1
|
Morstein J, Bowcut V, Fernando M, Yang Y, Zhu L, Jenkins ML, Evans JT, Guiley KZ, Peacock DM, Krahnke S, Lin Z, Taran KA, Huang BJ, Stephen AG, Burke JE, Lightstone FC, Shokat KM. Targeting Ras-, Rho-, and Rab-family GTPases via a conserved cryptic pocket. Cell 2024; 187:6379-6392.e17. [PMID: 39255801 PMCID: PMC11531380 DOI: 10.1016/j.cell.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 05/07/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
The family of Ras-like GTPases consists of over 150 different members, regulated by an even larger number of guanine exchange factors (GEFs) and GTPase-activating proteins (GAPs) that comprise cellular switch networks that govern cell motility, growth, polarity, protein trafficking, and gene expression. Efforts to develop selective small molecule probes and drugs for these proteins have been hampered by the high affinity of guanosine triphosphate (GTP) and lack of allosteric regulatory sites. This paradigm was recently challenged by the discovery of a cryptic allosteric pocket in the switch II region of K-Ras. Here, we ask whether similar pockets are present in GTPases beyond K-Ras. We systematically surveyed members of the Ras, Rho, and Rab family of GTPases and found that many GTPases exhibit targetable switch II pockets. Notable differences in the composition and conservation of key residues offer potential for the development of optimized inhibitors for many members of this previously undruggable family.
Collapse
Affiliation(s)
- Johannes Morstein
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Victoria Bowcut
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Micah Fernando
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Yue Yang
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA 94550, USA
| | - Lawrence Zhu
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John T Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Keelan Z Guiley
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - D Matthew Peacock
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Sophie Krahnke
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Katrine A Taran
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA 94550, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Chudasama DD, Patel MS, Parekh JN, Patel HC, Ram KR. Diversity-oriented synthesis of 1H-1,2,3-triazole tethered pyrazolo[5,1-b]quinazoline hybrids as antimicrobial agents. Mol Divers 2024; 28:2875-2896. [PMID: 37697023 DOI: 10.1007/s11030-023-10721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
A straightforward and high yielding synthetic approach is employed to synthesize the novel 1H-1,2,3-triazole tethered pyrazolo[5,1-b]quinazoline hybrids 7(a-t) as new antimicrobial agents with two pharmacophore in the effective two step synthesis. The first step is the four component one-pot synthesis of highly functionalized pyrazolo[5,1-b]quinazolines 5(a-j) catalysed by TBAB, with the advantages of an environmentally benign reaction, high yielding, quick reaction time, and operational simplicity. In the subsequent stage, CuSO4/NaAsc system was employed to synthesize the 1H-1,2,3-triazole tethered pyrazolo[1,5-b]quinazoline hybrids as 1H-1,2,3-triazoles are the structures of great diversity and importance in diverse therapeutics containing numerous biological activities. The antimicrobial activity of all the synthesized hybrid compounds have been preliminary tested using the broth dilution technique against two gram-positive and two gram-negative bacterial strains as well as two fungal strains. In comparison to standard drugs, the majority of compounds exhibited good to moderate activity. Among the all the compounds, 7a (MIC 18.54 μM) against Pseudomonas aeruginosa, 7j (MIC 89.76 μM) against Bacillus subtilis as well as Rhizopus oryzae and 7t (MIC 84.88 μM) against Aspergillus parasiticus have remarkable antimicrobial potency as compared to standard drug.
Collapse
Affiliation(s)
- Dipakkumar D Chudasama
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India.
| |
Collapse
|
3
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Tricyclic Fused Lactams by Mukaiyama Cyclisation of Phthalimides and Evaluation of their Biological Activity. Antibiotics (Basel) 2022; 12:antibiotics12010009. [PMID: 36671210 PMCID: PMC9854654 DOI: 10.3390/antibiotics12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
We report that phthalimides may be cyclized using a Mukaiyama-type aldol coupling to give variously substituted fused lactam (1,2,3,9b-tetrahydro-5H-pyrrolo[2,1-a]isoindol-5-one) systems. This novel process shows a high level of regioselectivity for o-substituted phthalimides, dictated by steric and electronic factors, but not for m-substituted phthalimides. The initial aldol adduct is prone to elimination, giving 2,3-dihydro-5H-pyrrolo[2,1-a]isoindol-5-ones, and the initial cyclisation can be conducted in such a way that aldol cyclisation-elimination is achievable in a one-pot approach. The 2,3-dihydro-5H-pyrrolo[2,1-a]isoindol-5-ones possess cross conjugation and steric effects which significantly influence the reactivity of several functional groups, but conditions suitable for epoxidation, ester hydrolysis and amide formation, and reduction, which provide for ring manipulation, were identified. Many of the derived lactam systems, and especially the eliminated systems, show low solubility, which compromises biological activity, although in some cases, antibacterial and cytotoxic activity was found, and this new class of small molecule provides a useful skeleton for further elaboration and study.
Collapse
|
5
|
Lim D, Zhou Q, Cox KJ, Law BK, Lee M, Kokkonda P, Sreekanth V, Pergu R, Chaudhary SK, Gangopadhyay SA, Maji B, Lai S, Amako Y, Thompson DB, Subramanian HKK, Mesleh MF, Dančík V, Clemons PA, Wagner BK, Woo CM, Church GM, Choudhary A. A general approach to identify cell-permeable and synthetic anti-CRISPR small molecules. Nat Cell Biol 2022; 24:1766-1775. [PMID: 36396978 PMCID: PMC9891305 DOI: 10.1038/s41556-022-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
The need to control the activity and fidelity of CRISPR-associated nucleases has resulted in a demand for inhibitory anti-CRISPR molecules. The small-molecule inhibitor discovery platforms available at present are not generalizable to multiple nuclease classes, only target the initial step in the catalytic activity and require high concentrations of nuclease, resulting in inhibitors with suboptimal attributes, including poor potency. Here we report a high-throughput discovery pipeline consisting of a fluorescence resonance energy transfer-based assay that is generalizable to contemporary and emerging nucleases, operates at low nuclease concentrations and targets all catalytic steps. We applied this pipeline to identify BRD7586, a cell-permeable small-molecule inhibitor of SpCas9 that is twofold more potent than other inhibitors identified to date. Furthermore, unlike the reported inhibitors, BRD7586 enhanced SpCas9 specificity and its activity was independent of the genomic loci, DNA-repair pathway or mode of nuclease delivery. Overall, these studies describe a general pipeline to identify inhibitors of contemporary and emerging CRISPR-associated nucleases.
