1
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024:1-32. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Solomon J, Gutierrez-Reyes CD, Chávez-Reyes J, Onigbinde S, Marichal-Cancino BA, López-Lariz CH, Beck M, Mechref Y. Neuroglycome alterations of hippocampus and prefrontal cortex of juvenile rats chronically exposed to glyphosate-based herbicide. Front Neurosci 2024; 18:1442772. [PMID: 39234181 PMCID: PMC11371619 DOI: 10.3389/fnins.2024.1442772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/19/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Glyphosate-based herbicides (GBHs) have been shown to have significant neurotoxic effects, affecting both the structure and function of the brain, and potentially contributing to the development of neurodegenerative disorders. Despite the known importance of glycosylation in disease progression, the glycome profile of systems exposed to GBH has not been thoroughly investigated. Methods In this study, we conducted a comprehensive glycomic profiling using LC-MS/MS, on the hippocampus and prefrontal cortex (PFC) of juvenile rats exposed to GBH orally, aiming to identify glyco-signature aberrations after herbicide exposure. Results We observed changes in the glycome profile, particularly in fucosylated, high mannose, and sialofucosylated N-glycans, which may be triggered by GBH exposure. Moreover, we found major significant differences in the N-glycan profiles between the GBH-exposed group and the control group when analyzing each gender independently, in contrast to the analysis that included both genders. Notably, gender differences in the behavioral test of object recognition showed a decreased performance in female animals exposed to GBH compared to controls (p < 0.05), while normal behavior was recorded in GBH-exposed male rats (p > 0.05). Conclusion These findings suggest that glycans may play a role in the neurotoxic effect caused by GBH. The result suggests that gender variation may influence the response to GBH exposure, with potential implications for disease progression and specifically the neurotoxic effects of GBHs. Understanding these gender-specific responses could enhance knowledge of the mechanisms underlying GBH-induced toxicity and its impact on brain health. Overall, our study represents the first detailed analysis of N-glycome profiles in the hippocampus and PFC of rats chronically exposed to GBH. The observed alterations in the expression of N-glycan structures suggest a potential neurotoxic effect associated with chronic GBH exposure, highlighting the importance of further research in this area.
Collapse
Affiliation(s)
- Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | | | - Jesús Chávez-Reyes
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Bruno A Marichal-Cancino
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos H López-Lariz
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Mia Beck
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
3
|
Gass DT, Quintero AV, Hatvany JB, Gallagher ES. Metal adduction in mass spectrometric analyses of carbohydrates and glycoconjugates. MASS SPECTROMETRY REVIEWS 2024; 43:615-659. [PMID: 36005212 DOI: 10.1002/mas.21801] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Glycans, carbohydrates, and glycoconjugates are involved in many crucial biological processes, such as disease development, immune responses, and cell-cell recognition. Glycans and carbohydrates are known for the large number of isomeric features associated with their structures, making analysis challenging compared with other biomolecules. Mass spectrometry has become the primary method of structural characterization for carbohydrates, glycans, and glycoconjugates. Metal adduction is especially important for the mass spectrometric analysis of carbohydrates and glycans. Metal-ion adduction to carbohydrates and glycoconjugates affects ion formation and the three-dimensional, gas-phase structures. Herein, we discuss how metal-ion adduction impacts ionization, ion mobility, ion activation and dissociation, and hydrogen/deuterium exchange for carbohydrates and glycoconjugates. We also compare the use of different metals for these various techniques and highlight the value in using metals as charge carriers for these analyses. Finally, we provide recommendations for selecting a metal for analysis of carbohydrate adducts and describe areas for continued research.
Collapse
Affiliation(s)
- Darren T Gass
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Ana V Quintero
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Jacob B Hatvany
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| |
Collapse
|
4
|
Liu C, Otsuka K, Kawai T. Recent advances in microscale separation techniques for glycome analysis. J Sep Sci 2024; 47:e2400170. [PMID: 38863084 DOI: 10.1002/jssc.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The glycomic analysis holds significant appeal due to the diverse roles that glycans and glycoconjugates play, acting as modulators and mediators in cellular interactions, cell/organism structure, drugs, energy sources, glyconanomaterials, and more. The glycomic analysis relies on liquid-phase separation technologies for molecular purification, separation, and identification. As a miniaturized form of liquid-phase separation technology, microscale separation technologies offer various advantages such as environmental friendliness, high resolution, sensitivity, fast speed, and integration capabilities. For glycan analysis, microscale separation technologies are continuously evolving to address the increasing challenges in their unique manners. This review discusses the fundamentals and applications of microscale separation technologies for glycomic analysis. It covers liquid-phase separation technologies operating at scales generally less than 100 µm, including capillary electrophoresis, nanoflow liquid chromatography, and microchip electrophoresis. We will provide a brief overview of glycomic analysis and describe new strategies in microscale separation and their applications in glycan analysis from 2014 to 2023.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Research Administration Center, Osaka Metropolitan University, Osaka, Japan
| | - Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| |
Collapse
|
5
|
Whittington C, Sharma A, Hill SG, Iavarone AT, Hoffman BM, Offenbacher AR. Impact of N-Glycosylation on Protein Structure and Dynamics Linked to Enzymatic C-H Activation in the M. oryzae Lipoxygenase. Biochemistry 2024; 63:1335-1346. [PMID: 38690768 DOI: 10.1021/acs.biochem.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.
