1
|
Vázquez Quesada J, Bernart S, Studt F, Wang Y, Fink K. CO adsorption on CeO2(111): A CCSD(T) benchmark study using an embedded-cluster model. J Chem Phys 2024; 161:224707. [PMID: 39660658 DOI: 10.1063/5.0231189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
A benchmark model that combines an embedded-cluster approach for ionic surfaces with wavefunction-based methods to predict the vibrational frequencies of molecules adsorbed on surfaces is presented. As a representative case, the adsorption of CO on the lowest index non-polar and most stable facet of CeO2, that is, (111) was studied. The CO harmonic vibrational frequencies were not scaled semiempirically but explicitly corrected for anharmonic effects, which amount to about 25 cm-1 with all tested methods. The second-order Møller-Plesset perturbation method (MP2) tends to underestimate the CO harmonic frequency by about 40-45 cm-1 in comparison with the results obtained with the coupled-cluster singles and doubles with perturbational treatment of triple excitation method [CCSD(T)] and independently from the basis set used. The best estimate for the CO vibrational frequency (low-coverage case) differs by 12 cm-1 with the experimental value obtained by infrared reflexion absorption spectroscopy of 1 monolayer CO adsorbed on the oxidized CeO2(111) surface. In addition, a conservative estimate of the adsorption energy of about -0.22 ± -0.07 eV obtained at the CCSD(T) level confirms the physisorption character of the adsorption of CO on the CeO2(111) surface.
Collapse
Affiliation(s)
- Juana Vázquez Quesada
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Sarah Bernart
- Institut für Katalyseforschung und Technologie, Karlsruhe Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Felix Studt
- Institut für Katalyseforschung und Technologie, Karlsruhe Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Yuemin Wang
- Institut für Funktionelle Grenzflächen, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Karin Fink
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Baek JW, Shin E, Lee J, Kim DH, Choi SJ, Kim ID. Present and Future of Emerging Catalysts in Gas Sensors for Breath Analysis. ACS Sens 2024. [PMID: 39587394 DOI: 10.1021/acssensors.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
To rationalize the noninvasive disease diagnosis by breath analysis, developing a high-performance gas sensor with exceptional sensitivity and selectivity is important to detect trace biomarkers in complex exhaled breath under harsh conditions. Among the various technological innovations, catalyst design and synthesis techniques are the foremost challenges, because gas sensing properties are predominantly determined by surface chemical reactions governed by catalytic activities. Conventional nanoparticle-based catalysts, with their simple structural features, have technical limitations in achieving the requirement for accurate breath analysis. Innovative strategies have been pursued to synthesize unconventional catalyst types with enhanced catalytic capabilities. This Perspective provides a comprehensive overview of recent advancements in catalyst technology for chemiresistive-type gas sensors used in breath analysis. It discusses various emerging catalysts, such as doping catalysts, single-atom catalysts (SACs), bimetallic alloy catalysts, high-entropy alloy (HEA) catalysts, exsolution catalysts, and catalytic filter membranes, along with their unique chemical activation mechanisms that enhance gas sensing properties for detecting target biomarkers in exhaled breath. The review also explores novel strategies for catalyst design, including computational prediction, advanced synthesis techniques, and the integration of sensor arrays with artificial intelligence (AI) to improve diagnostic reliability. By highlighting the crucial role of these emerging catalysts, this review provides valuable insights into the catalytic, synthetic, and analytical aspects that are essential for advancing breath analysis technology.
Collapse
Affiliation(s)
- Jong Won Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinho Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science & Chemical Engineering, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Huang ZS, Wang YF, Qi MY, Conte M, Tang ZR, Xu YJ. Interface Synergy of Exposed Oxygen Vacancy and Pd Lewis Acid Sites Enabling Superior Cooperative Photoredox Synthesis. Angew Chem Int Ed Engl 2024; 63:e202412707. [PMID: 39136931 DOI: 10.1002/anie.202412707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/13/2024] [Indexed: 10/15/2024]
Abstract
Photo-driven cross-coupling of o-arylenediamines and alcohols has emerged as an alternative for the synthesis of bio-active benzimidazoles. However, tackling the key problem related to efficient adsorption and activation of both coupling partners over photocatalysts towards activity enhancement remains a challenge. Here, we demonstrate an efficient interface synergy strategy by coupling exposed oxygen vacancies (VO) and Pd Lewis acid sites for benzimidazole and hydrogen (H2) coproduction over Pd-loaded TiO2 nanospheres with the highest photoredox activity compared to previous works so far. The results show that the introduction of VO optimizes the energy band structure and supplies coordinatively unsaturated sites for adsorbing and activating ethanol molecules, affording acetaldehyde active intermediates. Pd acts as a Lewis acid site, enhancing the adsorption of alkaline amine molecules via Lewis acid-base pair interactions and driving the condensation process. Furthermore, VO and Pd synergistically promote interfacial charge transfer and separation. This work offers new insightful guidance for the rational design of semiconductor-based photocatalysts with interface synergy at the molecular level towards the high-performance coproduction of renewable fuels and value-added feedstocks.
