1
|
Gao CJ, Li ZX, Mou WL, Li YY, Jin GY, Fan SJ, Pan X, Han HL, Li ZF, Liu JM, Wang G, Yang W, Jin QH. Synthesis of Silver(I) Complexes through In Situ Reactions of dppeda with dmp in the Presence of Silver Halides for Photocatalysis. Inorg Chem 2024; 63:18689-18698. [PMID: 39303191 DOI: 10.1021/acs.inorgchem.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Due to the unique photosensitivity of silver compounds, they exhibit good photocatalytic activity as photocatalysts in the degradation of water pollutants. However, silver compounds have poor cycling stability and are prone to decomposition and reaction under light to form metallic silver, which greatly limits their practical application. Herein, a (2-(2-(diphenylphosphaneyl)ethyl)-9-methyl-1.10-phenanthroline (PSNNP)) pincer ligand was designed for stabilizing the central metal. The in situ-formed PSNNP ligand could be readily generated in one pot with the participation of silver halides. The reaction of silver halides with dppeda (N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine) in the presence of dmp (2,9-dimethyl-1,10-phenanthroline) in acetonitrile afforded complexes Ag2X2 (PSNNP)2 (complexes 1, 2) (X = Cl, Br). Single-crystal X-ray diffraction shows that the tridentate coordination of the pincer ligand provides strong binding with metal centers and leads to high stability of the pincer metal unit. The removal rate of rhodamine B (RhB) by complexes 1 and 2 can reach up to 100%, demonstrating an excellent photocatalytic degradation performance for organic dyes. The important effect of PSNNP ligands on photocatalytic properties after coordination with central metals was studied through experiments and discrete Fourier transform (DFT) calculations. The photocatalytic reaction mechanism of complexes 1 and 2 was also studied. This result provides an effective pathway for the first synthesis of PSNNP and interesting insights into photocatalytic degradation chemistry.
Collapse
Affiliation(s)
- Cheng-Jie Gao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zi-Xi Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wen-Long Mou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ying-Yu Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guan-Yu Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Si-Jie Fan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xun Pan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jian-Ming Liu
- Mathematical Sciences, Peking University, Beijing 100871, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- The State Key Laboratory of Rare Earth Resource Utilization, Changchun, Jilin 130000, China
| |
Collapse
|
2
|
Wang Y, Huang Y, Bao X, Wei X, Wei S, Qu J, Wang B. Organocatalytic diastereo- and atropo-selective construction of eight-membered bridged (hetero)biaryls via asymmetric intramolecular [3 + 2] cycloaddition. Chem Sci 2024; 15:8880-8887. [PMID: 38873056 PMCID: PMC11168085 DOI: 10.1039/d4sc01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
An unprecedented and straightforward route for the asymmetric construction of privileged atroposelective bridged (hetero)biaryl eight-membered scaffolds has been accomplished through chiral phosphoric acid catalyzed asymmetric intramolecular [3 + 2] cycloaddition of innovative (hetero)biaryl aldehydes with 3-aminooxindole hydrochlorides. A class of eight-membered bridged (hetero)biaryl lactones fused to spiro[pyrrolidine-oxindole] derivatives, possessing both chiral C-C/C-N axes and multiple contiguous stereocenters, were obtained in good yields with excellent enantioselectivities and diastereoselectivities in one step through this direct strategy. In addition, the good scalability and derivatization of the title compounds demonstrated their synthetic utility.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Yue Huang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xingfu Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Shiqiang Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Jingping Qu
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Baomin Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
3
|
Choudhary K, Joshi H, Rohilla S, Singh VK. Silver-Catalyzed Asymmetric Double Desymmetrization via Vinylogous Michael Addition of Prochiral α,α-Dicyanoalkenes to Cyclopentendiones. Chemistry 2024; 30:e202304078. [PMID: 38311856 DOI: 10.1002/chem.202304078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/06/2024]
Abstract
An asymmetric double desymmetrization methodology has been developed for synthesizing densely functionalized chiral cyclopentylcyclohexane scaffolds. We have constructed four chiral centers, including an all-carbon quaternary stereocenter in a single C-C bond formation event. The methodology has high functional-group tolerance and delivers a broad range of enantioenriched products. This vinylogous Michael addition reaction of prochiral α,α-dicyanocyclohexane to 2,2-disubstituted cyclopentene-1,3-dione is catalyzed by a chiral Ag-(R)-DTBM-SEGPHOS catalyst.
