzadi A, Naz M, Ajaz H, Ikram M. Comparative Study of Selenides and Tellurides of Transition Metals (Nb and Ta) with Respect to its Catalytic, Antimicrobial, and Molecular Docking Performance. NANOSCALE RESEARCH LETTERS 2020; 15:144. [PMID: 32643064 PMCID: PMC7343698 DOI: 10.1186/s11671-020-03375-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/23/2020] [Indexed: 05/13/2023]
Abstract
The present research is a comparative study that reports an economical and accessible method to synthesize niobium (Nb) and Tantalum (Ta) selenides and tellurides with useful application in the removal of pollutants in textile, paper, and dyeing industries as well as in medical field. In this study, solid-state process was used to generate nanocomposites and various characterization techniques were employed to compare two groups of materials under investigation. Structure, morphology, elemental constitution, and functional groups of synthesized materials were analyzed with XRD, FESEM coupled with EDS, FTIR, and Raman spectroscopy, respectively. HR-TEM images displayed nanoscale particles with tetragonal and monoclinic crystal structures. The optical properties were evaluated in terms of cut-off wavelength and optical band gap using UV-visible spectroscopy. A comparative behavior of both groups of compounds was assessed with regards to their catalytic and microcidal properties. Extracted nanocomposites when used as catalysts, though isomorphs of each other, showed markedly different behavior in catalytic degradation of MB dye in the presence of NaBH4 that was employed as a reducing agent. This peculiar deviation might be attributed to slight structural differences between them. Escherichia coli and Staphylococcus aureus (G -ve and + ve bacteria, respectively) were designated as model strains for in vitro antibacterial tests of both clusters by employing disk diffusion method. Superior antibacterial efficacy was observed for telluride system (significant inhibition zones of 26-35 mm) compared with selenide system (diameter of inhibition zone ranged from 0.8 mm to 1.9 mm). In addition, molecular docking study was undertaken to ascertain the binding interaction pattern between NPs and active sites in targeted cell protein. The findings were in agreement with antimicrobial test results suggesting NbTe4 to be the best inhibitor against FabH and FabI enzymes.
Collapse
Affiliation(s)
- S Altaf
- Department of Chemistry, University of Engineering and Technology, Lahore, 54000, Pakistan
| | - A Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| | - S Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - A Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - J Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - M Imran
- State key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - A Shahzadi
- University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - M Naz
- Biochemistry Lab, Department of Chemistry, Government College University, Lahore, Punjab, 54000, Pakistan
| | - H Ajaz
- Department of Chemistry, University of Engineering and Technology, Lahore, 54000, Pakistan
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, Lahore, Punjab, 54000, Pakistan.
| |
Collapse
|
45
|
Hildebrand J, Göen T. Instability of urinary excreted methyl-2-acetamido-2-deoxy-1-seleno-β-d-galactopyranoside (selenosugar 1), the main elimination product of human selenium metabolism, and measures for its stabilization. J Trace Elem Med Biol 2020; 61:126538. [PMID: 32474349 DOI: 10.1016/j.jtemb.2020.126538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The urinary excreted selenium species selenosugar 1 (SeSug1) plays a key role for monitoring of supplemental selenium exposure, e.g. by occupational exposure. In order to reproduce its contents in the long term, the integrity of SeSug1 in the urine is essential. Studies on the stability of SeSug1 in urine samples stored at -20 °C have shown that degradation of SeSug 1 occurs, requiring adequate countermeasures. METHODS Here, we explored the long-term stability of SeSug1 under usual storage conditions at -20 °C. For this purpose, the simultaneous determination of selenosugar 1 and methylselenic acid (MeSeA) was used to explore the stabilizing of the SeSug1 content by applying sodium azide (NaN3) as a bactericide or/and 5 M ammonium acetate buffer for pH control. RESULTS In untreated urine, conversion of SeSug1 to MeSeA was evident within days. Differences in urine matrices clearly showed different impact, which could be attributed to different buffer strengths by the urine itself. For durability, various concentrations of sodium azide were first applied, followed by pH buffering. A combination of 0.1% NaN3 and pH of 5.5 kept the SeSug1 content stable for over 3 months. CONCLUSION The formation of MeSeA as degradation product of SeSug1 could be confirmed. Based on the proportions, an oxidation-based decomposition pathway was proposed. The investigations revealed that the complex interaction of pH buffering and bactericidal activity must be taken into account in order to stabilize SeSug1 in the urine. The main effect was the addition of NaN3. However, the alkaline nature of NaN3 required a sufficient buffering of the urinary matrix at a pH of 5.5.