Collapse
Affiliation(s)
- Zhi-Sang Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116, Fuzhou, China
| | - Yin-Feng Wang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116, Fuzhou, China
| | - Ming-Yu Qi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, S3 7HF, Sheffield, UK
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116, Fuzhou, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350116, Fuzhou, China
| |
Collapse
|
4
|
Liu H, Cui X, Deng Y, Lu X. Evolution of Heterogeneous Tunnel Structures in Cryptomelane-Type Manganese Oxides and Their Geoinspired Implications. Inorg Chem 2024; 63:21711-21718. [PMID: 39475497 DOI: 10.1021/acs.inorgchem.4c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Cryptomelane-type manganese oxides, α-MnO2 (KxMn8O16), play key roles in various fields such as geochemical processes, catalytic reactions, energy storage, and environmental sciences. The function of cryptomelane-type oxides can be affected by cation substitutions and the changes in tunnel structures. Research on natural cryptomelane minerals could provide geoinspiration for the design of new nanomaterials with cation substitutions, as well as a key to understanding the evolution of tunnel structures. In this study, natural cryptomelane minerals are characterized by the cosubstitution of iron and zinc. The localization of cosubstituted Fe and Zn in the tunnel framework has been revealed. Furthermore, the evolution of heterogeneous tunnel structures in cryptomelane has been demonstrated as a transition from large-size tunnels to small ones with high Mn(III) concentrations, indicating the significant role of Mn(III) in driving this transition. Lead (Pb2+) can be effectively trapped in the 2 × 2 tunnels. A mechanism for the attachment of cryptomelane crystals in different orientations has also been explored, showing that the migration of Mn atoms and the formation of (110) planes at specific sites contribute to lattice matching at the boundary. Our results provide geoinspired insights into controlled synthesis with Fe/Zn cosubstitution, a fundamental understanding of the evolution of tunnel structures, and functionalized applications of tunnel-based nanomaterials.
Collapse
Affiliation(s)
- Huan Liu
- State Key Lab for Mineral Deposit Research, School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiangjie Cui
- State Key Lab for Mineral Deposit Research, School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu Deng
- Solid State Microstructure National Key Lab and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiancai Lu
- State Key Lab for Mineral Deposit Research, School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Liu L, Xu Y, Su J, Wei J, Liu X, Peng Q, Chang J, Teng B. Exploring microstructures of metal-doped oxides via simulated Raman spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124616. [PMID: 38857547 DOI: 10.1016/j.saa.2024.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Solid solution of metal-doped oxide has been widely used in material industry and catalysis process. Its performance is highly correlated with the distribution of doped ions. Due to the complex distribution of doped ions in solid solution and its variation with temperatures, to obtain the microstructures of metal-doped ions in solid solution remains a substantial challenge. Taken Ce1-xZrxO2 as a model, the global structure searching, structures proportion with temperature determined by Boltzmann distribution, and the weighted simulation Raman spectra were integrated to explore the microstructures of metal-doped solid solution oxides. It was further verified by application into rutile and anatase TiO2 mixture, indicating that the present method is feasible to deduce the microstructure of metal composite oxides. We anticipate that it provides a powerful solution to explore microstructures of solid solution and complex metal oxides.