Collapse
Affiliation(s)
- Donghyun Lim
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- School of Biopharmaceutical and Medical Sciences, Sungshin University, Seoul, South Korea
| | - Qingxuan Zhou
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kurt J Cox
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin K Law
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Miseon Lee
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Vedagopuram Sreekanth
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Soumyashree A Gangopadhyay
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Sophia Lai
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yuka Amako
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - David B Thompson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Hari K K Subramanian
- Department of Mechanical Engineering, University of California-Riverside, Riverside, CA, USA
| | - Michael F Mesleh
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vlado Dančík
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Miura Y, Senoo A, Doura T, Kiyonaka S. Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches. RSC Chem Biol 2022; 3:269-287. [PMID: 35359495 PMCID: PMC8905536 DOI: 10.1039/d1cb00195g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cell surface receptors transmit extracellular information into cells. Spatiotemporal regulation of receptor signaling is crucial for cellular functions, and dysregulation of signaling causes various diseases. Thus, it is highly desired to control receptor functions with high spatial and/or temporal resolution. Conventionally, genetic engineering or chemical ligands have been used to control receptor functions in cells. As the alternative, chemogenetics has been proposed, in which target proteins are genetically engineered to interact with a designed chemical partner with high selectivity. The engineered receptor dissects the function of one receptor member among a highly homologous receptor family in a cell-specific manner. Notably, some chemogenetic strategies have been used to reveal the receptor signaling of target cells in living animals. In this review, we summarize the developing chemogenetic methods of transmembrane receptors for cell-specific regulation of receptor signaling. We also discuss the prospects of chemogenetics for clinical applications.
Collapse
Affiliation(s)
- Yuta Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Akinobu Senoo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| |
Collapse
|
7
|
Catarzi D, Varano F, Vigiani E, Lambertucci C, Spinaci A, Volpini R, Colotta V. Casein Kinase 1δ Inhibitors as Promising Therapeutic Agents for Neurodegenerative Disorders. Curr Med Chem 2022; 29:4698-4737. [PMID: 35232339 DOI: 10.2174/0929867329666220301115124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/06/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Casein kinase 1 (CK1) belongs to the serine-threonine kinase family and is expressed in all eukaryotic organisms. At least six human isoforms of CK1 (termed α, γ1-3, δ and ε) have been cloned and characterized. CK1 isoform modulates several physiological processes, including DNA damage repair, circadian rhythm, cellular proliferation and apoptosis. Therefore, CK1 dysfunction may trigger diverse pathologies, such as cancer, inflammation and central nervous system disorders. Overexpression and aberrant activity of CK1 has been connected to hyperphosphorylation of key proteins implicated in the development of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases and Amyotrophic Lateral Sclerosis. Thus, CK1 inhibitors have attracted attention as potential drugs for these pathologies and several compounds have been synthesized or isolated from natural sources to be evaluated for their CK1 inhibitory activity. Here we report a comprehensive review on the development of CK1 inhibitors, with a particular emphasis on structure-activity relationships and computational studies which provide useful insight for the design of novel inhibitors.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Erica Vigiani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| | - Catia Lambertucci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Andrea Spinaci
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Kaur N, Ahlawat N, Verma Y, Grewal P, Bhardwaj P, Jangid NK. Cu-assisted C–N bond formations in six-membered N-heterocycle synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1695278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Neha Ahlawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Yamini Verma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Pooja Grewal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Pranshu Bhardwaj
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | | |
Collapse
|
9
|
Kumar V, Tiwari SK, Singh V. Silver(I)‐Catalyzed Regioselective Synthesis of Dihydrofuro[3,4‐
b
]quinolines from
o
‐Alkynylquinoline‐MBH Adducts and Evaluation of their Photophysical Properties. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vipin Kumar
- Department of ChemistryDr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011, Punjab India
| | - Sandip Kumar Tiwari
- Department of Chemistry Institute of ScienceBanaras Hindu University Varanasi 221005 Uttar Pradesh India
| | - Virender Singh
- Department of ChemistryDr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011, Punjab India
| |
Collapse
|
10
|
Three Multi-Components Reaction: Synthesis and X-Ray Single-Crystal of Hydroacridinone-Based Hydrazino-S-Triazine Derivative as a New Class of Urease Inhibitor. CRYSTALS 2019. [DOI: 10.3390/cryst10010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The one-pot fashion of three multi-component reaction provides the desired hydroacridinone-based hydrazino-s-triazine scaffold 4. Compound 4 was crystallized in an orthorhombic crystal system and Pbca space group with a = 11.6271(2) Å, b = 18.2018(4) Å, c = 32.4721(6) Å, and α = β = γ = 90° with one formula unit per asymmetric unit and eight molecules per unit cell. Additionally, structural features, Hirshfeld surfaces, and DFT studies were also investigated. Its packing in the crystal is controlled by H…H (63.4%), O…H (12.7%), Cl…H (7.2%), N…H (4.7%), and C…H (10.2%) contacts, where the O…H and Cl…H contacts were found the strongest. In vitro urease inhibition evaluation showed that the hydroacridinone-based hydrazino-s-triazine is more active (IC50 = 17.9 ± 0.47 µM) than the standard acetohydroxamic acid (IC50 = 20.3 ± 0.43 µM).