Collapse
Affiliation(s)
- Chris Whittington
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
6
|
Uriel C, Grenier D, Herranz F, Casado N, Bañuelos J, Rebollar E, Garcia-Moreno I, Gomez AM, López JC. De Novo Access to BODIPY C-Glycosides as Linker-Free Nonsymmetrical BODIPY-Carbohydrate Conjugates. J Org Chem 2024; 89:4042-4055. [PMID: 38438277 PMCID: PMC10949249 DOI: 10.1021/acs.joc.3c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Recent years have witnessed an increasing interest in the synthesis and study of BODIPY-glycoconjugates. Most of the described synthetic methods toward these derivatives involve postfunctional modifications of the BODIPY core followed by the covalent attachment of the fluorophore and the carbohydrate through a "connector". Conversely, few de novo synthetic approaches to linker-free carbohydrate-BODIPY hybrids have been described. We have developed a reliable modular, de novo, synthetic strategy to linker-free BODIPY-sugar derivatives using the condensation of pyrrole C-glycosides with a pyrrole-carbaldehyde derivative mediated by POCl3. This methodology allows labeling of carbohydrate biomolecules with fluorescent-enough BODIPYs within the biological window, stable in aqueous media, and able to display singlet oxygen generation.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Dylan Grenier
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Florian Herranz
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Natalia Casado
- Departamento
de Química Física, Universidad
del Pais Vasco, UPV-EHU, Apartado 644, Bilbao 48080, Spain
| | - Jorge Bañuelos
- Departamento
de Química Física, Universidad
del Pais Vasco, UPV-EHU, Apartado 644, Bilbao 48080, Spain
| | - Esther Rebollar
- Instituto
de Química y Física Blas Cabrera, CSIC, Serrano 119, Madrid 28006, Spain
| | | | - Ana M. Gomez
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - J. Cristobal López
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| |
Collapse
|
7
|
Farsang R, Jarvas G, Guttman A. Purification free N-glycan analysis by capillary zone electrophoresis: Hunt for the lost glycans. J Pharm Biomed Anal 2024; 238:115812. [PMID: 37926036 DOI: 10.1016/j.jpba.2023.115812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Capillary gel electrophoresis is a widely used method for rapid separation of fluorophore labeled carbohydrates. Even though, many publications conferred about this popular technique, no report yet investigated the possible sample losses during the purification process of the fluorophore labeling reaction mixture. In the present work, normal polarity capillary zone electrophoresis separation mode was applied to take advantage of the opposite migration directions of the electroosmotic flow and the negatively charged sample components using Tris-hexanoic acid running buffer at basic pH. For purification free oligosaccharide analysis, the separation parameters were designed in such a way that the triple charged labeling reagent of aminopyrenetrisulfonate (APTS) could not enter the separation capillary in contrary to the labeled sample components of interest, therefore, the APTS did not have to be removed before analysis. The method was used to show electrophoretic profile differences possibly caused by the cleanup process that was immediately apparent by comparing the electropherograms of the purified and non-purified APTS labeled maltooligosaccharides. Furthermore, qualitative and quantitative N-glycosylation profile alterations were revealed during CZE separation of the fluorophore labeling reaction mixtures before and after purification along with the analysis of the consecutively used washing solutions for the well characterized standard glycoproteins of IgG, ribonuclease B and fetuin.
Collapse
Affiliation(s)
- Robert Farsang
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Gabor Jarvas
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Andras Guttman
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Hungary.
| |
Collapse
|
8
|
Farsang R, Hogyor K, Jarvas G, Guttman A. Capillary Zone Electrophoresis of 8-Aminopyrene-1,3,6-trisulfonic Acid Labeled Carbohydrates with Online Electrokinetic Sample Cleanup. Anal Chem 2023; 95:16459-16464. [PMID: 37921333 DOI: 10.1021/acs.analchem.3c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Capillary electrophoresis is one of the frequently used separation techniques for the analysis of complex carbohydrates. Since sugars lack chromophore or fluorophore groups, their capillary electrophoresis analysis usually requires tagging by a charged fluorophore. To speed up the derivatization reaction, a large excess of the labeling reagent is typically used; therefore, a purification step is necessary prior to CE analysis using the industry standard low-pH gel-buffer system. In addition to representing an extra sample preparation step with the associated labor and cost, the purification process also holds the risk of losing some of the sample components. In this paper we introduce an online electrokinetic sample cleanup process with electroosmotic flow (EOF)-assisted separation in a bare fused silica capillary using alkaline pH background electrolyte and normal polarity separation voltage. 8-Aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled maltooligosaccharides were analyzed first to understand the complex effect of the downstream EOF and the counter current electromigration of the sample components including the labeling dye. The use of 150 mM caproic acid-253 mM Tris (pH 8.1) running buffer facilitated the entrance of the sample components of interest into the separation capillary, while the excess labeling reagent was excluded and, therefore, did not interfere with the detection. The alkaline caproic acid-Tris running buffer was then applied to the N-glycome analysis of human serum samples, showing excellent separation performance, and more importantly, the extra sample purification step was not required.
Collapse
Affiliation(s)
- Robert Farsang
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, H-8200 Veszprem, Hungary
| | - Kinga Hogyor
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, H-8200 Veszprem, Hungary
| | - Gabor Jarvas
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, H-8200 Veszprem, Hungary
| | - Andras Guttman
- Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, H-8200 Veszprem, Hungary
- Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Sharma A, Whittington C, Jabed M, Hill SG, Kostenko A, Yu T, Li P, Doan PE, Hoffman BM, Offenbacher AR. 13C Electron Nuclear Double Resonance Spectroscopy-Guided Molecular Dynamics Computations Reveal the Structure of the Enzyme-Substrate Complex of an Active, N-Linked Glycosylated Lipoxygenase. Biochemistry 2023; 62:1531-1543. [PMID: 37115010 PMCID: PMC10704959 DOI: 10.1021/acs.biochem.3c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Chris Whittington
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Mohammed Jabed
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Anastasiia Kostenko
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, United States
| | - Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| |
Collapse
|
10
|
Gomez AM, Ventura J, Uriel C, Lopez JC. Synthesis of carbohydrate–BODIPY hybrids. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
Owing to the relevance of fluorescently labeled carbohydrates in the study of biological processes, we have investigated several routes for the preparation of saccharides covalently linked to borondipyrromethene (BODIPY) fluorophores. We have shown that BODIPY dyes can be used as aglycons through synthetic saccharide protocols. In particular, a per-alkylated 8-(2-hydroxy-methylphenyl)-4,4′-dicyano-BODIPY derivative, which withstands glycosylation and protection/deprotection reaction conditions without decomposition, has been used in the stepwise synthesis of two fluorescently labeled trisaccharides. These saccharides displayed high water solubility and a low tendency to (H-)aggregation, a phenomenon that causes loss of photophysical efficiency in BODIPYs. Two additional synthetic strategies toward glyco-BODIPYs have also been described. The first method relies on a Ferrier-type C-glycosylation of the BODIPY core, leading to linker-free carbohydrate–BODIPY hybrids. Secondly, the application of the Nicholas propargylation reaction to 1,3,5,7-tetramethyl BODIPYs provides access to 2,6-dipropargylated BODIPYs that readily undergo CuAAC reactions with azido-containing sugars. From a photophysical standpoint, the BODIPY-labeled saccharides could be used as stable and fluorescent water-soluble chromophores, thereby addressing one of the current challenges in molecular imaging.