Collapse
Affiliation(s)
- Le Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuxing Xu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junchao Su
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiangtao Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Qing Peng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jie Chang
- Institute of Sustainability of Chemical, Energy and Environment, Agency for Science, Technology and Research, Singapore 627833, Singapore.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Cheng Y, Wang Y, Chen B, Han X, He F, He C, Hu W, Zhou G, Zhao N. Routes to Bidirectional Cathodes for Reversible Aprotic Alkali Metal-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410704. [PMID: 39308193 DOI: 10.1002/adma.202410704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Indexed: 11/16/2024]
Abstract
Aprotic alkali metal-CO2 batteries (AAMCBs) have garnered significant interest owing to fixing CO2 and providing large energy storage capacity. The practical implementation of AAMCBs is constrained by the sluggish kinetics of the CO2 reduction reaction (CO2RR) and the CO2 evolution reaction (CO2ER). Because the CO2ER and CO2RR take place on the cathode, which connects the internal catalyst with the external environment. Building a bidirectional cathode with excellent CO2ER and CO2RR kinetics by optimizing the cathode's internal catalyst and environment has attracted most of the attention to improving the electrochemical performance of AAMCBs. However, there remains a lack of comprehensive understanding. This review aims to give a route to bidirectional cathodes for reversible AAMCBs, by systematically discussing engineering strategies of both the internal catalyst (atomic, nanoscopic, and macroscopic levels) and the external environment (photo, photo-thermal, and force field). The CO2ER and CO2RR mechanisms and the "engineering strategies from internal catalyst to the external environment-cathode properties-CO2RR and CO2ER kinetics and mechanisms-batteries performance" relationship are elucidated by combining computational and experimental approaches. This review establishes a fundamental understanding for designing bidirectional cathodes and gives a route for developing reversible AAMCBs and similar metal-gas battery systems.
Collapse
Affiliation(s)
- Yihao Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yuxuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
7
|
Gates BC. Mononuclear metal complex catalysts on supports: foundations in organometallic and surface chemistry and insights into structure, reactivity, and catalysis. Chem Sci 2024:d4sc05596a. [PMID: 39345773 PMCID: PMC11428143 DOI: 10.1039/d4sc05596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Catalysts that consist of isolated metal atoms bonded to solid supports have drawn wide attention by researchers, with recent work emphasizing noble metals on metal oxide and zeolite supports. Progress has been facilitated by methods for atomic-scale imaging the metals and spectroscopic characterization of the supported structures and the nature of metal-support bonding, even with catalysts in the working state. Because of the intrinsic heterogeneity of support surface sites for bonding of metals and the tendency of noble metal cations on supports to be reduced and aggregated, it is challenging to determine structures of individual metal complexes among the mixtures that may be present and to determine structures of catalytically active species and reactive intermediates. A central premise of this perspective is that synthesis of supported metal complexes that have nearly uniform structures-on supports such as dealuminated HY zeolite, chosen to have relatively uniform surfaces-is a key to fundamental understanding, facilitating progress toward determining the roles of the ligands on the metals, which include the supports and reactive intermediates in catalysis. Characterization of relatively uniform and well-defined samples nonetheless requires multiple spectroscopic, microscopic, and theory-based techniques used in concert and still leaves open many questions about the nature of reactive intermediates and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Bruce C Gates
- Department of Chemical Engineering, University of California Davis California 95616 USA
| |
Collapse
|
8
|
Chen C, Ikemoto S, Yokota GI, Higuchi K, Muratsugu S, Tada M. Low-temperature redox activity and alcohol ammoxidation performance on Cu- and Ru-incorporated ceria catalysts. Phys Chem Chem Phys 2024; 26:17979-17990. [PMID: 38814159 DOI: 10.1039/d4cp01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Transition-metal-incorporated cerium oxides with Cu and a small amount of Ru (Cu0.18Ru0.05CeOz) were prepared, and their low-temperature redox performance (<423 K) and catalytic alcohol ammoxidation performance were investigated. Temperature-programmed reduction/oxidation under H2/O2 and in situ X-ray absorption fine structure revealed the reversible redox behavior of the three metals, Cu, Ru, and Ce, in the low-temperature redox processes. The initially reduced Ru species decreased the reduction temperature of Cu oxides and promoted the activation of Ce species. Cu0.18Ru0.05CeOz selectively catalyzed the production of benzonitrile in the ammoxidation of benzyl alcohol. H2-treated Cu0.18Ru0.05CeOz showed a slightly larger initial conversion of benzyl alcohol than O2-treated Cu0.18Ru0.05CeOz, suggesting that the reduced structure of Cu0.18Ru0.05CeOz was active for the ammoxidation. The integration of both Cu and Ru resulted in the efficient promotion of ammoxidation, in which the Ru species were involved in the conversion of benzyl alcohol and Cu species were required for selective production of benzonitrile.