Collapse
Affiliation(s)
- Kavita Choudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India)
| | - Harshit Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India)
| | - Shweta Rohilla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India)
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India)
| |
Collapse
|
4
|
Ma Y. Computational Research on Ag(I)-Catalyzed Cubane Rearrangement: Mechanism, Metal and Counteranion Effect, Ligand Engineering, and Post-Transition-State Desymmetrization. J Org Chem 2024; 89:3430-3440. [PMID: 38375633 DOI: 10.1021/acs.joc.3c02891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ag(I) salts have demonstrated superior catalytic activity in the cubane-cuneane rearrangement. This research presents a comprehensive mechanistic investigation using high-level computations. The reaction proceeds via oxidative addition (OA) of Ag(I) to the C-C bond, followed by C-Ag bond cleavage and subsequent dynamically concerted carbocation rearrangement. The OA of Ag(I) exhibits significant more electrophilic nature than classical transition metal-induced OA, and the superior catalytic activity of Ag(I) is attributed to the accessibility of a highly electrophilic "bare" Ag+ center and a relatively weak Ag-C bond. However, the highly Lewis acidic nature of the Ag(I) center limits the substrate scope. To address this problem, ligand and counteranion screening was conducted, revealing that chiral biarylether ligands in combination with BF4- as the counteranion offer both enhanced reactivity and improved chemoselectivity while suppressing the Lewis acidity. Additionally, quasi-classical molecular dynamics simulations indicate the possibility of a novel desymmetrization pathway through post-transition-state dynamics in the biarylether-Ag(I)-BF4- system, thereby providing a potential avenue for enantioselective cuneane synthesis.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd., Xihu District, Hangzhou City, Zhejiang Province 310003, People's Republic of China
| |
Collapse
|
5
|
Yao Y, Shi X, Zhao Z, Zhang A, Li W. Dendronization of chitosan to afford unprecedent thermoresponsiveness and tunable microconfinement. J Mater Chem B 2023; 11:11024-11034. [PMID: 37975703 DOI: 10.1039/d3tb01803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Convenient chemical modification of biomacromolecules to create novel biocompatible functional materials satisfies the current requirements of sustainable chemistry. Dendronization of chitosan with dendritic oligoethylene glycols (OEGs) paves a strategy for the preparation of functional dendronized chitosans (DCSs) with unprecedent thermoresponsive behavior, which inherit biological features from polysaccharides and the topological features from dendritic OEGs. In addition, densely packed dendritic OEG chains around the backbone provide efficient cooperative interactions and form an intriguing confined microenvironment based on the degradable biopolymers. In this perspective, we describe the principle for the preparation of the thermoresponsive DCSs, and focus on the molecular envelop effect from the hydrophobic microconfinement to the encapsulated guest molecules or moieties. Particular attention is put on their capacity to regulate behavior and the functions of the encapsulated guests through thermally-mediated dehydration and collapse of the densely packed dendritic OEGs. We believe that the methodology described here may provide prospects for the fabrication of functional materials from biomacromolecules, especially when used as environmentally friendly nanomaterials or in accurate diagnosis and therapy.
Collapse
Affiliation(s)
- Yi Yao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Xiaoxin Shi
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Zihong Zhao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| |
Collapse
|
6
|
Zheng Y, Vidal-Moya A, Hernández-Garrido JC, Mon M, Leyva-Pérez A. Silver-Exchanged Zeolite Y Catalyzes a Selective Insertion of Carbenes into C-H and O-H Bonds. J Am Chem Soc 2023; 145. [PMID: 37922487 PMCID: PMC10655197 DOI: 10.1021/jacs.3c08317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
Commercially available zeolite Y modulates the catalytic activity and selectivity of ultrasmall silver species during the Buchner reaction and the carbene addition to methylene and hydroxyl bonds, by simply exchanging the counter cations of the zeolite framework. The zeolite acts as a macroligand to tune the silver catalytic site, enabling the use of this cheap and recyclable solid catalyst for the in situ formation of carbenes from diazoacetate and selective insertion in different C-H (i.e., cyclohexane) and C-O (i.e., water) bonds. The amount of catalyst in the reaction can be as low as ≤0.1 mol % silver. Besides, this reactivity allows deeply drying the HY zeolite framework by making the strongly adsorbed water molecules react with the in situ formed carbenes.
Collapse
Affiliation(s)
- Yongkun Zheng
- Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Alejandro Vidal-Moya
- Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Juan Carlos Hernández-Garrido
- Departamento
de Ciencia de los Materiales e Ingeniería Metalúrgica
y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain
| | - Marta Mon
- Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Leyva-Pérez
- Instituto
de Tecnología Química (UPV-CSIC), Universitat Politècnica de València−Consejo
Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
7
|
Chen Z, Zhong W, Liu S, Zou T, Zhang K, Gong C, Guo W, Kong F, Nie L, Hu S, Wang H. Highly Stereodivergent Synthesis of Chiral C4-Ester-Quaternary Pyrrolidines: A Strategy for the Total Synthesis of Spirotryprostatin A. Org Lett 2023; 25:3391-3396. [PMID: 37162168 DOI: 10.1021/acs.orglett.3c00904] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we disclose two sets of highly diastereo- and enantioselective [3 + 2] cycloadditions of iminoesters with various α-substituted acrylates, especially for sterically hindered and weakly activated α-aryl or alkyl-substituted acrylates and alkenal, alkynal, or unstable aliphatic aldehyde-derived iminoesters, catalyzed by the AgHMDS/DTBM-Segphos or Ag2O/CA-AA-Amidphos catalytic system, achieving the stereodivergent synthesis of chiral C4-ester-quaternary exo- or endo-pyrrolidines with high yields and excellent diastereo- and enantioselectivities (up to >99:1 dr and >99% ee). More importantly, the gram-scale synthetic exo-adduct displays significant applications in the aspect of realizing the total synthesis of the spirotryprostatin A alkaloid via nine steps in a 36% overall yield.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Wei Zhong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Sihua Liu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Ting Zou