Collapse
Affiliation(s)
- Jörg Hildebrand
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 9-11, 91054, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
46
|
Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J Fungi (Basel) 2020; 6:jof6020059. [PMID: 32375266 PMCID: PMC7344654 DOI: 10.3390/jof6020059] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Selenium (Se) is essential for human health, however, Se is deficient in soil in many places all around the world, resulting in human diseases, such as notorious Keshan disease and Keshin–Beck disease. Therefore, Se biofortification is a popular approach to improve Se uptake and maintain human health. Beneficial microorganisms, including mycorrhizal and root endophytic fungi, dark septate fungi, and plant growth-promoting rhizobacteria (PGPRs), show multiple functions, especially increased plant nutrition uptake, growth and yield, and resistance to abiotic stresses. Such functions can be used for Se biofortification and increased growth and yield under drought and salt stress. The present review summarizes the use of mycorrhizal fungi and PGPRs in Se biofortification, aiming to improving their practical use.
Collapse
Affiliation(s)
| | | | | | | | | | - Chu Wu
- Correspondence: ; Tel.: +86-716-806-6262
| |
Collapse
|
47
|
Rosenfeld CE, Sabuda MC, Hinkle MAG, James BR, Santelli CM. A Fungal-Mediated Cryptic Selenium Cycle Linked to Manganese Biogeochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3570-3580. [PMID: 32083848 DOI: 10.1021/acs.est.9b06022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selenium (Se) redox chemistry is a determining factor for its environmental toxicity and mobility. Currently, millions of people are impacted by Se deficiency or toxicity, and in geologic history, several mass extinctions have been linked to extreme Se deficiency. Importantly, microbial activity and interactions with other biogeochemically active elements can drastically alter Se oxidation state and form, impacting its bioavailability. Here, we use wet geochemistry, spectroscopy, and electron microscopy to identify a cryptic, or hidden, Se cycle involving the reoxidation of biogenic volatile Se compounds in the presence of biogenic manganese [Mn(III, IV)] oxides and oxyhydroxides (hereafter referred to as "Mn oxides"). Using two common environmental Ascomycete fungi, Paraconiothyrium sporulosum and Stagonospora sp., we observed that aerobic Se(IV and VI) bioreduction to Se(0) and Se(-II) occurs simultaneously alongside the opposite redox biomineralization process of mycogenic Mn(II) oxidation to Mn oxides. Selenium bioreduction produced stable Se(0) nanoparticles and organoselenium compounds. However, mycogenic Mn oxides rapidly oxidized volatile Se products, recycling these compounds back to soluble forms. Given their abundance in natural systems, biogenic Mn oxides likely play an important role mediating Se biogeochemistry. Elucidating this cryptic Se cycle is essential for understanding and predicting Se behavior in diverse environmental systems.