Collapse
Affiliation(s)
- Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Gen-Ichi Yokota
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Kimitaka Higuchi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
9
|
Zheng Y, Zhang L, Jiang H, Li C, Hu Y. Pd Single-Atom Loaded Ce-Zr Solid Solution Catalysts Prepared by Flame Spray Pyrolysis for Efficient CO Catalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311346. [PMID: 38308159 DOI: 10.1002/smll.202311346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Indexed: 02/04/2024]
Abstract
Single-atom catalysts (SACs) exhibit remarkable catalytic activity at each metal site. However, conventionally synthesized single-atom catalysts often possess low metal loading, thereby constraining their overall catalytic performance. Here, a flame spray pyrolysis (FSP) method for the synthesis of a single-atom catalyst with a high loading capacity of up to 1.4 wt.% in practice is reported. CeZrO2 acts as a carrier and provides a large number of anchoring sites, which promotes the high-density generation of Pd, and the strong interaction between the metal and the support avoids atom aggregation. Pd-CeZrO2 series catalysts have excellent CO oxidation performance. When 0.97 wt.% Pd is added, the catalytic activity is the highest, and the temperature can be reduced to 120 °C. This work presented here demonstrates that FSP, as an inherently scalable technique, allows for elevating the single-atom loading to achieve an increase in its catalytic performance. The method presented here more options for the preparation of SACs.
Collapse
Affiliation(s)
- Yaru Zheng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanjie Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
10
|
Wu S, Ruan D, Huang Z, Xu H, Shen W. Weakening Mn-O Bond Strength in Mn-Based Perovskite Catalysts to Enhance Propane Catalytic Combustion. Inorg Chem 2024; 63:10264-10277. [PMID: 38761140 DOI: 10.1021/acs.inorgchem.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Exploring highly efficient and robust non-noble metal catalysts for VOC abatement is crucial but challenging. Mn-based perovskites are a class of redox catalysts with good thermal stability, but their activity in the catalytic combustion of light alkanes is insufficient. In this work, we modulated the Mn-O bond strength in a Mn-based perovskite via defect engineering, over which the catalytic activity of propane combustion was significantly enhanced. It demonstrates that the oxygen vacancy concentration and the Mn-O bond strength can be efficiently modulated by finely tuning the Ni content in SmNixMn1-xO3 perovskite catalysts (SNxM1-x), which in turn can enhance the redox ability and generate more active oxygen species. The SN0.10M0.90 catalyst with the lowest Mn-O bond strength exhibits the lowest apparent activation energy, over which the propane conversion rate increases by 3.6 times compared to that on the SmMnO3 perovskite catalyst (SM). In addition, a SN0.10M0.90/cordierite monolithic catalyst can also exhibit a remarkable catalytic performance and deliver excellent long-term durability (1000 h), indicating broad prospects in industrial applications. Moreover, the promotional effect of Ni substitution was further unveiled by density functional theory (DFT) calculations. This work brings a favorable guidance for the exploration of highly efficient perovskite catalysts for light alkane elimination.
Collapse
Affiliation(s)
- Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Dinghua Ruan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, 200433 Shanghai, China
| |
Collapse
|
11
|
Jing R, Lu X, Wang J, Xiong J, Qiao Y, Zhang R, Yu Z. CeO 2-Based Frustrated Lewis Pairs via Defective Engineering: Formation Theory, Site Characterization, and Small Molecule Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310926. [PMID: 38239093 DOI: 10.1002/smll.202310926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Indexed: 06/27/2024]
Abstract
Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.
Collapse
Affiliation(s)
- Run Jing
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Jingfei Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Jian Xiong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
12
|
Xu N, Xu L, Wang Y, Liu W, Xu W, Hu X, Han ZK. Unraveling the formation of oxygen vacancies on the surface of transition metal-doped ceria utilizing artificial intelligence. NANOSCALE 2024; 16:9853-9860. [PMID: 38712569 DOI: 10.1039/d3nr05950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ceria has been extensively utilized in different fields, with surface oxygen vacancies playing a central role. However, versatile oxygen vacancy regulation is still in its infancy. In this work, we propose an effective strategy to manipulate the oxygen vacancy formation energy via transition metal doping by combining first-principles calculations and analytical learning. We elucidate the underlying mechanism driving the formation of oxygen vacancies using combined symbolic regression and data analytics techniques. The results show that the Fermi level of the system and the electronegativity of the dopants are the paramount parameters (features) influencing the formation of oxygen vacancies. These insights not only enhance our understanding of the oxygen vacancy formation mechanism in ceria-based materials to improve their functionality but also potentially lay the groundwork for future strategies in the rational design of other transition metal oxide-based catalysts.