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Kaiqiang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Chuliang Gong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Wenyan Guo
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Feizhi Kong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Libo Nie
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Shunqin Hu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Haifei Wang
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| |
Collapse
|
8
|
Ag2CO3 catalyzed aza-michael addition of pyrazoles to α, β-unsaturated carbonyl compounds: A new access to N-alkylated pyrazole derivatives. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Pardeshi S, Pownthurai B, Ganesan G, Keshari H, Jadhav Y, Chaskar A. Selective oxidation of vinylbenzenes & acyloins in the presence of silver catalyst using molecular oxygen as terminal oxidant. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
10
|
Rios EAM, Gomes CMB, Silvério GL, Luz EQ, Ali S, D'Oca CDRM, Albach B, Campos RB, Rampon DS. Silver-catalyzed direct selanylation of indoles: synthesis and mechanistic insights. RSC Adv 2023; 13:914-925. [PMID: 36686957 PMCID: PMC9811358 DOI: 10.1039/d2ra06813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023] Open
Abstract
Herein we describe the Ag(i)-catalyzed direct selanylation of indoles with diorganoyl diselenides. The reaction gave 3-selanylindoles with high regioselectivity and also allowed direct access to 2-selanylindoles when the C3 position of the indole ring was blocked via a process similar to Plancher rearrangement. Experimental analyses and density functional theory calculations were carried out in order to picture the reaction mechanism. Among the pathways considered (via concerted metalation-deprotonation, Ag(iii), radical, and electrophilic aromatic substitution), our findings support a classic electrophilic aromatic substitution via Lewis adducts between Ag(i) and diorganoyl diselenides. The results also afforded new insights into the interactions between Ag(i) and diorganoyl diselenides.
Collapse
Affiliation(s)
- Elise Ane Maluf Rios
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Carla M B Gomes
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Gabriel L Silvério
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Eduardo Q Luz
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Sher Ali
- University of São Paulo, Faculty of Animal Science and Food Engineering Pirassununga SP Brazil
| | - Caroline da Ros Montes D'Oca
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| | - Breidi Albach
- Health Department, Unicesumar - The University Center of Maringá Curitiba PR 81070-190 Brazil
| | - Renan B Campos
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná Rua Deputado Heitor de Alencar Furtado, 5000 81280-340 Curitiba Brazil
| | - Daniel S Rampon
- Department of Chemistry, Laboratory of Polymers and Catalysis (LaPoCa), Federal University of Paraná - UFPR P. O. Box 19061 Curitiba PR 81531-990 Brazil
| |
Collapse
|
11
|
Wu Y, Frank N, Song Q, Liu M, Anderson EA, Bi X. Silver catalysis in organic synthesis: A computational view. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Yu B, Selkti M, Ardisson J, Lannou MI, Sorin G. Access to Conjugated Enynes via Allenyl Silver Formation/Cyclization/Decarboxylation Reaction Catalyzed by Silver Carbonate(I). Org Lett 2022; 24:5721-5725. [PMID: 35920719 DOI: 10.1021/acs.orglett.2c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we develop a novel and straightforward access to cyclic conjugated enynes catalyzed by silver carbonate/DBU from readily available substrates with good yields. The reaction is easy to set up, broad in scope, and can also be conducted in a one-pot fashion from easily accessible substrates through a sequence Michael addition reaction/cyclization. Based on our previous works, the mechanism proposed would involve an allenyl silver intermediate and decarboxylation reaction.
Collapse
Affiliation(s)
- Bao Yu
- Université de Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Mohamed Selkti
- Université de Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Janick Ardisson
- Université de Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Marie-Isabelle Lannou
- Université de Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Geoffroy Sorin
- Université de Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| |
Collapse
|
13
|
Ma C, Pan W, Zhang J, Zeng X, Gong C, Xu H, Shen R, Zhu DR, Xie J. Metal-organic frameworks derived from chalcone dicarboxylic acid: new topological characters and initial catalytic properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Abstract
Until the year 2000, gold compounds were considered catalytically inert. Subsequently, it was found that they are able to promote the nucleophilic attack on unsaturated substrates by forming an Au–π-system. The main limitation in the use of these catalytic systems is the ease with which they decompose, which is avoided by stabilization with an ancillary ligand. N-heterocyclic carbenes (NHCs), having interesting s-donor capacities, are able to stabilize the gold complexes (Au (I/III) NHC), favoring the exploration of their catalytic activity. This review reports the state of the art (years 2007–2022) in the nucleophilic addition of amines (hydroamination) and water (hydration) to the terminal and internal alkynes catalyzed by N-heterocyclic carbene gold (I/III) complexes. These reactions are particularly interesting both because they are environmentally sustainable and because they lead to the production of important intermediates in the chemical and pharmaceutical industry. In fact, they have an atom economy of 100%, and lead to the formation of imines and enamines, as well as the formation of ketones and enols, all important scaffolds in the synthesis of bioactive molecules, drugs, heterocycles, polymers, and bulk and fine chemicals.