Collapse
Affiliation(s)
- Ana M. Gomez
- Bioorganic Chemistry , IQOG-CSIC, Instituto Quimica Organica General , Juan de la Cierva 3, 28006 , Madrid , Spain
| | - Juan Ventura
- Bioorganic Chemistry , IQOG-CSIC, Instituto Quimica Organica General , Juan de la Cierva 3, 28006 , Madrid , Spain
| | - Clara Uriel
- Bioorganic Chemistry , IQOG-CSIC, Instituto Quimica Organica General , Juan de la Cierva 3, 28006 , Madrid , Spain
| | - Jose Cristobal Lopez
- Bioorganic Chemistry , IQOG-CSIC, Instituto Quimica Organica General , Juan de la Cierva 3, 28006 , Madrid , Spain
| |
Collapse
|
11
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
12
|
Bakshi T, Pham D, Kaur R, Sun B. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Int J Mol Sci 2022; 23:ijms23073742. [PMID: 35409101 PMCID: PMC8998389 DOI: 10.3390/ijms23073742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
N-Glycosylation (NG) and disulfide bonds (DBs) are two prevalent co/post-translational modifications (PTMs) that are often conserved and coexist in membrane and secreted proteins involved in a large number of diseases. Both in the past and in recent times, the enzymes and chaperones regulating these PTMs have been constantly discovered to directly interact with each other or colocalize in the ER. However, beyond a few model proteins, how such cooperation affects N-glycan modification and disulfide bonding at selective sites in individual proteins is largely unknown. Here, we reviewed the literature to discover the current status in understanding the relationships between NG and DBs in individual proteins. Our results showed that more than 2700 human proteins carry both PTMs, and fewer than 2% of them have been investigated in the associations between NG and DBs. We summarized both these proteins with the reported relationships in the two PTMs and the tools used to discover the relationships. We hope that, by exposing this largely understudied field, more investigations can be encouraged to unveil the hidden relationships of NG and DBs in the majority of membranes and secreted proteins for pathophysiological understanding and biotherapeutic development.
Collapse
Affiliation(s)
- Tania Bakshi
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - David Pham
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Raminderjeet Kaur
- Faculty of Health Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Bingyun Sun
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence:
| |
Collapse
|
13
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
14
|
Kim J, Yin D, Lee J, An HJ, Kim TY. Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ): Application to Glycomics. Anal Chem 2021; 93:14497-14505. [PMID: 34724788 DOI: 10.1021/acs.analchem.1c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new relative quantification strategy for glycomics, named deuterium oxide (D2O) labeling for global omics relative quantification (DOLGOReQ), has been developed based on the partial metabolic D2O labeling, which induces a subtle change in the isotopic distribution of glycan ions. The relative abundance of unlabeled to D-labeled glycans was extracted from the overlapped isotopic envelope obtained from a mixture containing equal amounts of unlabeled and D-labeled glycans. The glycan quantification accuracy of DOLGOReQ was examined with mixtures of unlabeled and D-labeled HeLa glycans combined in varying ratios according to the number of cells present in the samples. The relative quantification of the glycans mixed in an equimolar ratio revealed that 92.4 and 97.8% of the DOLGOReQ results were within a 1.5- and 2-fold range of the predicted mixing ratio, respectively. Furthermore, the dynamic quantification range of DOLGOReQ was investigated with unlabeled and D-labeled HeLa glycans mixed in different ratios from 20:1 to 1:20. A good correlation (Pearson's r > 0.90) between the expected and measured quantification ratios over 2 orders of magnitude was observed for 87% of the quantified glycans. DOLGOReQ was also applied in the measurement of quantitative HeLa cell glycan changes that occur under normoxic and hypoxic conditions. Given that metabolic D2O labeling can incorporate D into all types of glycans, DOLGOReQ has the potential as a universal quantification platform for large-scale comparative glycomic experiments.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dongtan Yin
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Jua Lee
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
15
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
16
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
17
|
Ventura J, Uriel C, Gomez AM, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Lopez JC. A Concise Synthesis of a BODIPY-Labeled Tetrasaccharide Related to the Antitumor PI-88. Molecules 2021; 26:2909. [PMID: 34068920 PMCID: PMC8156587 DOI: 10.3390/molecules26102909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
A convergent synthetic route to a tetrasaccharide related to PI-88, which allows the incorporation of a fluorescent BODIPY-label at the reducing-end, has been developed. The strategy, which features the use of 1,2-methyl orthoesters (MeOEs) as glycosyl donors, illustrates the usefulness of suitably-designed BODIPY dyes as glycosyl labels in synthetic strategies towards fluorescently-tagged oligosaccharides.
Collapse
Affiliation(s)
- Juan Ventura
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (J.V.); (C.U.)
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (J.V.); (C.U.)
| | - Ana M. Gomez
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (J.V.); (C.U.)
| | - Edurne Avellanal-Zaballa
- Departamento de Química Física, Universidad del Pais Vasco-EHU, Apartado 644, 48080 Bilbao, Spain;
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del Pais Vasco-EHU, Apartado 644, 48080 Bilbao, Spain;
| | | | - Jose Cristobal Lopez
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; (J.V.); (C.U.)
| |
Collapse
|
18
|
Dhakal R, Nieman R, Valente DCA, Cardozo TM, Jayee B, Aqdas A, Peng W, Aquino AJA, Mechref Y, Lischka H, Moussa H. A General New Method for Calculating the Molecular Nonpolar Surface for Analysis of LC-MS Data. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 461:116495. [PMID: 33424422 PMCID: PMC7789828 DOI: 10.1016/j.ijms.2020.116495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The accurate determination of the nonpolar surface area of glycans is vital when utilizing liquid chromatograph/mass spectrometry (LC-MS) for structural characterization. A new approach for defining and computing nonpolar surface areas based on continuum solvation models (CS-NPSA) is presented. It is based on the classification of individual surface elements representing the solvent accessible surface used for the description of the polarized charge density elements in the CS models. Each element can be classified as polar or nonpolar according to a threshold value. The summation of the nonpolar elements then results in the NPSA resulting in a very fine resolution of this surface. The further advantage of the CS-NPSA approach is the straightforward connection to standard quantum chemical methods and program packages. The method has been analyzed in terms of the contributions of different atoms to the NPSA. The analysis showed that not only atoms normally classified as nonpolar contributed to the NPSA, but at least partially also atoms next to polar atoms or N atoms. By virtue of the construction of the solvent accessible surface, atoms in the inner regions of a molecule can be automatically identified as not contributing to the NPSA. The method has been applied to a variety of examples such as the phenylbutanehydrazide series, model dextrans consisting of glucose units and biantennary glycans. Linear correlation of the CS-NPSA values with retention times obtained from liquid chromatographic separations measurements in the mentioned cases give excellent results and promise for more extended applications on a larger variety of compounds.
Collapse
Affiliation(s)
- Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech
University, Lubbock, TX, 79409, USA
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
- Corresponding author.
(R. Nieman),
(A. A. J. Aquino), and
(H. Lischka)
| | - Daniel C. A. Valente
- Instituto de Química, Universidade Federal do Rio de
Janeiro, Rio de Janeiro – RJ, 21941-901, Brazil
| | - Thiago M. Cardozo
- Instituto de Química, Universidade Federal do Rio de
Janeiro, Rio de Janeiro – RJ, 21941-901, Brazil
| | - Bhumika Jayee
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
| | - Amna Aqdas
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
| | - Adelia J. A. Aquino
- Department of Mechanical Engineering, Texas Tech
University, Lubbock, TX, 79409, USA
- Corresponding author.