Collapse
Affiliation(s)
- Ning Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Yue Wang
- Department of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiaojuan Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
13
|
An HR, Lim C, Min CG, Son B, Kim CY, Park JI, Kim JP, Jeong Y, Seo J, Lee M, Park J, Lee YS, Lee HU. Highly visible-light-active sulfur and carbon co-doped TiO 2 (SC-TiO 2) heterogeneous photocatalysts prepared by underwater discharge plasma. CHEMOSPHERE 2024; 355:141859. [PMID: 38561161 DOI: 10.1016/j.chemosphere.2024.141859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
To promptly and simply create highly crystalline S/C co-doped TiO2 (SC-TiO2) photocatalysts at room temperature and atmospheric pressure, we suggest a novel plasma-assisted sol-gel synthesis method. This method is a simultaneous synthetic process, in which an underwater plasma undergoes continuous reactions to generate high-energy atomic and molecular species that enable TiO2 to achieve crystallinity, a large surface area, and a heterogeneous structure within a few minutes. In particular, it was demonstrated that the heterogeneously structured TiO2 was formed by doping that sulfur and carbon replace O or Ti atoms in the TiO2 lattice depending on the composition of the synthesis solution during underwater plasma treatment. The resultant SC-TiO2 photocatalysts had narrowed bandgap energies and extended optical absorption scope into the visible range by inducing the intermediate states within bandgap due to generation of oxygen vacancies on the surface of TiO2 through synthesis, crystallization, and doping. Correspondingly, SC-TiO2 showed a significant degradation efficiency ([k] = 6.91 h-1) of tetracycline (TC, antibiotics) under solar light irradiation, up to approximately 4 times higher compared to commercial TiO2 ([k] = 1.68 h-1), resulting in great water purification. Therefore, we anticipate that this underwater discharge plasma system will prove to be an advantageous technique for producing heterostructural TiO2 photocatalysts with superior photocatalytic efficiency for environmental applications.
Collapse
Affiliation(s)
- Ha-Rim An
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Chaehun Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chung Gi Min
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Byoungchul Son
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Chang-Yeon Kim
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Ji-In Park
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Jong Pil Kim
- Busan Center, Korea Basic Science Institute, Busan, 46241, Republic of Korea
| | - Yesul Jeong
- Busan Center, Korea Basic Science Institute, Busan, 46241, Republic of Korea
| | - Jiwon Seo
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Moonsang Lee
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jihyang Park
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Young-Seak Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea; Institute of Carbon Fusion Technology (InCFT), Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hyun Uk Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea.
| |
Collapse
|
14
|
Chen Y, Rana R, Zhang Y, Hoffman AS, Huang Z, Yang B, Vila FD, Perez-Aguilar JE, Hong J, Li X, Zeng J, Chi M, Kronawitter CX, Wang H, Bare SR, Kulkarni AR, Gates BC. Dynamic structural evolution of MgO-supported palladium catalysts: from metal to metal oxide nanoparticles to surface then subsurface atomically dispersed cations. Chem Sci 2024; 15:6454-6464. [PMID: 38699272 PMCID: PMC11062082 DOI: 10.1039/d4sc00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Yizhi Zhang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Zhennan Huang
- Oak Ridge National Laboratory Oak Ridge Tennessee 37830 USA
| | - Bo Yang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Fernando D Vila
- Department of Physics, University of Washington Seattle Washington 98195 USA
| | - Jorge E Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Xu Li
- National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jie Zeng
- National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Miaofang Chi
- Oak Ridge National Laboratory Oak Ridge Tennessee 37830 USA
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University West Lafayette Indiana 47907 USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Ambarish R Kulkarni
- Department of Chemical Engineering, University of California Davis California 95616 USA
| | - Bruce C Gates
- Department of Chemical Engineering, University of California Davis California 95616 USA
| |
Collapse
|
15
|