Collapse
|
15
|
Anand R, Cham PS, Gannedi V, Sharma S, Kumar M, Singh R, Vishwakarma RA, Singh PP. Stereoselective Synthesis of Nonpsychotic Natural Cannabidiol and Its Unnatural/Terpenyl/Tail-Modified Analogues. J Org Chem 2022; 87:4489-4498. [PMID: 35289168 DOI: 10.1021/acs.joc.1c02571] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report a three-step concise and stereoselective synthesis route to one of the most important phytocannabinoids, namely, (-)-cannabidiol (-CBD), from inexpensive and readily available starting material R-(+)-limonene. The synthesis involved the diastereoselective bifunctionalization of limonene, followed by effective elimination leading to the generation of key chiral p-mentha-2,8-dien-1-ol. The chiral p-mentha-2,8-dien-1-ol on coupling with olivetol under silver catalysis provided regiospecific (-)-CBD, contrary to reported ones which gave a mixture. The newly developed approach was further extended to its structural analogues cannabidiorcin and other tail/terpenyl-modified analogues. Moreover, its opposite isomer (+)-cannabidiol was also successfully synthesized from S-(-)-limonene.
Collapse
Affiliation(s)
- Radhika Anand
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu180001, India
| | - Pankaj Singh Cham
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu180001, India
| | - Veeranjaneyulu Gannedi
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu180001, India
| | - Sumit Sharma
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu180001, India
| | - Mukesh Kumar
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu180001, India
| | - Rohit Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu180001, India
| | - Ram A Vishwakarma
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu180001, India
| | - Parvinder Pal Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu180001, India.,Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Luo J, Liu Y, Wang H, Gong C, Zhou Z, Zhou Q. Chiral 1,2-Diaminocyclohexane-α-Amino Acid-Derived Amidphos/Ag(I)-Catalyzed Divergent Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Nia RH, Mamaghani M, Tavakoli F. Ag-Catalyzed Multicomponent Synthesis of Heterocyclic Compounds: A Review. Curr Org Synth 2021; 19:COS-EPUB-117839. [PMID: 34515006 DOI: 10.2174/1570179418666210910105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
The investigation of the procedures for the multi-component synthesis of heterocycles has attracted the interest of organic and medicinal chemists. The use of heterogeneous catalysts, especially transition metal catalysts in organic synthesis, can provide a new, improved alternative to traditional methods in modern synthetic chemistry. The main focus is on the utilization of silver as a catalyst for the multi-component synthesis of heterocyclic compounds. The present review describes some important reported studies for the period of 2010 to 2020. Conclusion: The present review addresses some of the important reported studies on multi-component synthesis of heterocycles in the period of 2010-2020. These approaches were performed under classical and nonclassical conditions, using Ag salts, Ag NPs, Ag on the support, Ag as co-catalysts with other transition metals, ionic liquids, acidic or basic materials. Most of the reported reactions were performed under solvent-free conditions or in green solvents and the utilized catalysts were mostly recyclable. The main aim of the present review is to provide the organic chemists with the most appropriate procedures in the multi-component synthesis of desired heterocycles using silver catalysts.
Collapse
Affiliation(s)
- Roghayeh Hossein Nia
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Manouchehr Mamaghani
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Fatemeh Tavakoli
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| |
Collapse
|
19
|
Bhattacharya T, Dutta S, Maiti D. Deciphering the Role of Silver in Palladium-Catalyzed C–H Functionalizations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02552] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subhabrata Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Zhang KQ, Deng QF, Luo J, Gong CL, Chen ZG, Zhong W, Hu SQ, Wang HF. Multifunctional Ag(I)/CAAA-Amidphos Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of α-Substituted Acrylamides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kai-Qiang Zhang
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Qi-Fu Deng
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Jie Luo
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Chu-Liang Gong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Zhi-Gang Chen
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Wei Zhong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Shun-Qin Hu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Hai-Fei Wang
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
21
|
Park Y, Lee JS, Ryu J. Gold(I)‐Catalyzed Intramolecular Dehydrative Amination of Sulfamate Esters Tethered to Allylic Alcohols: A Strategy for the Synthesis of Cyclic Sulfamidates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunjeong Park
- College of Pharmacy & Graduate School of Pharmaceutical Sciences Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Ji Sun Lee
- College of Pharmacy & Graduate School of Pharmaceutical Sciences Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Jae‐Sang Ryu
- College of Pharmacy & Graduate School of Pharmaceutical Sciences Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| |
Collapse
|
22
|
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
- Department of Chemistry Fudan University 2005 Songhu Rd. Shanghai 200438 P. R. China
| | - Zhen Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
| | - Hai‐yan Diao
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
| | - Zhang‐jie Shi
- Department of Chemistry Fudan University 2005 Songhu Rd. Shanghai 200438 P. R. China
| |
Collapse
|
23
|
Bathie F, Stewart AWE, Canty AJ, O'Hair RAJ. Dissecting transmetalation reactions at the molecular level: C-B versus F-B bond activation in phenyltrifluoroborate silver complexes. Dalton Trans 2021; 50:1496-1506. [PMID: 33439189 DOI: 10.1039/d0dt03309j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gas-phase unimolecular reactions of the silver(i) complex [Ag(PhBF3)2]-, formed via electrospray ionisation mass spectrometry of solutions containing the phenyltrifluoroborate salt and AgNO3, are examined. Upon collision induced dissociation (CID) three major reaction channels were observed for [Ag(PhBF3)2]-: Ph- group transfer via a transmetalation reaction to yield [PhAg(PhBF3)]-; F- transfer to produce [FAg(PhBF3)]-; and release of PhBF3-. The anionic silver product complexes of these reactions, [LAg(PhBF3)]- (where L = Ph and F), were then mass-selected and subjected to a further stage of CID. [PhAg(PhBF3)]- undergoes a Ph- group transfer via transmetalation to yield [Ph2Ag]- with loss of BF3. [FAg(PhBF3)]- solely fragments via loss of BF4-, a reaction that involves Ph- group transfer from B to Ag in conjunction with F- transfer from Ag to B. Density functional theory (DFT) calculations on the various competing pathways reveal that: (i) the overall endothermicities govern the experimentally observed product ion abundances; (ii) the Ph- group and F- transfer reactions proceed via late transition states; and (iii) formation of BF4- from [FAg(PhBF3)]- is a multistep reaction in which Ph- group transfer from B to Ag proceeds first to produce a [FAgPh(BF3)]- complex in which the BF3 moiety is initially weakly bound to the ipso-carbon of the phenyl group and then migrates across the linear [FAgPh]- moiety from C to Ag to F yielding [PhAg(BF4)]-, which can then dissociate via loss of PhAg.