Collapse
|
11
|
Kaur N, Ahlawat N, Bhardwaj P, Verma Y, Grewal P, Jangid NK. Ag-mediated synthesis of six-membered N-heterocycles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1703196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Neha Ahlawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Pranshu Bhardwaj
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Yamini Verma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Pooja Grewal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | | |
Collapse
|
12
|
Cai H, Yang H, Xu J, Bao H, Huang L, Zhang H, Zhang P, Li W. Transition‐Metal‐Free C2‐H Sulfonylation of Quinoline
N
‐Oxides via Insertion of Sulfur Dioxide. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Heng Cai
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 P. R. China
| | - Huiyong Yang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 P. R. China
| | - Jun Xu
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 P. R. China
| | - Hanyang Bao
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 P. R. China
| | - Lin Huang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 P. R. China
| | - Hongdou Zhang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 P. R. China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 P. R. China
| | - Wanmei Li
- College of Material Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 P. R. China
| |
Collapse
|
13
|
Design, synthesis and molecular modeling studies of new series of s-triazine derivatives as antimicrobial agents against multi-drug resistant clinical isolates. Bioorg Chem 2019; 89:103013. [DOI: 10.1016/j.bioorg.2019.103013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/08/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023]
|
14
|
Wang H, Zhang Y, Zhou W, Noppol L, Liu T. Mechanism and enhancement of lipid accumulation in filamentous oleaginous microalgae Tribonema minus under heterotrophic condition. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:328. [PMID: 30559837 PMCID: PMC6290495 DOI: 10.1186/s13068-018-1329-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The filamentous microalgae Tribonema minus accumulates large amounts of lipids under photoautotrophic condition, while under heterotrophic condition, the lipid content decreased dramatically. Determination of the differences in metabolic pathways between photoautotrophic and heterotrophic growth will provide targets and strategies for improvement of lipid accumulation in heterotrophic cells. METHODS The metabolic differences between photoautotrophically and heterotrophically cultivated T. minus cells were studied by comparing the growth, biochemical compositions and transcriptomic and metabolomic profiles of the cells. Based on comparative transcriptomic and metabolomic studies, we generated a global model of the changes in central carbon metabolism and lipid biosynthetic pathways that occur under photoautotrophic and heterotrophic growth conditions. Moreover, the specific effects of supplementation with exogenous key metabolic intermediates on the lipid accumulation in heterotrophic culture were analyzed. RESULTS Compared to photoautotrophic cultures, heterotrophic cultures exhibited enhanced biomass levels and carbohydrate content, but decreased lipid accumulation. These effects were accompanied by low expression levels of genes involved in glycolysis, de novo fatty acids biosynthesis and lipid biosynthesis, and high levels of genes involved in gluconeogenesis. In addition, the levels of key metabolites involved in glycolysis/gluconeogenesis were elevated in abundance, whereas those of certain fatty acids and citric acid were decreased in heterotrophic cultures. Upon supplementation with exogenous potassium palmitate, the lipid content increased dramatically in heterotrophically cultivated T. minus. CONCLUSION An insufficient supply of carbon precursors caused the low levels of lipid accumulation during heterotrophic cultivation. Appropriate carbon metabolite supplementation based on the metabolomic data was shown to promote lipid accumulation. Moreover, gene regulatory metabolic targets were also identified via omics analysis.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong People’s Republic of China
| | - Yan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Wenjun Zhou
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Leksawasdi Noppol
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 Shandong People’s Republic of China
| |
Collapse
|
15
|
Wu J, Kong Y, Liu L, Chang W, Li J. Metal-free multicomponent cascade reactions of homopropargylic amines and acyl chlorides as well as potassium thiocyanate and diiodine: an access to thiazine imides. Org Biomol Chem 2018; 16:5955-5959. [PMID: 30087977 DOI: 10.1039/c8ob01557k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel metal-free multicomponent cascade reaction was developed for the construction of thiazine imides. This four-component cascade reaction had advantages of mild reaction conditions, wide substrate scope and good atom economy. Four new bonds were formed in one pot via a 6-exo-dig iodothiolation cyclization of homopropargylic amines. The corresponding E-configurational thiazine imide products possess an exocyclic vinyliodide functional group.
Collapse
Affiliation(s)
- Jing Wu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
16
|
Wase N, Black P, DiRusso C. Innovations in improving lipid production: Algal chemical genetics. Prog Lipid Res 2018; 71:101-123. [DOI: 10.1016/j.plipres.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
17
|
Zhao X, Li R, Zhou Y, Xiao M, Ma C, Yang Z, Zeng S, Du Q, Yang C, Jiang H, Hu Y, Wang K, Mok CKP, Sun P, Dong J, Cui W, Wang J, Tu Y, Yang Z, Hu W. Discovery of Highly Potent Pinanamine-Based Inhibitors against Amantadine- and Oseltamivir-Resistant Influenza A Viruses. J Med Chem 2018; 61:5187-5198. [PMID: 29799746 DOI: 10.1021/acs.jmedchem.8b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Influenza pandemic is a constant major threat to public health caused by influenza A viruses (IAVs). IAVs are subcategorized by the surface proteins hemagglutinin (HA) and neuraminidase (NA), in which they are both essential targets for drug discovery. While it is of great concern that NA inhibitor oseltamivir resistant strains are frequently identified from human or avian influenza virus, structural and functional characterization of influenza HA has raised hopes for new antiviral therapies. In this study, we explored a structure-activity relationship (SAR) of pinanamine-based antivirals and discovered a potent inhibitor M090 against amantadine-resistant viruses, including the 2009 H1N1 pandemic strains, and oseltamivir-resistant viruses. Mechanism of action studies, particularly hemolysis inhibition, indicated that M090 targets influenza HA and it occupied a highly conserved pocket of the HA2 domain and inhibited virus-mediated membrane fusion by "locking" the bending state of HA2 during the conformational rearrangement process. This work provides new binding sites within the HA protein and indicates that this pocket may be a promising target for broad-spectrum anti-influenza A drug design and development.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China.,Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yang Zhou
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Mengjie Xiao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Zhongjin Yang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Shaogao Zeng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Kefeng Wang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China.,HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine , The University of Hong Kong , 5 Sassoon Road , Pokfulam , Hong Kong
| | - Ping Sun
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Jianghong Dong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Wei Cui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Wenhui Hu
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| |
Collapse
|
18
|
Peng B, Yu C, Du S, Liew SS, Mao X, Yuan P, Na Z, Yao SQ. MSN-on-a-Chip: Cell-Based Screenings Made Possible on a Small-Molecule Microarray of Native Natural Products. Chembiochem 2018; 19:986-996. [PMID: 29465822 DOI: 10.1002/cbic.201800101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Standard small-molecule microarrays (SMMs) are not well-suited for cell-based screening assays. Of the few attempts made thus far to render SMMs cell-compatible, all encountered major limitations. Here we report the first mesoporous silica nanoparticle (MSN)-on-a-chip platform capable of allowing high-throughput cell-based screening to be conducted on SMMs. By making use of a glass surface on which hundreds of MSNs, each encapsulated with a different native natural product, were immobilized in spatially defined manner, followed by on-chip mammalian cell growth and on-demand compound release, high-content screening was successfully carried out with readily available phenotypic detection methods. By combining this new MSN-on-a-chip system with small interfering RNA technology for the first time, we discovered that (+)-usniacin possesses synergistic inhibitory properties similar to those of olaparib (an FDA-approved drug) in BRCA1-knockdown cancer cells.