Chen Y, Han D, Wang Z, Gu F. Interface Defects and Carrier Regulation in MOF-Derived Co 3O 4/In 2O 3 Composite Materials for Enhanced Selective Detection of HCHO. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659088 DOI: 10.1021/acsami.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Gas sensors for real-time monitoring of low HCHO concentrations have promising applications in the field of health protection and air treatment, and this work reports a novel resistive gas sensor with high sensitivity and selectivity to HCHO. The MOF-derived hollow In2O3 was mixed with ZIF-67(Co) and calcined twice to obtain a hollow Co3O4/In2O3 (hereafter collectively termed MZO-6) composite enriched with oxygen vacancies, and tests such as XPS and EPR proved that the strong interfacial electronic coupling increased the oxygen vacancies. The gas-sensitive test results show that the hollow composite MZO-6 with abundant oxygen vacancies has a higher response value (11,003) to 10 ppm of HCHO and achieves a fast response/recovery time (11/181 s) for HCHO at a lower operating temperature (140 °C). The MZO-6 material significantly enhances the selectivity to HCHO and reduces the interference of common pollutant gases such as ethanol, acetone, and xylene. There is no significant fluctuation of resistance and response values in the 30-day long-term stability test, and the material has good stability. The synergistic effect of the heterostructure and oxygen vacancies altered the formaldehyde adsorption intermediate pathway and reduced the reaction activation energy, enhancing the HCHO responsiveness and selectivity of the MZO-6 material.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
17
|
Zhang X, Wang Y, Ivasishin OM, Zhang J, Yuan L. Thermally Induced Lattice-Defective Oxygen Breathing in Perovskite-Structure Stannates with High-Contrast Reversible Thermochromism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11665-11677. [PMID: 38407038 DOI: 10.1021/acsami.3c18420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Inorganic thermochromic materials exhibit a tunable color gamut and a wide chromatic temperature range, indicating their potential for intelligent adaptive applications in thermal warning, temperature indication, thermal regulation, and interactive light-to-thermal energy conversion. However, most metal-oxide-based thermochromic materials show weak chromaticity adaption with the change of temperature, which needs further understanding of the microscopic principle to clarify the potential route to improve the contrast and identifiability for fabricating better thermochromic materials. Using perovskite-structure (AMO3) alkaline earth metal stannate (Ba1-xSrxSnO3, 0.0 ≤ x ≤ 1.0) as a model system, this paper reports for the first time the mechanism of the properties of thermally induced defect-enhanced charge transfer-type (CTT) thermochromic materials and the strategy for regulating their thermochromic properties by A-site cations. BaSnO3 exhibits continuously reversible thermochromic properties with high contrast from weak light yellow (b* = 11) to strong bright yellow (b* = 58) between room temperature and 550 °C. In-situ high-temperature X-ray diffraction (in-situ XRD), in-situ UV-vis absorption spectroscopy (in-situ UV-vis), thermogravimetric (TG), and electron paramagnetic resonance (EPR) spectra indicate that this excellent thermochromic phenomenon is attributed to the weakening of Sn-O bond hybridization at high temperatures, as well as the formation of a large number of oxygen vacancies at the top of the valence band, and the enhanced charge transfer resulting from the generation of impurity levels in the Sn2+ 5s2 intermediate. Replacing Ba2+ by Sr2+ in Ba1-xSrxSnO3 successfully tuned the thermochromic properties, which is attributed to the Sr2+ doping level-directed oxygen defect concentration and deoxygenation rate. The demonstrated defect-enhanced charge transfer behavior promotes a feasible route for lattice oxygen-mediated thermochromic materials and provides a fundamental relationship between thermally induced defects and colorimetry.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Changchun, 130103, China
| | - Yiwen Wang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Orest M Ivasishin
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Long Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, College of Physics, Jilin Normal University, Changchun, 130103, China
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China
| |
Collapse
|
18
|
Guo W, Yu L, Tang L, Wan Y, Lin Y. Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules. NANO-MICRO LETTERS 2024; 16:125. [PMID: 38376726 PMCID: PMC10879078 DOI: 10.1007/s40820-023-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/21/2024]
Abstract
Metal-free carbon, as the most representative heterogeneous metal-free catalysts, have received considerable interests in electro- and thermo-catalytic reactions due to their impressive performance and sustainability. Over the past decade, well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms. However, active sites, key intermediate species, precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods. In this Review, we summarize the extensive efforts on model catalysts since the 2000s, particularly in the past decade, to overcome the influences of material and structure limitations in metal-free carbon catalysis. Using both nanomolecule model and bulk model, the real contribution of each alien species, defect and edge configuration to a series of fundamentally important reactions, such as thermocatalytic reactions, electrocatalytic reactions, were systematically studied. Combined with in situ techniques, isotope labeling and size control, the detailed reaction mechanisms, the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level. Furthermore, the outlook of model carbon catalysis has also been proposed in this work.