Collapse
Affiliation(s)
- Fiona Bathie
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. and School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Adam W E Stewart
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. and School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Allan J Canty
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. and School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia. and School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
24
|
Zorba LP, Vougioukalakis GC. The Ketone-Amine-Alkyne (KA2) coupling reaction: Transition metal-catalyzed synthesis of quaternary propargylamines. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Wang W, Bao X, Wei S, Nawaz S, Qu J, Wang B. Asymmetric sequential annulation/aldol process of 4-isothiocyanato pyrazolones and allenones: access to novel spiro[pyrrole-pyrazolones] and spiro[thiopyranopyrrole-pyrazolones]. Chem Commun (Camb) 2021; 57:363-366. [PMID: 33319884 DOI: 10.1039/d0cc07113g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalytic asymmetric sequential annulation/aldol reaction of 4-isothiocyanato pyrazolones and allenyl ketones has been developed, which furnished a series of spiro[pyrrole-pyrazolone] heterocycles and structurally novel spiro[thiopyranopyrrole-pyrazolone] derivatives in good yields with high to excellent enantioselectivities. Notably, parallel resolution of racemic spiro[pyrrole-pyrazolones] was achieved by a catalyst-controlled asymmetric intramolecular vinylogous aldol process. Structure diversity of the product was further enhanced by ready transformations.
Collapse
Affiliation(s)
- Wenyao Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
26
|
Cheng Y, Yu S, He Y, An G, Li G, Yang Z. C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(i)-Pd(ii) catalysis vs. Pd(ii) catalysis. Chem Sci 2021; 12:3216-3225. [PMID: 34164090 PMCID: PMC8179361 DOI: 10.1039/d0sc05409g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles have been developed. The former route enables C4-arylation in a highly efficient and mild manner and the latter route provides an alternative straightforward protocol for synthesis of C2/C4 disubstituted indoles. The mechanism studies imply that the different reaction pathways were tuned by the distinct acid additives, which led to either the Pd(i)-Pd(ii) pathway or Pd(ii) catalysis.
Collapse
Affiliation(s)
- Yaohang Cheng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Shijie Yu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Yuhang He
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Zhenyu Yang
- School of Pharmaceutical and Materials Engineering, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|
27
|
Nathaniel CR, Neetha M, Anilkumar G. Silver‐catalyzed pyrrole synthesis: An overview. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Kottayam India
| |
Collapse
|
28
|
Similarities and differences in the mechanisms alkyne and isonitrile transformations catalyzed by silver ions and nanoparticles. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Catalysis with Silver: From Complexes and Nanoparticles to MORALs and Single-Atom Catalysts. Catalysts 2020. [DOI: 10.3390/catal10111343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Silver catalysis has a rich and versatile chemistry now expanding from processes mediated by silver complexes and silver nanoparticles to transformations catalyzed by silver metal organic alloys and single-atom catalysts. Focusing on selected recent advances, we identify the key advantages offered by these highly selective heterogeneous catalysts. We conclude by offering seven research and educational guidelines aimed at further progressing the field of new generation silver-based catalytic materials.
Collapse
|
30
|
King BH, Wang ML, Jesse KA, Kaur G, Tran B, Walser-Kuntz R, Iafe RG, Wenzel AG. Silver-Catalyzed, N-Formylation of Amines Using Glycol Ethers. J Org Chem 2020; 85:13256-13263. [PMID: 32975945 DOI: 10.1021/acs.joc.0c01552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A silver-catalyzed protocol was found to afford the N-formylation of amines in moderate-to-good yields. Ethylene glycol-derived, oligomeric ethers were found to function as the formylating agent, with 1,4-dioxane affording the best results. This reaction does not require the use of stoichiometric activating reagents, and avoids the use of explosive reagents or toxic gases, such as CO, as the C1 synthon. Mechanistic studies indicate a single-electron transfer-based pathway. This work highlights the ability of silver to participate in unexpected reaction pathways.