Collapse
Affiliation(s)
- Bo Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Changmin Yu
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21816, China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Si S Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Xin Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Zhenkun Na
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| |
Collapse
|
19
|
Sviripa VM, Kril LM, Zhang W, Xie Y, Wyrebek P, Ponomareva L, Liu X, Yuan Y, Zhan CG, Watt DS, Liu C. Phenylethynyl-substituted Heterocycles Inhibit Cyclin D1 and Induce the Expression of Cyclin-dependent Kinase Inhibitor p21 Wif1/Cip1 in Colorectal Cancer Cells. MEDCHEMCOMM 2018. [PMID: 29527286 DOI: 10.1039/c7md00393e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fluorinated, phenylethynyl-substituted heterocycles that possessed either an N-methylamino or N,N-dimethylamino group attached to heterocycles including pyridines, indoles, 1H-indazoles, quinolines, and isoquinolines inhibited the proliferation of LS174T colon cancer cells in which the inhibition of cyclin D1 and induction of the cyclin-dependent kinase inhibitor-1 (i.e., p21Wif1/Cip1) served as a readout for antineoplastic activity at a cellular level. On a molecular level, these agents, particularly 4-((2,6-difluorophenyl)ethynyl)-N-methylisoquinolin-1-amine and 4-((2,6-difluorophenyl)ethynyl)-N,N-dimethylisoquinolin-1-amine, bound and inhibited the catalytic subunit of methionine S-adenosyltransferase-2 (MAT2A).
Collapse
Affiliation(s)
- Vitaliy M Sviripa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596
| | - Liliia M Kril
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093
| | - Yanqi Xie
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093
| | - Przemyslaw Wyrebek
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509
| | - Larissa Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596
| | - Xifu Liu
- Epionc, Inc., P.O. Box 23436, Lexington, KY 40523
| | - Yaxia Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky 40536-0596
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky 40536-0596
| | - David S Watt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596.,Epionc, Inc., P.O. Box 23436, Lexington, KY 40523.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093
| | - Chunming Liu
- Epionc, Inc., P.O. Box 23436, Lexington, KY 40523.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093
| |
Collapse
|
20
|
Zhao W, Pferdehirt L, Segatori L. Quantitatively Predictable Control of Cellular Protein Levels through Proteasomal Degradation. ACS Synth Biol 2018; 7:540-552. [PMID: 29061039 DOI: 10.1021/acssynbio.7b00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein function is typically studied and engineered by modulating protein levels within the complex cellular environment. To achieve fast, targeted, and predictable control of cellular protein levels without genetic manipulation of the target, we developed a technology for post-translational depletion based on a bifunctional molecule (NanoDeg) consisting of the antigen-binding fragment from the Camelidae species heavy-chain antibody (nanobody) fused to a degron signal that mediates degradation through the proteasome. We provide proof-of-principle demonstration of targeted degradation using a nanobody against the green fluorescent protein (GFP). Guided by predictive modeling, we show that customizing the NanoDeg rate of synthesis, rate of degradation, and mode of degradation enables quantitative and predictable control over the target's levels. Integrating the GFP-specific NanoDeg within a genetic circuit based on stimulus-dependent GFP output results in enhanced dynamic range and resolution of the output signal. By providing predictable control over cellular proteins' levels, the NanoDeg system could be readily used for a variety of systems-level analyses of cellular protein function.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Lara Pferdehirt
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
21
|
Singh M, Hazra A, Bharitkar YP, Kalia R, Sahoo A, Saha S, Ravichandiran V, Ghosh S, Mondal NB. Synthesis of diversely substituted bis-pyrrolizidino/ thiopyrrolizidino oxindolo/acenaphthyleno curcuminoids via sequential azomethine ylide cycloaddition. RSC Adv 2018; 8:18938-18951. [PMID: 35539652 PMCID: PMC9080697 DOI: 10.1039/c8ra02725k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022] Open
Abstract
Curcumin has been transformed to several diversely substituted bis-pyrrolizidino/thiopyrrolizidino oxindolo/acenaphthyleno curcuminoids via a sequential azomethine ylide cycloaddition reaction using isatins/acenaphthoquinone and proline/thioproline as the reagents. The products were separated via extensive chromatography and characterized by 1D/2D NMR and HRMS analysis. Curcumin has been transformed to several diversely substituted bis-pyrrolizidino/thiopyrrolizidino oxindolo/acenaphthyleno curcuminoids via a sequential azomethine ylide cycloaddition reaction.![]()
Collapse
Affiliation(s)
- Meenakshi Singh
- National Institute of Pharmaceutical Education and Research (NIPER)
- Kolkata – 700 032
- India
| | - Abhijit Hazra
- National Institute of Pharmaceutical Education and Research (NIPER)
- Kolkata – 700 032
- India
| | - Yogesh P. Bharitkar