(R. Nieman),
(A. A. J. Aquino), and
(H. Lischka)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
- Corresponding author.
(R. Nieman),
(A. A. J. Aquino), and
(H. Lischka)
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech
University, Lubbock, TX, 79409, USA
| |
Collapse
|
19
|
Abyadeh M, Meyfour A, Gupta V, Zabet Moghaddam M, Fitzhenry MJ, Shahbazian S, Hosseini Salekdeh G, Mirzaei M. Recent Advances of Functional Proteomics in Gastrointestinal Cancers- a Path towards the Identification of Candidate Diagnostic, Prognostic, and Therapeutic Molecular Biomarkers. Int J Mol Sci 2020; 21:ijms21228532. [PMID: 33198323 PMCID: PMC7697099 DOI: 10.3390/ijms21228532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the common causes of morbidity and mortality. A high number of cases are diagnosed at an advanced stage, leading to a poor survival rate. This is primarily attributed to the lack of reliable diagnostic biomarkers and limited treatment options. Therefore, more sensitive, specific biomarkers and curative treatments are desirable. Functional proteomics as a research area in the proteomic field aims to elucidate the biological function of unknown proteins and unravel the cellular mechanisms at the molecular level. Phosphoproteomic and glycoproteomic studies have emerged as two efficient functional proteomics approaches used to identify diagnostic biomarkers, therapeutic targets, the molecular basis of disease and mechanisms underlying drug resistance in GI cancers. In this review, we present an overview on how functional proteomics may contribute to the understanding of GI cancers, namely colorectal, gastric, hepatocellular carcinoma and pancreatic cancers. Moreover, we have summarized recent methodological developments in phosphoproteomics and glycoproteomics for GI cancer studies.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
- Cell Science Research Center, Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Correspondence: (A.M.); (M.M.)
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | | | - Matthew J. Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Shila Shahbazian
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Ghasem Hosseini Salekdeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
- Correspondence: (A.M.); (M.M.)
| |
Collapse
|
20
|
Ren TJ, Zhang XX, Li X, Chen HX. Isoforms analysis of recombinant human erythropoietin by polarity-reversed capillary isoelectric focusing. Electrophoresis 2020; 41:2055-2061. [PMID: 32841408 DOI: 10.1002/elps.202000165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022]
Abstract
Recombinant human erythropoietin (rhuEPO) has been extensively used as a pharmaceutical product for treating anemia in the clinic. Glycosylation of rhuEPO was crucial for affecting biological activity, immunogenicity, and pharmacokinetics. Because of the heterogeneity of glycan, the structure of rhuEPO was complex with several isoforms. Characterization of isoforms was important for quality control of rhuEPO. Here, an improved cIEF method has been established and validated. A polarity-reversed focusing step was used by reversing both the polarity of the voltage and the catholyte and anolyte vials. A weak base (100 mM ammonium hydroxide solution) was used as a chemical mobilizer to make the acidic bands mobilize stably to the detection window. Compared with CZE method in European Pharmacopoeia, the numbers of isoforms and their peak area percentage were highly consistent. Better reproducibility and higher resolution have been obtained by the improved cIEF method. Moreover, in improved cIEF method, the isoelectric points (pI) of each isoform can be calculated and used for identification. It was also the first time that the cIEF method was fully validated for rhuEPO analysis according to the International Conference on Harmonization (ICH) guidelines.
Collapse
Affiliation(s)
| | | | - Xiang Li
- Division of Recombinant Biological Products, National Institute of Food and Drug Control (NIFDC), Beijing, P. R. China
| | | |
Collapse
|
21
|
Purification of natural neutral N-glycans by using two-dimensional hydrophilic interaction liquid chromatography × porous graphitized carbon chromatography for glycan-microarray assay. Talanta 2020; 221:121382. [PMID: 33076051 DOI: 10.1016/j.talanta.2020.121382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022]
Abstract
Glycan microarray for studying carbohydrate-protein interactions requires diverse classes of well-defined glycan standards. In this study, a purification strategy was established based on two-dimensional hydrophilic interaction liquid chromatography and porous graphitized carbon chromatography (HILIC × PGC) for the acquisition of neutral N-glycan standards from natural source. A total of thirty-one N-glycan compounds including seven pairs of isomers with the amounts from 0.7 to 230.0 nmol were isolated from ovalbumin as the model glycoconjugate. The purified N-glycans covered high-mannose, hybrid as well as multi-antenna asymmetric complex types. The purity of majority of these N-glycans was higher than 90%. Detailed structures of the N-glycan compounds were verified via negative ion tandem MS analysis, in which specific diagnostic ions including D- and E-ions were used to identify isomeric and terminal fine structures. The tag-free glycan compounds with well-defined structures, purity and amounts were finally assembled on the glass slide through neoglycolipid technology. Microarray binding assay of purified glycans with WGA lectin indicated the potential of the established strategy in glycan library expansion and functional glycomics.
Collapse
|
22
|
Lastovickova M, Strouhalova D, Bobalova J. Use of Lectin-based Affinity Techniques in Breast Cancer Glycoproteomics: A Review. J Proteome Res 2020; 19:1885-1899. [PMID: 32181666 DOI: 10.1021/acs.jproteome.9b00818] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Changes in glycoprotein content, altered glycosylations, and aberrant glycan structures are increasingly recognized as cancer hallmarks. Because breast cancer is one of the most common causes of cancer deaths in the world, it is highly urgent to find other reliable biomarkers for its initial diagnosis and to learn as much as possible about this disease. In this Review, the applications of lectins to a screening of potential breast cancer biomarkers published during recent years are overviewed. These data provide a deeper insight into the use of modern strategies, technologies, and scientific knowledge in glycoproteomic breast cancer research. Particular attention is concentrated on the use of lectin-based affinity techniques, applied independently or most frequently in combination with mass spectrometry, as an effective tool for the targeting, separation, and reliable identification of glycoprotein molecules. Individual procedures and lectins used in published glycoproteomic studies of breast-cancer-related glycoproteins are discussed. The summarized approaches have the potential for use in diagnostic and predictive applications. Finally, the use of lectins is briefly discussed from the view of their future applications in the analysis of glycoproteins in cancer.