Collapse
Affiliation(s)
- Wei Guo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Linhui Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Ling Tang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Yan Wan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Yangming Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
19
|
Wang Z, Miglani B, Yuan S, Bevan KH. On the application of Marcus-Hush theory to small polaron chemical dynamics in oxides: its relationship to the Holstein model and the importance of lattice-orbital symmetries. Phys Chem Chem Phys 2024; 26:4812-4827. [PMID: 38284789 DOI: 10.1039/d3cp05218d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The chemical dynamics of small polaron hopping within oxides is often interpreted through two-site variations on Marcus-Hush theory, while from a physics perspective small polaron hopping is more often approached from Holstein's solid-state formalism. Here we seek to provide a chemically oriented viewpoint, focusing on small polaron hopping in oxides, concerning these two phenomenological frameworks by employing both tight-binding modelling and first-principles calculations. First, within a semiclassical approach the Marcus-Hush relations are overviewed as a two-site reduction of Holstein's model. Within the single-band regime, similarities and differences between Holstein derived small polaron hopping and the Marcus-Hush model are also discussed. In this context the emergence of adiabaticity (or, conversely, diabaticity) is also explored within each framework both analytically and by directly evolving the system wavefunction. Then, through first-principles calculations of select oxides we explore how coupled lattice and orbital symmetries can impact on hopping properties - in a manner that is quite distinct typical chemical applications of Marcus-Hush theory. These results are then related back to the Holstein model to explore the relative applicability of the two frameworks towards interpreting small polaron hopping properties, where it is emphasized that the Holstein model offers an increasingly more appealing physicochemical interpretation of hopping processes as band and/or coupling interactions increase. Overall, this work aims to strengthen the physically oriented exploration of small polarons and their physicochemical properties in the growing oxide chemistry community.
Collapse
Affiliation(s)
- Zi Wang
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada.
| | - Bobby Miglani
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada.
| | - Shuaishuai Yuan
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada.
| | - Kirk H Bevan
- Division of Materials Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada.
- Centre for the Physics of Materials, McGill University, Montréal, Québec, Canada
| |
Collapse
|
20
|
Wang B, Fu Y, Xu F, Lai C, Zhang M, Li L, Liu S, Yan H, Zhou X, Huo X, Ma D, Wang N, Hu X, Fan X, Sun H. Copper Single-Atom Catalysts-A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306621. [PMID: 37814375 DOI: 10.1002/smll.202306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
Collapse
Affiliation(s)
- Biting Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Neng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiaorui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xing Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hao Sun
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
21
|
Cooney S, Walls MRA, Schreiber E, Brennessel WW, Matson EM. Heterometal Dopant Changes the Mechanism of Proton-Coupled Electron Transfer at the Polyoxovanadate-Alkoxide Surface. J Am Chem Soc 2024; 146:2364-2369. [PMID: 38241170 PMCID: PMC10835708 DOI: 10.1021/jacs.3c14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The transfer of two H-atom equivalents to the titanium-doped polyoxovanadate-alkoxide, [TiV5O6(OCH3)13], results in the formation of a V(III)-OH2 site at the surface of the assembly. Incorporation of the group (IV) metal ion results in a weakening of the O-H bonds of [TiV5O5(OH2)(OCH3)13] in comparison to its homometallic congener, [V6O6(OH2)(OCH3)12], resembling more closely the thermodynamics reported for the one-electron reduced derivative, [V6O6(OH2)(OCH3)12]1-. An analysis of early time points of the reaction of [TiV5O6(OCH3)13] and 5,10-dihydrophenazine reveals the formation of an oxidized substrate, suggesting that proton-coupled electron transfer proceeds via initial electron transfer from substrate to cluster prior to proton transfer. These results demonstrate the profound influence of heterometal dopants on the mechanism of PCET with respect to the surface of the assembly.