- National Institute of Pharmaceutical Education and Research (NIPER)
- Kolkata – 700 032
- India
| | - Ritu Kalia
- National Institute of Pharmaceutical Education and Research (NIPER)
- Kolkata – 700 032
- India
| | - Ashutosh Sahoo
- Department of Organic and Medicinal Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata – 700 032
- India
| | - Sneha Saha
- National Institute of Pharmaceutical Education and Research (NIPER)
- Kolkata – 700 032
- India
| | - V. Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER)
- Kolkata – 700 032
- India
| | - Shekhar Ghosh
- Department of Organic and Medicinal Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata – 700 032
- India
| | - Nirup B. Mondal
- Department of Organic and Medicinal Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata – 700 032
- India
| |
Collapse
|
22
|
Zhang J, Zhang F, Lai L, Cheng J, Sun J, Wu J. Generation of sulfonated 1-isoindolinones through a multicomponent reaction with the insertion of sulfur dioxide. Chem Commun (Camb) 2018; 54:3891-3894. [DOI: 10.1039/c8cc01124a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A four-component reaction of 2-vinylbenzoic acids, aryldiazonium tetrafluoroborates, sulfur dioxide, and nitriles under photocatalysis in the presence of visible light is developed, leading to sulfonated 1-isoindolinones in moderate to good yields.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry
- Fudan University (Jiangwan Campus)
- Shanghai 200438
- China
| | - Feng Zhang
- College of Science
- Hunan Agricultural University
- Changsha 410128
- China
| | - Lifang Lai
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- China
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- China
| | - Jiangtao Sun
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University (Jiangwan Campus)
- Shanghai 200438
- China
| |
Collapse
|
23
|
Modi A, Sau P, Patel BK. Base-Promoted Synthesis of Quinoline-4(1H)-thiones from o-Alkynylanilines and Aroyl Isothiocyanates. Org Lett 2017; 19:6128-6131. [PMID: 29090938 DOI: 10.1021/acs.orglett.7b02993] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A base-promoted synthesis of quinoline-4(1H)-thiones has been accomplished from the in situ generated o-alkynylthiourea, obtained by reacting o-alkynylanilines with aroyl/acyl isothiocyanates. A 6-exo-dig S-cyclization of the in situ generated thiourea is followed by a rearrangement to give quinoline-4(1H)-thiones.
Collapse
Affiliation(s)
- Anju Modi
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati 781039, India
| | - Prasenjit Sau
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati 781039, India
| |
Collapse
|
24
|
Srinivasulu V, Mazitschek R, Kariem NM, Reddy A, Rabeh WM, Li L, O'Connor MJ, Al-Tel TH. Modular Bi-Directional One-Pot Strategies for the Diastereoselective Synthesis of Structurally Diverse Collections of Constrained β-Carboline-Benzoxazepines. Chemistry 2017; 23:14182-14192. [DOI: 10.1002/chem.201702495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital; Harvard Medical School; 185 Cambridge Street Boston MA 02114 USA
- Harvard T.H. Chan School of Public Health; Department of Immunology and Infectious Disease; Boston MA 02115 USA
| | - Noor M. Kariem
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Amarnath Reddy
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
| | - Wael M. Rabeh
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Liang Li
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Matthew John O'Connor
- Core Technologies Platform; New York University Abu Dhabi; P O Box 129188 Saadiyat Island Abu Dhabi UAE
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research; University of Sharjah; P.O.Box 27272 Sharjah UAE
- College of Pharmacy; University of Sharjah; P.O. Box 27272 Sharjah UAE
| |
Collapse
|
25
|
|
26
|
Kumar Maji P, Mahalanobish A. Copper Accelerated One-Pot Sequential Tandem Synthesis of Tetrahydropurinoisoquinoline Derivatives. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
An Y, Zhang J, Xia H, Wu J. Radical cyclization of benzene-tethered 1,7-enynes with aryldiazonium tetrafluoroborates: a facile route to benzo[j]phenanthridines. Org Chem Front 2017. [DOI: 10.1039/c7qo00193b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A radical cyclization of benzene-tethered 1,7-enynes with aryldiazonium tetrafluoroborates in the presence of copper(ii) acetate and DABCO˙(SO2)2 is developed, leading to diverse benzo[j]phenanthridines.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Jun Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Biology
- Zhejiang University School of Medicine
- Hangzhou 310058
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
28
|
Xu J, Wang DL, Liu ZP, Zhang KX, Ma W, Liu B. Microwave-Assisted Synthesis of Benzofuran/Benzothiophene-Fused Naphthyridines via Thorpe-Ziegler Type Heterocyclization. HETEROCYCLES 2017. [DOI: 10.3987/com-17-13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Nierode G, Kwon PS, Dordick JS, Kwon SJ. Cell-Based Assay Design for High-Content Screening of Drug Candidates. J Microbiol Biotechnol 2016; 26:213-25. [PMID: 26428732 DOI: 10.4014/jmb.1508.08007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as highcontent screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.