Collapse
Affiliation(s)
- Marketa Lastovickova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Dana Strouhalova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| | - Janette Bobalova
- Institute of Analytical Chemistry of the CAS, Veveří 97, 602 00 Brno, Czech Republic
| |
Collapse
|
23
|
Uriel C, Permingeat C, Ventura J, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Gómez AM, Lopez JC. BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides. Chemistry 2020; 26:5388-5399. [PMID: 31999023 DOI: 10.1002/chem.201905780] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/11/2022]
Abstract
A series of fluorescent boron-dipyrromethene (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes have been designed to participate, as aglycons, in synthetic oligosaccharide protocols. As such, they served a dual purpose: first, by being incorporated at the beginning of the process (at the reducing-end of the growing saccharide moiety), they can function as fluorescent glycosyl tags, facilitating the detection and purification of the desired glycosidic intermediates, and secondly, the presence of these chromophores on the ensuing compounds grants access to fluorescently labeled saccharides. In this context, a sought-after feature of the fluorescent dyes has been their chemical robustness. Accordingly, some BODIPY derivatives described in this work can withstand the reaction conditions commonly employed in the chemical synthesis of saccharides; namely, glycosylation and protecting-group manipulations. Regarding their photophysical properties, the BODIPY-labeled saccharides obtained in this work display remarkable fluorescence efficiency in water, reaching quantum yield values up to 82 %, as well as notable lasing efficiencies and photostabilities.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Caterina Permingeat
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Ventura
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | | - Jorge Bañuelos
- Dpto. Química Física, Universidad del País Vasco (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain
| | | | - Ana M Gómez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J Cristobal Lopez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
24
|
Uriel C, Sola-Llano R, Bañuelos J, Gomez AM, Lopez JC. A Malonyl-Based Scaffold for Conjugatable Multivalent Carbohydrate-BODIPY Presentations. Molecules 2019; 24:E2050. [PMID: 31146429 PMCID: PMC6600552 DOI: 10.3390/molecules24112050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023] Open
Abstract
A concise synthetic route from methylmalonate to a tetravalent aliphatic scaffold has been developed. The ensuing tetra-tethered derivative is equipped with two hydroxyl groups, as well as orthogonal alkene and alkyne functionalities. The usefulness of the scaffold has been demonstrated with the preparation of two representative multivalent derivatives: (i) a tetravalent compound containing two D-mannose units, one fluorescent boron-dipyrromethene (BODIPY) dye and a suitably functionalized amino acid and (ii) by way of dimerization and saponification, a water-soluble tetramannan derivative containing two fluorescent BODIPY units. Additionally, photophysical measurements conducted on these derivatives support the viability of the herein designed single and double BODIPY-labeled carbohydrate-based clusters as fluorescent markers.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Rebeca Sola-Llano
- Departamento Química Física, Universidad del País Vasco (UPV/EHU), Aptdo 644, 48080 Bilbao, Spain.
| | - Jorge Bañuelos
- Departamento Química Física, Universidad del País Vasco (UPV/EHU), Aptdo 644, 48080 Bilbao, Spain.
| | - Ana M Gomez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - J Cristobal Lopez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
25
|
Lucas PL, Dumontier R, Loutelier-Bourhis C, Mareck A, Afonso C, Lerouge P, Mati-Baouche N, Bardor M. User-friendly extraction and multistage tandem mass spectrometry based analysis of lipid-linked oligosaccharides in microalgae. PLANT METHODS 2018; 14:107. [PMID: 30534192 PMCID: PMC6280548 DOI: 10.1186/s13007-018-0374-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/23/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Protein N-glycosylation is initiated within the endoplasmic reticulum through the synthesis of a lipid-linked oligosaccharides (LLO) precursor. This precursor is then transferred en bloc on neo-synthesized proteins through the action of the oligosaccharyltransferase giving birth to glycoproteins. The N-linked glycans bore by the glycoproteins are then processed into oligomannosides prior to the exit of the glycoproteins from the endoplasmic reticulum and its entrance into the Golgi apparatus. In this compartment, the N-linked glycans are further maturated in complex type N-glycans. This process has been well studied in a lot of eukaryotes including higher plants. In contrast, little information regarding the LLO precursor and synthesis of N-linked glycans is available in microalgae. METHODS In this report, a user-friendly extraction method combining microsomal enrichment and solvent extractions followed by purification steps is described. This strategy is aiming to extract LLO precursor from microalgae. Then, the oligosaccharide moiety released from the extracted LLO were analyzed by multistage tandem mass spectrometry in two models of microalgae namely the green microalgae, Chlamydomonas reinhardtii and the diatom, Phaeodactylum tricornutum. RESULTS The validity of the developed method was confirmed by the analysis of the oligosaccharide structures released from the LLO of two xylosyltransferase mutants of C. reinhardtii confirming that this green microalga synthesizes a linear Glc3Man5GlcNAc2 identical to the one of the wild-type cells. In contrast, the analysis of the oligosaccharide released from the LLO of the diatom P. tricornutum demonstrated for the first time a Glc2Man9GlcNAc2 structure. CONCLUSION The method described in this article allows the fast, non-radioactive and reliable multistage tandem mass spectrometry characterization of oligosaccharides released from LLO of microalgae including the ones belonging to the Phaeodactylaceae and Chlorophyceae classes, respectively. The method is fully adaptable for extracting and characterizing the LLO oligosaccharide moiety from microalgae belonging to other phyla.
Collapse
Affiliation(s)
- Pierre-Louis Lucas
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Univ, 76000 Rouen, France
| | - Rodolphe Dumontier
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Univ, 76000 Rouen, France
| | | | - Alain Mareck
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Univ, 76000 Rouen, France
| | - Carlos Afonso
- UNIROUEN, INSA Rouen, CNRS, COBRA, Normandie Univ, 76000 Rouen, France
| | - Patrice Lerouge
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Univ, 76000 Rouen, France
| | | | - Muriel Bardor
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Univ, 76000 Rouen, France
- Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
26
|
Dong X, Huang Y, Cho BG, Zhong J, Gautam S, Peng W, Williamson SD, Banazadeh A, Torres-Ulloa KY, Mechref Y. Advances in mass spectrometry-based glycomics. Electrophoresis 2018; 39:3063-3081. [PMID: 30199110 DOI: 10.1002/elps.201800273] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
The diversification of the chemical properties and biological functions of proteins is attained through posttranslational modifications, such as glycosylation. Glycans, which are covalently attached to proteins, play a vital role in cell activities. The microheterogeneity and complexity of glycan structures associated with proteins make comprehensive glycomic analysis challenging. However, recent advancements in mass spectrometry (MS), separation techniques, and sample preparation methods have primarily facilitated structural elucidation and quantitation of glycans. This review focuses on describing recent advances in MS-based techniques used for glycomic analysis (2012-2018), including ionization, tandem MS, and separation techniques coupled with MS. Progress in glycomics workflow involving glycan release, purification, derivatization, and separation will also be highlighted here. Additionally, the recent development of quantitative glycomics through comparative and multiplex approaches will also be described.