Collapse
Affiliation(s)
- Bradley H King
- Keck Science Department, Scripps, Claremont McKenna and Pitzer Colleges, Claremont, California 91711, United States
| | - Michelle L Wang
- Keck Science Department, Scripps, Claremont McKenna and Pitzer Colleges, Claremont, California 91711, United States
| | - Kate A Jesse
- Keck Science Department, Scripps, Claremont McKenna and Pitzer Colleges, Claremont, California 91711, United States
| | - Guneet Kaur
- Keck Science Department, Scripps, Claremont McKenna and Pitzer Colleges, Claremont, California 91711, United States
| | - Brianna Tran
- Keck Science Department, Scripps, Claremont McKenna and Pitzer Colleges, Claremont, California 91711, United States
| | | | - Robert G Iafe
- Department of Chemistry and Biochemistry, California State University, San Marcos, California 92078, United States
| | - Anna G Wenzel
- Keck Science Department, Scripps, Claremont McKenna and Pitzer Colleges, Claremont, California 91711, United States
| |
Collapse
|
31
|
Lin T, Pan Z, Tu Y, Zhu S, Wu H, Liu Y, Li Z, Zhang J. Design and Synthesis of TY‐Phos and Application in Palladium‐Catalyzed Enantioselective Fluoroarylation of
gem
‐Difluoroalkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tao‐Yan Lin
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Zhangjin Pan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Youshao Tu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Shuai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Yu Liu
- College of Chemistry and Life Science Advanced Institute of Materials Science Changchun University of Technology Changchun 130012 China
| | - Zhiming Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
32
|
Lin TY, Pan Z, Tu Y, Zhu S, Wu HH, Liu Y, Li Z, Zhang J. Design and Synthesis of TY-Phos and Application in Palladium-Catalyzed Enantioselective Fluoroarylation of gem-Difluoroalkenes. Angew Chem Int Ed Engl 2020; 59:22957-22962. [PMID: 32893388 DOI: 10.1002/anie.202008262] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/07/2020] [Indexed: 01/10/2023]
Abstract
The first example of highly enantioselective fluoroarylation of gem-difluoroalkenes with aryl halides is presented by using a new chiral sulfinamide phosphine (Sadphos) type ligand TY-Phos. N-Me-TY-Phos can be easily synthesized on a gram scale from readily available starting materials in three steps. Salient features of this work including readily available starting materials, good yields, high enantioselectivities as well as broad substrate scope make this approach very practical and attractive. Notably, the asymmetric synthesis of an analogue of a biologically active molecule is also reported.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhangjin Pan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Shuai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
33
|
Chupina AV, Korolkov I, Abramov PA, Sokolov MN. Stoichiometric and Structural Diversity of Silver Hydroxymethylacetylenide Coordination Polymers. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anastasiya V. Chupina
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russia
| | - Ilya Korolkov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
- South Ural State University 76 Lenina st. 454080 Chelyabinsk Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
| |
Collapse
|
34
|
Yan X, Liu H, Wei S, Huang H. Catalytic Claisen Rearrangement by Intercepting Ketenimines with Propargylic Alcohols: A Strategy to Generate and Transform Ketenimines from Radicals. Org Lett 2020; 22:6794-6798. [PMID: 32794715 DOI: 10.1021/acs.orglett.0c02306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient strategy for facilitating the cross-coupling of two radicals has been established via the coordination of a radical with a metal catalyst. This strategy provides a remarkable ability to harness the reactivity of nitrile-containing azoalkanes and enables a novel cascade reaction with nitrile-containing azoalkanes and propargylic alcohols to be established. By using this reaction, a range of acetylenic and allenic amides were obtained that provides a versatile platform for further derivatizations.
Collapse
Affiliation(s)
- Xuyang Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongchi Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shenquan Wei
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei 230026, P. R. China
| |
Collapse
|
35
|
Wu Y, Xiao Y, Yang Y, Song R, Li J. Recent Advances in Silver‐Mediated Radical Difunctionalization of Alkenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Yu‐Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Yong‐Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Ren‐Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
36
|
Zhao M, Huang S, Fu Q, Li W, Guo R, Yao Q, Wang F, Cui P, Tung C, Sun D. Ambient Chemical Fixation of CO
2
Using a Robust Ag
27
Cluster‐Based Two‐Dimensional Metal–Organic Framework. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meihua Zhao
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Shan Huang
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Weifeng Li
- School of Physics Shandong University Jinan 250100 P. R. China
| | - Rui Guo
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252000 P. R. China
| | - Fenglong Wang
- School of Materials Science and Engineering Shandong University Jinan 250061 P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China
- College of Chemistry Chemical Engineering and Materials Science Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
37
|
Zhao M, Huang S, Fu Q, Li W, Guo R, Yao Q, Wang F, Cui P, Tung C, Sun D. Ambient Chemical Fixation of CO
2
Using a Robust Ag
27
Cluster‐Based Two‐Dimensional Metal–Organic Framework. Angew Chem Int Ed Engl 2020; 59:20031-20036. [DOI: 10.1002/anie.202007122] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Meihua Zhao
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Shan Huang
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Weifeng Li
- School of Physics Shandong University Jinan 250100 P. R. China
| | - Rui Guo