Collapse
Affiliation(s)
- Gregory Nierode
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul S Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
30
|
Lenci E, Innocenti R, Biagioni A, Menchi G, Bianchini F, Trabocchi A. Identification of Novel Human Breast Carcinoma (MDA-MB-231) Cell Growth Modulators from a Carbohydrate-Based Diversity Oriented Synthesis Library. Molecules 2016; 21:molecules21101405. [PMID: 27775632 PMCID: PMC6273552 DOI: 10.3390/molecules21101405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/16/2023] Open
Abstract
The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2H-furo[3,2-b][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Riccardo Innocenti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Alessio Biagioni
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Gloria Menchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Francesca Bianchini
- Department of Clinical and Experimental Biomedical Science "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
31
|
Pal S, Choudhary D, Jainth M, Kumar S, Tiwari RK, Verma AK. Regio- and Stereoselective Domino Synthesis of Oxazolo Fused Pyridoindoles and Benzofurooxazolo Pyridines from ortho-Alkynylarylaldehydes. J Org Chem 2016; 81:9356-9371. [DOI: 10.1021/acs.joc.6b02062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shilpi Pal
- Synthetic
Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Deepak Choudhary
- Synthetic
Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Mohit Jainth
- Synthetic
Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sonu Kumar
- Synthetic
Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rakesh K. Tiwari
- Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401
Jeronimo Road, Irvine, California 92618, United States
| | - Akhilesh K. Verma
- Synthetic
Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
32
|
Shinde VV, Jeong YT. Sonochemical FeF3 catalyzed three-component synthesis of densely functionalized tetrahydroindazolo[3,2-b]quinazoline under solvent-free conditions. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Sharada DS, Shinde AH, Patel SM, Vidyacharan S. Scaffold Diversity through a Branching Double-Annulation Cascade Strategy: Iminium-Induced One-Pot Synthesis of Diverse Fused Tetrahydroisoquinoline Scaffolds. J Org Chem 2016; 81:6463-71. [DOI: 10.1021/acs.joc.6b01096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Duddu S. Sharada
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502 285, India
| | - Anand H. Shinde
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502 285, India
| | - Srilaxmi M. Patel
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502 285, India
| | - Shinde Vidyacharan
- Department of Chemistry, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana 502 285, India
| |
Collapse
|
34
|
Runcie AC, Chan KH, Zengerle M, Ciulli A. Chemical genetics approaches for selective intervention in epigenetics. Curr Opin Chem Biol 2016; 33:186-94. [PMID: 27423045 PMCID: PMC5061558 DOI: 10.1016/j.cbpa.2016.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
Abstract
Chemical genetics offers tools and opportunities to investigate epigenetic processes. Chemical probes targeting epigenetic proteins are increasingly being developed. Epigenetic targets pose distinct challenges to chemical genetics approaches. The ‘bump-and-hole’ approach allows for highly selective single-target inhibition. PROTACS can degrade target proteins to enhance efficacy and selectivity.
Chemical genetics is the use of biologically active small molecules (chemical probes) to investigate the functions of gene products, through the modulation of protein activity. Recent years have seen significant progress in the application of chemical genetics to study epigenetics, following the development of new chemical probes, a growing appreciation of the role of epigenetics in disease and a recognition of the need and utility of high-quality, cell-active chemical probes. In this review, we single out the bromodomain reader domains as a prime example of both the success, and challenges facing chemical genetics. The difficulty in generating single-target selectivity has long been a thorn in the side of chemical genetics, however, recent developments in advanced forms of chemical genetics promise to bypass this, and other, limitations. The ‘bump-and-hole’ approach has now been used to probe — for the first time — the BET bromodomain subfamily with single-target selectivity and may be applicable to other epigenetic domains. Meanwhile, PROTAC compounds have been shown to be significantly more efficacious than standard domain inhibitors, and have the potential to enhance target selectivity.
Collapse
Affiliation(s)
- Andrew C Runcie
- School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Kwok-Ho Chan
- School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Michael Zengerle
- School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, UK
| | - Alessio Ciulli
- School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
35
|
Zhao YH, Li Y, Guo T, Tang Z, Xie W, Zhao G. Selective synthesis of pyrazolo[5,1-a]isoquinolines via 1,3-dipolar cycloaddition reaction. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Gong X, Chen M, Yao L, Wu J. Facile Assembly of Benzo[b]naphtho[2,3-d]azocin-6(5 H)-ones by a Palladium-Catalyzed Double Carbometalation. Chem Asian J 2016; 11:1613-7. [PMID: 26991867 DOI: 10.1002/asia.201600211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Xinxing Gong
- Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 China
| | - Mo Chen
- Obstetrics and Gynecology Hospital; Fudan University; 419 Fangxie Road Shanghai 200011 China
| | - Liangqing Yao
- Obstetrics and Gynecology Hospital; Fudan University; 419 Fangxie Road Shanghai 200011 China
| | - Jie Wu
- Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 China
| |
Collapse
|
37
|
Liu T, Qiu G, Ding Q, Wu J. Assembly of 3-(trifluoromethyl)thiochromenes via a regioselective trifluoromethylthioarylation of (3-arylprop-2-ynyl)oxybenzenes with trifluoromethanesulfanylamide. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Lenci E, Menchi G, Trabocchi A. Carbohydrates in diversity-oriented synthesis: challenges and opportunities. Org Biomol Chem 2016; 14:808-25. [DOI: 10.1039/c5ob02253c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbohydrates are attractive building blocks for diversity-oriented synthesis due to their stereochemical diversity and high density of polar functional groups.