Collapse
Affiliation(s)
- Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Seth D Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Katya Y Torres-Ulloa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
27
|
Yang S, Wu WW, Shen RF, Bern M, Cipollo J. Identification of Sialic Acid Linkages on Intact Glycopeptides via Differential Chemical Modification Using IntactGIG-HILIC. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1273-1283. [PMID: 29651731 PMCID: PMC6744383 DOI: 10.1007/s13361-018-1931-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 05/20/2023]
Abstract
Mass spectrometric analysis of intact glycopeptides can reveal detailed information about glycosite, glycan structural features, and their heterogeneity. Sialyl glycopeptides can be positively, negatively, or neutrally charged depending on pH of their buffer solution and ionization conditions. To detect sialoglycopeptides, a negative-ion mode mass spectrometry may be applied with a minimal loss of sialic acids, although the positively charged or neutral glycopeptides may be excluded. Alternatively, the sialyl glycopeptides can be identified using positive-ion mode analysis by doping a high concentration of sodium salts to the analytes. Although manipulation of unmodified sialoglycopeptides can be useful for analysis of samples, less than optimal ionization, facile loss of sialyl and unfavorable ionization of accompanying non-sialyl peptides make such strategies suboptimal. Currently available chemical derivatization methods, while stabilizing for sialic acid, mask sialic acid linkage configuration. Here, we report the development of a novel approach to neutralize sialic acids via sequentially chemical modification that also reveals their linkage configuration, often an important determinant in biological function. This method utilizes several components to facilitate glycopeptide identification. These include the following: solid phase derivatization, enhanced ionization of sialoglycopeptides, differentiation of sialic acid linkage, and enrichment of the modified glycopeptides by hydrophilic interaction liquid chromatography. This technology can be used as a tool for quantitative analysis of protein sialylation in diseases with determination of sialic acid linkage configuration. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, G614, Bldg 75, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Marshall Bern
- Protein Metrics Inc., 1622 San Carlos Ave, Suite C, San Carlos, CA, 94070, USA
| | - John Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, G637, Bldg 52/72, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
28
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
29
|
Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteomics 2018; 15:203-216. [PMID: 29400572 DOI: 10.1080/14789450.2018.1435276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Though eukaryotic glycoproteins have been studied since their discovery in the 1930s, the first bacterial glycoprotein was not identified until the 1970s. As a result, their role in bacterial pathogenesis is still not well understood and they remain an understudied component of bacterial virulence. In recent years, mass spectrometry has emerged as a leading technology for the study of bacterial glycoproteins, largely due to its sensitivity and versatility. Areas covered: Identification and comprehensive characterization of bacterial glycoproteins usually requires multiple complementary mass spectrometry approaches, including intact protein analysis, top-down analysis, and bottom-up methods used in combination with specialized liquid chromatography. This review provides an overview of liquid chromatography separation technologies, as well as current and emerging mass spectrometry approaches used specifically for bacterial glycoprotein identification and characterization. Expert commentary: Bacterial glycoproteins may have significant clinical utility as a result of their unique structures and exposure on the surface of the cells. Better understanding of these glycoconjugates is an essential first step towards that goal. These often unique structures, and by extension the key enzymes involved in their synthesis, represent promising targets for novel antimicrobials, while unique carbohydrate structures may be used as antigens in vaccines or as biomarkers.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jianjun Li
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Juan M Tomas
- b Departament de Microbiologia, Facultat de Biologia , Universitat de Barcelona , Barcelona , Spain
| | - Jeffrey C Smith
- c Department of Chemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|
30
|
Montacir O, Montacir H, Springer A, Hinderlich S, Mahboudi F, Saadati A, Parr MK. Physicochemical Characterization, Glycosylation Pattern and Biosimilarity Assessment of the Fusion Protein Etanercept. Protein J 2018; 37:164-179. [DOI: 10.1007/s10930-018-9757-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 2017; 38:2100-2114. [PMID: 28370073 PMCID: PMC5581235 DOI: 10.1002/elps.201700042] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
Abstract
The characterization of glycosylation is critical for obtaining a comprehensive view of the regulation and functions of glycoproteins of interest. Due to the complex nature of oligosaccharides, stemming from variable compositions and linkages, and ion suppression effects, the chromatographic separation of glycans, including isomeric structures, is necessary for exhaustive characterization by MS. This review introduces the fundamental principles underlying the techniques in LC utilized by modern day glycomics researchers. Recent advances in porous graphitized carbon, reverse phase, ion exchange, and hydrophilic interaction LC utilized in conjunction with MS, for the characterization of protein glycosylation, are described with an emphasis on methods capable of resolving isomeric glycan structures.
Collapse
Affiliation(s)
- Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | | | | | | | - Byeong G. Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
32
|
Jiang K, Zhu H, Li L, Guo Y, Gashash E, Ma C, Sun X, Li J, Zhang L, Wang PG. Sialic acid linkage-specific permethylation for improved profiling of protein glycosylation by MALDI-TOF MS. Anal Chim Acta 2017; 981:53-61. [PMID: 28693729 DOI: 10.1016/j.aca.2017.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
Abstract
Protein glycosylation mediates a wide range of cellular processes, affecting development and disease in mammals. Deciphering the "glycocodes" requires rapid, sensitive and in-depth characterization of diverse glycan structures derived from biological samples. In this study, we described a two-step derivatization strategy termed linkage-specific sialic acid permethylation (SSAP) consisting of dimethylamination and permethylation for the improved profiling of glycosylation by matrix-assisted laser desorption/ionization (MALDI) time-of-fight (TOF) mass spectrometry (MS). High linkage-specificity (∼99%) of SSAP to both the two most common forms of sialic acid, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), permitted direct discrimination of α2,3- and α2,6-linked sialic acids in MALDI-TOF MS. The enhanced intensity (>10-fold) and increased detection limit (>10-fold) of derivatized glycans were valued for sensitive glycomics. Moreover, the good compatibility and reaction efficiency of the two steps of SSAP allowed rapid sample preparation (<2 h), benefiting robust analysis of glycans in a high-throughput manner. The SSAP strategy was further applied to investigate the protein glycosylation of human serum associated with rheumatoid arthritis (RA). It was demonstrated that the relative abundances of individual glycans were different in RA negative and RA positive samples, and meanwhile the RA patient/control ratios of both α2,3- and α2,6-sialylated glycans tended to elevate accompanied with the increase of sialylation. Those findings of the glycosylation changes occurred in human serum protein may contribute to the diagnosis of RA. Herein, SSAP derivatization combined with MALDI-TOF MS exhibits unique advantages for glycomic analysis and shows potential in glycosylation profiling of therapeutic proteins and clinical glycan biomarker discovery.