Collapse
Affiliation(s)
- Carla E Rosenfeld
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota - Twin Cities, St. Paul, Minnesota 55108, United States
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota - Twin Cities, St. Paul, Minnesota 55108, United States
| | - Margaret A G Hinkle
- Department of Geology, Washington & Lee University, Lexington, Virginia 24450, United States
| | - Bruce R James
- Department of Environmental Science & Technology, University of Maryland - College Park, College Park, Maryland 20742, United States
| | - Cara M Santelli
- Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota - Twin Cities, St. Paul, Minnesota 55108, United States
| |
Collapse
|
48
|
Fischer S, Krause T, Lederer F, Merroun ML, Shevchenko A, Hübner R, Firkala T, Stumpf T, Jordan N, Jain R. Bacillus safensis JG-B5T affects the fate of selenium by extracellular production of colloidally less stable selenium nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121146. [PMID: 31771888 DOI: 10.1016/j.jhazmat.2019.121146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Understanding the impact of microorganisms on the mobility of selenium (Se) is important for predicting the fate of toxic Se in the environment and improving wastewater treatment technologies. The bacteria strain Bacillus safensis JG-B5T, isolated from soil in a uranium mining waste pile, can influence the Se speciation in the environment and engineered systems. However, the mechanism and conditions of this process remain unknown. This study found that the B. safensis JG-B5T is an obligate aerobic microorganism with an ability to reduce 70% of 2.5 mM selenite to produce red spherical biogenic elemental selenium nanoparticles (BioSeNPs). Only extracellular production of BioSeNPs was observed using transmission electron microscopy. The two-chamber reactor experiments, genome analysis and corona proteins identified on BioSeNPs suggested that the selenite reduction process was primarily mediated through membrane-associated proteins, like succinate dehydrogenase. Extracellular presence and low colloidal stability of BioSeNPs as indicated by ζ-potential measurements, render B. safensis JG-B5T an attractive candidate in wastewater treatment as it provides easy way of recovering Se while maintaining low Se discharge. As this microorganism decreases Se mobility, it will affect Se bioavailability in the environment and decreases its toxicity.
Collapse
Affiliation(s)
- Sarah Fischer
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thomas Krause
- Technische Universität Dresden, Institute of Microbiology, Chair of Molecular Biotechnology, 01062 Dresden, Germany
| | - Franziska Lederer
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Mohamed L Merroun
- University of Granada, Department of Microbiology, Campus Fuentenueva, E-18071 Granada, Spain
| | - Anna Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Tamas Firkala
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Norbert Jordan
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Rohan Jain
- Helmholtz-Zentrum Dresden - Rossendorf e. V., Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
49
|
Synthesis, crystal structures and antioxidant studies of Pd(II) and Ru(II) complexes of 2-(4-methoxyphenyltelluro) ethanol. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Preparation of Selenium-Enriched Yeast by Re-Using Discarded Saccharomyces cerevisiae from the Beer Industry for Se-Supplemented Fodder Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both inorganic and organic selenium (Se) can prevent and treat various diseases caused by Se deficiency. However, organic Se has less toxicity and a higher absorption rate than inorganic Se. In this study, inorganic Se (Na2SeO3) was bio-transformed into Se-enriched discarded beer yeast (Se-enriched DB-yeast) through fermentation accumulation by re-using discarded Saccharomyces cerevisiae from the beer industry for Se-enriched fodder application. Through a single-factor experiment and L9(34)-orthogonal test for optimization of fermentation conditions, the Se content and biomass of Se-enriched DB-yeast were calculated as 14.95 mg/L and 7.3 g/L, respectively, under the optimized condition. The total amino-acid content of Se-enriched DB-yeast was increased by 9.9% compared with that from DB yeast. Additionally, alkaline amino-acid content was increased, whereas acidic amino-acid and sulfur-containing amino-acid contents were decreased. Reducing capacity, hydroxyl radical removal capacity, and sulfhydryl content after treatment with H2O2 of the Se-enriched DB-yeast extracted protein were obviously increased compared with those of the DB-yeast extracted protein. Mouse and genetically improved farmed tilapia (Oreochromis niloticus) (GIFT) bioassays showed that the Se sedimentation of organs and serum indexes after feeding Se-enriched DB-yeast-containing fodder were higher than those of DB-yeast-containing fodder. The half lethal dose (LD50) of Se-enriched DB-yeast (9260.0 mg/kg body weight (BW), 18.97 mg/kg of Se content, non-toxic level) was considerably higher than that of Na2SeO3 (20.0 mg/kg BW, 5.08 mg/kg of Se content, highly toxic level) against mouse. Therefore, Se-enriched yeast prepared by re-using discarded S. cerevisiae from beer industry fermentation accumulation has the potential to be a safe and effective Se-enriched fodder additive.
Collapse
|