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Qingxia Yao
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252000 P. R. China
| | - Fenglong Wang
- School of Materials Science and Engineering Shandong University Jinan 250061 P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China
- College of Chemistry Chemical Engineering and Materials Science Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering Key Lab of Colloid and Interface Chemistry of Ministry of Education State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology Liaocheng University Liaocheng 252000 P. R. China
| |
Collapse
|
38
|
Cheng X, Yan D, Dong X, Wang C. Chiral Trifluoromethylated Pyrrolidines via Cu–Catalyzed Asymmetric 1,3‐Dipolar Cycloaddition. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Dingce Yan
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
- Analytical and Testing Center Huazhong University of Science and Technology Wuhan 430072 China
| | - Xiu‐Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
39
|
Li Z, Peng J, He C, Xu J, Ren H. Silver(I)-Mediated Cascade Reaction of 2-(1-Alkynyl)-2-alken-1-ones with 2-Naphthols. Org Lett 2020; 22:5768-5772. [DOI: 10.1021/acs.orglett.0c01803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanhuan Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Jingyi Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Chonglong He
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Jianfeng Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| |
Collapse
|
40
|
Garanzini D, Pirovano V, Menghi I, Celentano G, Rizzato S, Rossi E, Caselli A, Abbiati G. [Ag(PcL)]‐Catalysed Domino Approach to 6‐Substituted Benzoxazino Isoquinolines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Davide Garanzini
- Dipartimento di Scienze Farmaceutiche Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian, 21 20133 Milano Italy
| | - Valentina Pirovano
- Dipartimento di Scienze Farmaceutiche Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian, 21 20133 Milano Italy
| | - Ilaria Menghi
- Dipartimento di Scienze Farmaceutiche Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian, 21 20133 Milano Italy
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Giuseppe Celentano
- Dipartimento di Scienze Farmaceutiche Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian, 21 20133 Milano Italy
| | - Silvia Rizzato
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Elisabetta Rossi
- Dipartimento di Scienze Farmaceutiche Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian, 21 20133 Milano Italy
| | - Alessandro Caselli
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
- CNR‐SCITEC Via Golgi, 19 20133 Milano Italy
| | - Giorgio Abbiati
- Dipartimento di Scienze Farmaceutiche Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian, 21 20133 Milano Italy
| |
Collapse
|
41
|
Bolotin DS, Soldatova NS, Demakova MY, Novikov AS, Ivanov DM, Aliyarova IS, Sapegin A, Krasavin M. Pentacoordinated silver(I) complex featuring 8-phenylquinoline ligands: Interplay of coordination bonds, semicoordination, and stacking interactions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Sadhukhan S, Santhi J, Baire B. The α,α‐Dihalocarbonyl Building Blocks: An Avenue for New Reaction Development in Organic Synthesis. Chemistry 2020; 26:7145-7175. [DOI: 10.1002/chem.201905475] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Santu Sadhukhan
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| | - Jampani Santhi
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| | - Beeraiah Baire
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
43
|
Elkoush T, Mak CL, Paley DW, Campbell MG. Silver(II) and Silver(III) Intermediates in Alkene Aziridination with a Dinuclear Silver(I) Nitrene Transfer Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tasneem Elkoush
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Choi L. Mak
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Daniel W. Paley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael G. Campbell
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| |
Collapse
|
44
|
Orr SA, Kelly JA, Boutland AJ, Blair VL. Structural Elucidation of Silver(I) Amides and Their Application as Catalysts in the Hydrosilylation and Hydroboration of Carbonyls. Chemistry 2020; 26:4947-4951. [DOI: 10.1002/chem.202000169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Samantha A. Orr
- School of ChemistryMonash University Wellington Road Clayton, Melbourne VIC 3800 Australia
| | - John A. Kelly
- School of ChemistryMonash University Wellington Road Clayton, Melbourne VIC 3800 Australia
| | - Aaron J. Boutland
- School of ChemistryMonash University Wellington Road Clayton, Melbourne VIC 3800 Australia
| | - Victoria L. Blair
- School of ChemistryMonash University Wellington Road Clayton, Melbourne VIC 3800 Australia
| |
Collapse
|
45
|
Prabhakaran P, Rajakumar P. Regio- and stereoselective synthesis of spiropyrrolidine-oxindole and bis-spiropyrrolizidine-oxindole grafted macrocycles through [3 + 2] cycloaddition of azomethine ylides. RSC Adv 2020; 10:10263-10276. [PMID: 35498613 PMCID: PMC9050375 DOI: 10.1039/c9ra10463a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
A convenient and efficient method for the regioselective macrocyclization of triazole bridged spiropyrrolidine-oxindole, and bis-spiropyrrolizidine-oxindole derivatives was accomplished through intra and self-intermolecular [3 + 2] cycloaddition of azomethine ylides. The chalcone isatin precursors 9a-i required for the click reaction were obtained from the reaction of N-alkylazidoisatin 4 and propargyloxy chalcone 8a-i which in turn were obtained by the aldol condensation of propargyloxy salicylaldehyde 6 and substituted methyl ketones 7a-i. The regio- and stereochemical outcome of the cycloadducts were assigned based on 2D NMR and confirmed by single crystal XRD analysis. High efficiency, mild reaction conditions, high regio- and stereoselectivity, atom economy and operational simplicity are the exemplary advantages of the employed macrocyclization procedure.