Collapse
Affiliation(s)
- Kuan Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; PerkinElmer, 115 North Taiping Road, Taicang City, Jiangsu Province, China
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Yuxi Guo
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Ebtesam Gashash
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Cheng Ma
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Xiaolin Sun
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing 100044, China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Lianwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
33
|
Trefulka M, Dorčák V, Křenková J, Foret F, Paleček E. Electrochemical analysis of Os(VI)-modified glycoproteins and label-free glycoprotein detection eluted from lectin capillary column. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Zhu F, Clemmer DE, Trinidad JC. Characterization of lectin binding affinities via direct LC-MS profiling: implications for glycopeptide enrichment and separation strategies. Analyst 2017; 142:65-74. [DOI: 10.1039/c6an02043g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Determining the affinity between a lectin and its target glycans is an important goal, both for understanding the biological functions of a given lectin as well as enabling the use of that lectin for targeted enrichment of glycosylated species from complex samples.
Collapse
Affiliation(s)
- Feifei Zhu
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | | | |
Collapse
|
35
|
Zhang SR, Yu YL, Xu CS, Jin D, Lee YI. Determination of N -glycans in glycoproteins using chemoenzymatic labeling with Endo-M N175Q. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Sethi MK, Hancock WS, Fanayan S. Identifying N-Glycan Biomarkers in Colorectal Cancer by Mass Spectrometry. Acc Chem Res 2016; 49:2099-2106. [PMID: 27653471 DOI: 10.1021/acs.accounts.6b00193] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. Delineating biological markers (biomarkers) for early detection, when treatment is most effective, is key to prevention and long-term survival of patients. Development of reliable biomarkers requires an increased understanding of the CRC biology and the underlying molecular and cellular mechanisms of the disease. With recent advances in new technologies and approaches, tremendous efforts have been put in proteomics and genomics fields to deliver detailed analysis of the two major biomolecules, genes and proteins, to gain a more complete understanding of cellular systems at both genomic and proteomic levels, allowing a mechanistic understanding of the human diseases, including cancer, and opening avenues for identification of novel gene and protein based prognostic and therapeutic markers. Although the importance of glycosylation in modulating protein function has long been appreciated, glycan analysis has been complicated by the diversity of the glycan structures and the large number of potential glycosylation combinations. Driven by recent technological advances, LC-MS/MS based glycomics is gaining momentum in cancer research and holds considerable potential to deliver new glycan-based markers. In our laboratory, we investigated alterations in N-glycosylation associated with CRC malignancy in a panel of CRC cell lines and CRC patient tissues. In an initial study, LC-MS/MS-based N-glycomics were utilized to map the N-glycome landscape associated with a panel of CRC cell lines (LIM1215, LIM1899, and LIM2405). These studies were subsequently extended to paired tumor and nontumorigenic CRC tissues to validate the findings in the cell line. Our studies in both CRC cell lines and tissues identified a strong representation of high mannose and α2,6-linked sialylated complex N-glycans, which corroborate findings from previous studies in CRC and other cancers. In addition, certain unique glycan determinants such as bisecting β1,4-GlcNAcylation and α2,3-sialylation, identified in the metastatic (LIM1215) and aggressive (LIM2405) CRC cell lines, respectively, were shown to be associated with epidermal growth factor receptor (EGFR) expression status. In this Account, we will describe the mass spectrometry based N-glycomics approach utilized in our laboratory to accurately profile the cell- and tissue-specific N-glycomes associated with CRC. We will highlight altered N-glycosylation observed by our studies, consistent with findings from other cancer studies, and discuss how the observed alterations can provide insights into CRC pathogenesis, opening new avenues to identify novel disease-associated glycan markers.
Collapse
Affiliation(s)
- Manveen K. Sethi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - William S. Hancock
- Barnett
Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Susan Fanayan
- Department
of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
37
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
38
|
Pihikova D, Pakanova Z, Nemcovic M, Barath P, Belicky S, Bertok T, Kasak P, Mucha J, Tkac J. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics 2016; 16:3085-3095. [PMID: 26920336 DOI: 10.1002/pmic.201500463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
The construction of a sensitive electrochemical lectin-based immunosensor for detection of a prostate specific antigen (PSA) is shown here. Three lectins with different carbohydrate specificities were used in this study to glycoprofile PSA, which is the most common biomarker for prostate cancer (PCa) diagnosis. The biosensor showed presence of α-L-fucose and α-(2,6)-linked terminal sialic acid within PSA´s glycan with high abundance, while only traces of α-(2,3)-linked terminal sialic acid were found. MALDI TOF/TOF mass spectrometry was applied to validate results obtained by the biosensor with a focus on determination of a type of sialic acid linkage by two methods. The first direct comparison of electrochemical immunosensor assay employing lectins for PSA glycoprofiling with mass spectrometric techniques is provided here and both methods show significant agreement. Thus, electrochemical lectin-based immunosensor has potential to be applied for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Dominika Pihikova
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Zuzana Pakanova
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Marek Nemcovic
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Barath
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Stefan Belicky
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Tomas Bertok
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Mucha
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| |
Collapse
|
39
|
Toppazzini M, Coslovi A, Rossi M, Flamigni A, Baiutti E, Campa C. Capillary Electrophoresis of Mono- and Oligosaccharides. Methods Mol Biol 2016; 1483:301-338. [PMID: 27645743 DOI: 10.1007/978-1-4939-6403-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.
Collapse
Affiliation(s)
- Mila Toppazzini
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Anna Coslovi
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Marco Rossi
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Anna Flamigni
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Edi Baiutti
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Cristiana Campa
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy.
| |
Collapse
|
40
|
|
41
|
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst 2015; 141:1044-51. [PMID: 26647853 DOI: 10.1039/c5an02322j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study presents a proof-of-concept for the development of an impedimetric biosensor for ultra-sensitive glycoprofiling of prostate specific antigen (PSA). The biosensor exhibits three unique characteristics: (1) analysis of PSA with limit of detection (LOD) down to 4 aM; (2) analysis of the glycan part of PSA with LOD down to 4 aM level and; (3) both assays (i.e., PSA quantification and PSA glycoprofiling) can be performed on the same interface due to label-free analysis.
Collapse
Affiliation(s)
- D Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic.
| | | | | | | | | |
Collapse
|
42
|
Sethi MK, Fanayan S. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer. Int J Mol Sci 2015; 16:29278-304. [PMID: 26690136 PMCID: PMC4691109 DOI: 10.3390/ijms161226165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS)-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers.