Collapse
Affiliation(s)
- E. Lenci
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - G. Menchi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - A. Trabocchi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| |
Collapse
|
39
|
An Y, Li Y, Wu J. A general route to fluorinated 3,3-disubstituted 2-oxindoles via a photoinduced radical cyclization of N-arylacrylamides under catalyst-free conditions. Org Chem Front 2016. [DOI: 10.1039/c6qo00055j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free radical cyclization of N-arylacrylamides with fluorinated alkyl iodides or the Togni reagent enabled by photoenergy is reported, leading to fluorinated 2-oxindoles in good yields. The broad reaction scope is demonstrated with good functional group tolerance.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Yuewen Li
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
40
|
An Y, Xia H, Wu J. Base-controlled [3+3] cycloaddition of isoquinoline N-oxides with azaoxyallyl cations. Chem Commun (Camb) 2016; 52:10415-8. [DOI: 10.1039/c6cc03650c] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A base-controlled [3+3] cycloaddition reaction of isoquinoline N-oxides with azaoxyallyl cations is developed, leading to 1,11b-dihydro-[1,2,4]oxadiazino[3,2-a]isoquinolin-2(3H)-ones and 2-(isoquinolin-1-yloxy)acetamides, respectively. This transformation proceeds through an azaoxyallyl cation generated in situ from α-bromohydroxamate.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Biology
- Zhejiang University School of Medicine
- Hangzhou 310058
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
41
|
Pan X, Luo Y, Xia HG, Wu J. A palladium-catalyzed tandem reaction of 2-(2-bromobenzylidene)cyclobutanone with 2-alkynylphenol. Chem Commun (Camb) 2015; 51:16483-5. [PMID: 26414750 DOI: 10.1039/c5cc07360j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient approach for the generation of benzo[b]naphtho[2,3-d]oxocin-6-ones through a palladium-catalyzed tandem reaction of 2-alkynylphenol with 2-(2-bromobenzylidene)cyclobutanone is described. This tandem process afforded the fused polycycles easily, with the formation of three bonds with high efficiency, starting from easily available materials. Good functional group tolerance as well as excellent selectivity was displayed.
Collapse
Affiliation(s)
- Xiaolin Pan
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Yong Luo
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Hong-Guang Xia
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Wu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
42
|
Rhim JH, Luo X, Xu X, Gao D, Zhou T, Li F, Qin L, Wang P, Xia X, Wong STC. A High-content screen identifies compounds promoting the neuronal differentiation and the midbrain dopamine neuron specification of human neural progenitor cells. Sci Rep 2015; 5:16237. [PMID: 26542303 PMCID: PMC4635364 DOI: 10.1038/srep16237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022] Open
Abstract
Small molecule compounds promoting the neuronal differentiation of stem/progenitor cells are of pivotal importance to regenerative medicine. We carried out a high-content screen to systematically characterize known bioactive compounds, on their effects on the neuronal differentiation and the midbrain dopamine (mDA) neuron specification of neural progenitor cells (NPCs) derived from the ventral mesencephalon of human fetal brain. Among the promoting compounds three major pharmacological classes were identified including the statins, TGF-βRI inhibitors, and GSK-3 inhibitors. The function of each class was also shown to be distinct, either to promote both the neuronal differentiation and mDA neuron specification, or selectively the latter, or promote the former but suppress the latter. We then carried out initial investigation on the possible mechanisms underlying, and demonstrated their applications on NPCs derived from human pluripotent stem cells (PSCs). Our study revealed the potential of several small molecule compounds for use in the directed differentiation of human NPCs. The screening result also provided insight into the signaling network regulating the differentiation of human NPCs.
Collapse
Affiliation(s)
- Ji Heon Rhim
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Xiangjian Luo
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Xiaoyun Xu
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Dongbing Gao
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Tieling Zhou
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030
| | - Fuhai Li
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Ping Wang
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Xiaofeng Xia
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Stephen T C Wong
- Chao Center for BRAIN, Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030.,Weill Cornell Medical College, Cornell University, New York, NY 10065
| |
Collapse
|
43
|
Qiu G, Wu J. Generation of N-Heterocycles via Tandem Reactions ofN ′-(2-Alkynylbenzylidene)hydrazides. CHEM REC 2015; 16:19-34. [DOI: 10.1002/tcr.201500219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Guanyinsheng Qiu
- College of Biological, Chemical Science and Engineering, Jiaxing University; 118 Jiahang Road Jiaxing 314001 P. R. China
| | - Jie Wu
- Department of Chemistry; Fudan University; 220 Handan Road Shanghai 200433 P. R. China
| |
Collapse
|
44
|
Dong T, Liao D, Liu X, Lei X. Using Small Molecules to Dissect Non-apoptotic Programmed Cell Death: Necroptosis, Ferroptosis, and Pyroptosis. Chembiochem 2015; 16:2557-61. [PMID: 26388514 DOI: 10.1002/cbic.201500422] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 12/29/2022]
Abstract
Genetically programmed cell death is a universal and fundamental cellular process in multicellular organisms. Apoptosis and necroptosis, two common forms of programmed cell death, play vital roles in maintenance of homeostasis in metazoans. Dysfunction of the regulatory machinery of these processes can lead to carcinogenesis or autoimmune diseases. Inappropriate death of essential cells can lead to organ dysfunction or even death; ischemia-reperfusion injury and neurodegenerative disorders are examples of this. Recently, novel forms of non-apoptotic programmed cell death have been identified. Although these forms of cell death play significant roles in both physiological and pathological conditions, the detailed molecular mechanisms underlying them are still poorly understood. Here, we discuss progress in using small molecules to dissect three forms of non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Ting Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, 202 Cheng Fu Road, Beijing, 100871, China.,National Institute of Biological Sciences (NIBS), No 7 Life Science Road, Zhong Guan Cun Life Science Park, Beijing, 102206, China
| | - Daohong Liao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, 202 Cheng Fu Road, Beijing, 100871, China
| | - Xiaohui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, 202 Cheng Fu Road, Beijing, 100871, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, 202 Cheng Fu Road, Beijing, 100871, China. .,National Institute of Biological Sciences (NIBS), No 7 Life Science Road, Zhong Guan Cun Life Science Park, Beijing, 102206, China.