Collapse
Affiliation(s)
- Perumal Prabhakaran
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| |
Collapse
|
46
|
Ten years of progress in the synthesis of six-membered N-heterocycles from alkynes and nitrogen sources. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Dong B, Cong X, Hao N. Silver-catalyzed regioselective deuteration of (hetero)arenes and α-deuteration of 2-alkyl azaarenes. RSC Adv 2020; 10:25475-25479. [PMID: 35518614 PMCID: PMC9055237 DOI: 10.1039/d0ra02358b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
A simple silver-catalyzed regioselective deuteration of (hetero)arenes and α-deuteration of 2-alkyl azaarenes has been described. This strategy provides an efficient and practical avenue to access various deuterated electron-rich arenes, azaarenes and α-deuterated 2-alkyl azaarenes with good to excellent deuterium incorporation utilizing D2O as the source of deuterium atoms. A practical silver-catalyzed regioselective deuteration of (hetero)arenes and α-deuteration of 2-alkyl azaarenes utilizing D2O as a deuterium source has been developed.![]()
Collapse
Affiliation(s)
- Baobiao Dong
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Southwest Medical University
- Luzhou 646000
- China
| | - Xuefeng Cong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Na Hao
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Southwest Medical University
- Luzhou 646000
- China
| |
Collapse
|
48
|
Abstract
Silver carbonate (Ag2CO3), a common transition metal-based inorganic carbonate, is widely utilized in palladium-catalyzed C–H activations as an oxidant in the redox cycle. Silver carbonate can also act as an external base in the reaction medium, especially in organic solvents with acidic protons. Its superior alkynophilicity and basicity make silver carbonate an ideal catalyst for organic reactions with alkynes, carboxylic acids, and related compounds. This review describes recent reports of silver carbonate-catalyzed and silver carbonate-mediated organic transformations, including cyclizations, cross-couplings, and decarboxylations.
Collapse
|
49
|
Cao Z, Lacoudre A, Rossy C, Bibal B. Self-assembled coordination thioether silver(I) macrocyclic complexes for homogeneous catalysis. Beilstein J Org Chem 2019; 15:2465-2472. [PMID: 31666881 PMCID: PMC6808213 DOI: 10.3762/bjoc.15.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022] Open
Abstract
The bis-ortho-thioether 9,10-bis[(o-methylthio)phenyl]anthracene was synthesized as a syn-atropisomer, as revealed by X-ray diffraction. This alkylaryl thioether ligand (L) formed different macrocyclic complexes by coordination with silver(I) salts depending on the nature of the anion: M2L2 for AgOTf and AgOTFA, M6L4 for AgNO3. A discrete M2L complex was obtained in the presence of bulky PPh3AgOTf. These silver(I) complexes adopted similar structures in solution and in the solid state. As each sulfur atom in the ligand is prochiral, macrocycles L2M2 were obtained as mixtures of diastereoisomers, depending on the configurations of the sulfur atoms coordinated to silver cations. The X-ray structures of the two L2·(AgOTf)2 stereoisomers highlighted their different geometry. The catalytic activity of all silver(I) complexes was effective under homogeneous conditions in two tandem addition/cycloisomerization of alkynes using 0.5–1 mol % of catalytic loading.
Collapse
Affiliation(s)
- Zhen Cao
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR CNRS 5255, 351 cours de la libération, 33405 Talence, France
| | - Aline Lacoudre
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR CNRS 5255, 351 cours de la libération, 33405 Talence, France
| | - Cybille Rossy
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR CNRS 5255, 351 cours de la libération, 33405 Talence, France
| | - Brigitte Bibal
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR CNRS 5255, 351 cours de la libération, 33405 Talence, France
| |
Collapse
|
50
|
Shi J, Zhang L, Sun N, Hu D, Shen Q, Mao F, Gao Q, Wei W. Facile and Rapid Preparation of Ag@ZIF-8 for Carboxylation of Terminal Alkynes with CO 2 in Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28858-28867. [PMID: 31313900 DOI: 10.1021/acsami.9b07991] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are promising hosts for catalytic active sites due to their adjustable porosity and framework chemistry. Strategies to improve synergistic effects between the installed sites and the parent MOF are highly desired. Herein, a facile and rapid method for the preparation of xAg@ZIF-8 materials was reported. The materials were systematically characterized and used as catalysts for carboxylation of terminal alkynes via direct insertion of CO2 to the C(sp)-H bond (CTACO2). It was found that the integrity of the ZIF-8 structure could be retained upon Ag loading, but short-range crystalline ordering was modified. Two types Ag species could be installed, namely, highly dispersed Ag(I) in the backbone (AgHD) and aggregated Ag(0) nanoparticles on the outer surface (AgNP). The AgNP sites are highly effective for the activation of terminal alkynes due to its high accessibility, while the AgHD-modified ZIF-8 framework worked as a CO2 reservoir with enhanced affinity. Combination of these factors translated to high activity in the CTACO2 process, the measured turnover frequency and time yield are among the highest among most heterogeneous catalysts.
Collapse
Affiliation(s)
- Jialin Shi
- CAS Key Lab of Low-Carbon Conversion Science and Engineering , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lina Zhang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Nannan Sun
- CAS Key Lab of Low-Carbon Conversion Science and Engineering , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Deng Hu
- CAS Key Lab of Low-Carbon Conversion Science and Engineering , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Qun Shen
- CAS Key Lab of Low-Carbon Conversion Science and Engineering , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Fang Mao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Qiang Gao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Wei Wei
- CAS Key Lab of Low-Carbon Conversion Science and Engineering , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|