Collapse
Affiliation(s)
- Manveen K Sethi
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Susan Fanayan
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
43
|
Alla AJ, D' Andrea FB, Bhattarai JK, Cooper JA, Tan YH, Demchenko AV, Stine KJ. Selective capture of glycoproteins using lectin-modified nanoporous gold monolith. J Chromatogr A 2015; 1423:19-30. [PMID: 26554297 DOI: 10.1016/j.chroma.2015.10.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 11/25/2022]
Abstract
The surface of nanoporous gold (np-Au) monoliths was modified via a flow method with the lectin Concanavalin A (Con A) to develop a substrate for separation and extraction of glycoproteins. Self-assembled monolayers (SAMs) of α-lipoic acid (LA) on the np-Au monoliths were prepared followed by activation of the terminal carboxyl groups to create amine reactive esters that were utilized in the immobilization of Con A. Thermogravimetric analysis (TGA) was used to determine the surface coverages of LA and Con A on np-Au monoliths which were found to be 1.31×10(18) and 1.85×10(15)moleculesm(-2), respectively. An in situ solution depletion method was developed that enabled surface coverage characterization without damaging the substrate and suggesting the possibility of regeneration. Using this method, the surface coverages of LA and Con A were found to be 0.989×10(18) and 1.32×10(15)moleculesm(-2), respectively. The selectivity of the Con A-modified np-Au monolith for the high mannose-containing glycoprotein ovalbumin (OVA) versus negative control non-glycosylated bovine serum albumin (BSA) was demonstrated by the difference in the ratio of the captured molecules to the immobilized Con A molecules, with OVA:Con A=2.3 and BSA:Con A=0.33. Extraction of OVA from a 1:3 mole ratio mixture with BSA was demonstrated by the greater amount of depletion of OVA concentration during the circulation with the developed substrate. A significant amount of captured OVA was eluted using α-methyl mannopyranoside as a competitive ligand. This work is motivated by the need to develop new materials for chromatographic separation and extraction substrates for use in preparative and analytical procedures in glycomics.
Collapse
Affiliation(s)
- Allan J Alla
- Department of Chemistry and Biochemistry, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121 USA; Center for Nanoscience, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Felipe B D' Andrea
- Department of Chemistry and Biochemistry, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121 USA; Center for Nanoscience, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Jay K Bhattarai
- Department of Chemistry and Biochemistry, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121 USA; Center for Nanoscience, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Jared A Cooper
- Department of Chemistry and Biochemistry, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121 USA; Center for Nanoscience, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Yih Horng Tan
- Department of Chemistry and Biochemistry, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121 USA; Center for Nanoscience, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121 USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121 USA; Center for Nanoscience, One University Boulevard, University of Missouri-St. Louis, Saint Louis, MO 63121, USA.
| |
Collapse
|
44
|
Yang H, Shi L, Yao W, Wang Y, Huang L, Wan D, Liu S. Differentiation of Disaccharide Isomers by Temperature-Dependent In-Source Decay (TDISD) and DART-Q-TOF MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1599-1605. [PMID: 26162649 DOI: 10.1007/s13361-015-1192-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/04/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Helium direct analysis in real time (He-DART) mass spectrometry (MS) of some compounds, polysaccharides, for example, usually tends to be challenging because of the occurrence of prominent in-source decay (ISD), which was considered as an undesired side reaction, as it complicated the resulting mass spectra. Our approach is to take advantage of an efficient and practical method termed the temperature-dependent ISD (TDISD) technique combined with fragmentation of the dehydrated dimers using DART Q-TOF tandem mass spectrometry for differentiation of disaccharide isomers. In this study, cross-ring cleavages and non-ovalent complexes were detected in the spectra of the saccharides. It was observed that the gas heater temperature had a significant effect on the absence or presence of signal in DART spectra. At high gas temperature, ions in high mass region began to appear. Based on the types of cross-ring cleavages and noncovalent complexes, disaccharide isomers with different linkage positions can be differentiated in both positive and negative ion modes at a lower DART gas temperature. Additionally, anomeric configurations were assigned on the basis of the relative abundance ratio of m/z 198:342 obtained by the comparison of the positive ion mode tandem mass spectrum of an α isomer dimer generated at higher DART gas temperature and that of the corresponding β one. In general, this method is easy, fast, effective, and robust for identifying disaccharide isomers.
Collapse
Affiliation(s)
- Hongmei Yang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhou S, Hu Y, DeSantos-Garcia JL, Mechref Y. Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:596-603. [PMID: 25698222 PMCID: PMC4514032 DOI: 10.1007/s13361-014-1054-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/09/2014] [Accepted: 11/09/2014] [Indexed: 05/20/2023]
Abstract
The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.
Collapse
Affiliation(s)
| | | | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
46
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
47
|
Houser J, Komarek J, Cioci G, Varrot A, Imberty A, Wimmerova M. Structural insights into Aspergillus fumigatus lectin specificity: AFL binding sites are functionally non-equivalent. ACTA ACUST UNITED AC 2015; 71:442-53. [PMID: 25760594 DOI: 10.1107/s1399004714026595] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 12/03/2014] [Indexed: 01/07/2023]
Abstract
The Aspergillus fumigatus lectin AFL was recently described as a new member of the AAL lectin family. As a lectin from an opportunistic pathogen, it might play an important role in the interaction of the pathogen with the human host. A detailed study of structures of AFL complexed with several monosaccharides and oligosaccharides, including blood-group epitopes, was combined with affinity data from SPR and discussed in the context of previous findings. Its six binding sites are non-equivalent, and owing to minor differences in amino-acid composition they exhibit a marked difference in specific ligand recognition. AFL displays a high affinity in the micromolar range towards oligosaccharides which were detected in plants and also those bound on the human epithelia. All of these results indicate AFL to be a complex member of the lectin family and a challenging target for future medical research and, owing to its binding properties, a potentially useful tool in specific biotechnological applications.
Collapse
Affiliation(s)
- Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Komarek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Gianluca Cioci
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées, 31077 Toulouse CEDEX, France
| | - Annabelle Varrot
- CERMAV-CNRS, UPR5301, affiliated with Université de Grenoble and ICMG, BP53, 38041 Grenoble CEDEX 9, France
| | - Anne Imberty
- CERMAV-CNRS, UPR5301, affiliated with Université de Grenoble and ICMG, BP53, 38041 Grenoble CEDEX 9, France
| | - Michaela Wimmerova
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
48
|
Development of Monolithic Column Materials for the Separation and Analysis of Glycans. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Yin W, Chai H, Liu R, Chu C, Palasota JA, Cai X. Click N-benzyl iminodiacetic acid: Novel silica-based tridentate zwitterionic stationary phase for hydrophilic interaction liquid chromatography. Talanta 2015; 132:137-45. [DOI: 10.1016/j.talanta.2014.08.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/25/2014] [Accepted: 08/31/2014] [Indexed: 11/29/2022]
|
50
|
Zhang L, Lawson K, Yeung B, Wypych J. Capillary Zone Electrophoresis Method for a Highly Glycosylated and Sialylated Recombinant Protein: Development, Characterization and Application for Process Development. Anal Chem 2014; 87:470-6. [DOI: 10.1021/ac504187v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Le Zhang
- Analytical
Sciences of Drug Substance Department, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Ken Lawson
- Analytical
Sciences of Drug Substance Department, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Bernice Yeung
- Analytical
Sciences of Drug Substance Department, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Jette Wypych
- Analytical
Sciences of Drug Substance Department, Amgen, Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|