| |
Collapse
|
45
|
Mohanty S, Reddy SG, RamaDevi B, Karmakar AC. An assembly of structurally diverse small and simple 5-aminomethylene derivatives of 2,4-thiazolidinedione and studies of their biological activity. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1447-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Target deconvolution of bioactive small molecules: the heart of chemical biology and drug discovery. Arch Pharm Res 2015; 38:1627-41. [DOI: 10.1007/s12272-015-0618-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/19/2015] [Indexed: 01/01/2023]
|
47
|
Jeong S, Kim JY, Choi H, Kim H, Lee I, Soh MS, Nam HG, Chang YT, Lim PO, Woo HR. Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:116-126. [PMID: 25711819 DOI: 10.1016/j.plantsci.2015.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/31/2014] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Plant roots anchor the plant to the soil and absorb water and nutrients for growth. Understanding the molecular mechanisms regulating root development is essential for improving plant survival and agricultural productivity. Extensive molecular genetic studies have provided important information on crucial components for the root development control over the last few decades. However, it is becoming difficult to identify new regulatory components in root development due to the functional redundancy and lethality of genes involved in root development. In this study, we performed a chemical genetic screen to identify novel synthetic compounds that regulate root development in Arabidopsis seedlings. The screen yielded a root growth inhibitor designated as 'rootin', which inhibited Arabidopsis root development by modulating cell division and elongation, but did not significantly affect shoot development. Transcript analysis of phytohormone marker genes revealed that rootin preferentially altered the expression of auxin-regulated genes. Furthermore, rootin reduced the accumulation of PIN1, PIN3, and PIN7 proteins, and affected the auxin distribution in roots, which consequently may lead to the observed defects in root development. Our results suggest that rootin could be utilized to unravel the mechanisms underlying root development and to investigate dynamic changes in PIN-mediated auxin distribution.
Collapse
Affiliation(s)
- Suyeong Jeong
- Department of Life Sciences, POSTECH, Hyojadong, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Jun-Young Kim
- Department of Chemistry, NUS & Singapore Bioimaging Consortium, A*STAR, Singapore 117543, Singapore
| | - Hyunmo Choi
- Department of Integrative Bioscience and Biotechnology, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea
| | - Hyunmin Kim
- Department of Life Sciences, POSTECH, Hyojadong, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Ilhwan Lee
- Department of Life Sciences, POSTECH, Hyojadong, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Moon-Soo Soh
- Department of Integrative Bioscience and Biotechnology, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Republic of Korea; Department of New Biology, DGIST, Daegu 711-873, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, NUS & Singapore Bioimaging Consortium, A*STAR, Singapore 117543, Singapore.
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu 711-873, Republic of Korea.
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu 711-873, Republic of Korea.
| |
Collapse
|
48
|
Tan SWB, Chai CLL, Moloney MG, Thompson AL. Synthesis of Mimics of Pramanicin from Pyroglutamic Acid and Their Antibacterial Activity. J Org Chem 2015; 80:2661-75. [DOI: 10.1021/jo502810b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Song Wei Benjamin Tan
- Department
of Chemistry, Chemistry Research Laboratory, The University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Institute of Chemical
and Engineering Sciences (ICES), 8
Biomedical Grove, Neuros Building, #07-01/02/03, Singapore 138665
| | - Christina L. L. Chai
- Institute of Chemical
and Engineering Sciences (ICES), 8
Biomedical Grove, Neuros Building, #07-01/02/03, Singapore 138665
- Department
of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Mark G. Moloney
- Department
of Chemistry, Chemistry Research Laboratory, The University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Amber L. Thompson
- Department
of Chemistry, Chemistry Research Laboratory, The University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
49
|
Islam K. Allele-specific chemical genetics: concept, strategies, and applications. ACS Chem Biol 2015; 10:343-63. [PMID: 25436868 DOI: 10.1021/cb500651d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relationship between DNA and protein sequences is well understood, yet because the members of a protein family/subfamily often carry out the same biochemical reaction, elucidating their individual role in cellular processes presents a challenge. Forward and reverse genetics have traditionally been employed to understand protein functions with considerable success. A fundamentally different approach that has gained widespread application is the use of small organic molecules, known as chemical genetics. However, the slow time-scale of genetics and inherent lack of specificity of small molecules used in chemical genetics have limited the applicability of these methods in deconvoluting the role of individual proteins involved in fast, dynamic biological events. Combining the advantages of both the techniques, the specificity achieved with genetics along with the reversibility and tunability of chemical genetics, has led to the development of a powerful approach to uncover protein functions in complex biological processes. This technique is known as allele-specific chemical genetics and is rapidly becoming an essential toolkit to shed light on proteins and their mechanism of action. The current review attempts to provide a comprehensive description of this approach by discussing the underlying principles, strategies, and successful case studies. Potential future implications of this technology in expanding the frontiers of modern biology are discussed.
Collapse
Affiliation(s)
- Kabirul Islam
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
50
|
Lee JS, Lee JW, Kang N, Ha HH, Chang YT. Diversity-Oriented Approach for Chemical Biology. CHEM REC 2015; 15:495-510. [DOI: 10.1002/tcr.201402087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Jun-Seok Lee
- Molecular Recognition Research Center; Korea Institute of Science and Technology (KIST); 39-1 Hawolgok-dong Seoul 136-791 Republic of Korea
- Department of Biological Chemistry; University of Science and Technology (UST); 113 Gwahank-ro, Yuseong-gu Daejeon 305-333 Republic of Korea
| | - Jae Wook Lee
- Natural Product Research Center; Korea Institute of Science and Technology (KIST); 679 Saimdang-ro Gangneung Ganwon-do 210-340 Republic of Korea
- Department of Biological Chemistry; University of Science and Technology (UST); 113 Gwahank-ro, Yuseong-gu Daejeon 305-333 Republic of Korea
| | - Namyoung Kang
- Lab of Bioimaging Probe Development; Singapore Bioimaging Consortium (SBIC), 11 Biopolis Way, #02-02 Helios; Agency for Science, Technology and Research (A*STAR); Singapore 138667 Singapore
| | - Hyung-Ho Ha
- College of Pharmacy; Sunchon National University; Sunchon 540-742 Republic of Korea
| | - Young-Tae Chang
- Lab of Bioimaging Probe Development; Singapore Bioimaging Consortium (SBIC), 11 Biopolis Way, #02-02 Helios; Agency for Science, Technology and Research (A*STAR); Singapore 138667 Singapore
- Department of Chemistry and Medicinal Chemistry Program; National University of Singapore (NUS); 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|