Collapse
Affiliation(s)
- Shannon
E. Cooney
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - M. Rebecca A. Walls
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Eric Schreiber
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
22
|
El-Seidy AMA, Elbaset MA, Ibrahim FAA, Abdelmottaleb Moussa SA, Bashandy SA. Nano cerium oxide and cerium/zinc nanocomposites characterization and therapeutic role in combating obesity via controlling oxidative stress and insulin resistance in rat model. J Trace Elem Med Biol 2023; 80:127312. [PMID: 37804595 DOI: 10.1016/j.jtemb.2023.127312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND CeO2NPs and ZnONPs can curb the increase of cholesterol and triglycerides observed in rats with non-alcoholic fatty liver disease. It was suggested that CeO2 NPs could potentially have an insulin-sensitizing effect, specifically on adipose tissue and skeletal muscle. It was reported that ZnONPs combat the increase of insulin resistance observed in obese rats and could be beneficial value in NAFLD. In our previous work, ZnO-NPs manifested valuable anti-obesity effects via lowering body weight gain, oxidative stress, BMI, lipids, and insulin resistance. METHODS In the present study, cerium oxide nanoparticles (A-1) and cerium/zinc nanocomposites (A-2 and A-3) were synthesized by solgel to investigate their role on oxidative stress, adipocyte hormones, and insulin resistance in an obese rat model. X-ray diffraction, HRTEM, SEM, and XPS were carried out to confirm the crystal structure, the particle size, the morphology of the nanoparticles and the oxidation states. RESULTS The Rietveld refinement has also been executed on A-1 (chi2 = 1.00; average Bragg = 2.92%; R-factor = 2.45%) and on A-2 (Rw = 9.87%, Rex= 9.68%, χ2 = 1.04, GoF = 1.02). The XPS spectra indicated the presence of Ce in + 4 and + 3 oxidation states and Zn as ZnO and ZnO.OH. Cerium oxide and ZnO crystal sizes lie in the range 40.53-45.01 and 40.53-45.01 nm, respectively. The results indicated that treating obese rats with any of the tested nano compounds (5 mg or 10 mg/Kg) lowered plasma cholesterol, triglycerides, LDL, insulin resistance, glucose, and BMI significantly relative to obese group values. On the other hand, HDL increased significantly in obese rats after treatment with either A-2 or A-3 compared to obese rats. The current investigation showed antioxidant activities for A-1, A-2, and A3 as evidenced by the significant increase in GSH level and a significant decrease in MDA. CONCLUSION It was found that A-1, A-2, and A-3 have an efficient therapeutic role in treating of obesity-related hyperlipidemia, oxidative stress and insulin resistance. The results of A-2 and A-3 were more pronounced than those of A-1. The use of Zn/Ce nanocomposite (that have positive characteristics) in combating obesity and its complications could be become a new trend in therapeutic application for a management of obesity.
Collapse
Affiliation(s)
- Ahmed M A El-Seidy
- Inorganic Chemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt.
| | - Marwan A Elbaset
- Pharmacology Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Fatma A A Ibrahim
- Biophysics Laboratory, Biochemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Sherif A Abdelmottaleb Moussa
- Biophysics Laboratory, Biochemistry Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| | - Samir Ae Bashandy
- Pharmacology Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622, Cairo, Egypt
| |
Collapse
|
23
|
Fang S, Sun Y, Xu J, Zhang T, Wu Z, Li J, Gao E, Wang W, Zhu J, Dai L, Liu W, Zhang B, Zhang J, Yao S. Revealing the intrinsic nature of Ni-, Mn-, and Y-doped CeO 2 catalysts with positive, additive, and negative effects on CO oxidation using operando DRIFTS-MS. Dalton Trans 2023; 52:16911-16919. [PMID: 37927054 DOI: 10.1039/d3dt03001f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The catalytic activity of a transition metal (host) oxide can be influenced by doping with a second cation (dopant), but the key factors dominating the activity of the doped catalyst are still controversial. Herein, CeO2 doped with Ni, Mn, and Y catalysts prepared using aerosol pyrolysis were used to demonstrate the positive, negative, and additive effects on CO oxidation as a model reaction. Various characterization results indicated that Ni, Mn, and Y had been successfully doped into the CeO2 lattice. The catalytic activities of each catalyst for CO conversion were in the order of Ni-CeO2 > Mn-CeO2 > CeO2 > Y-CeO2. Operando DRIFTS-MS and various characterization methods were applied to reveal the intrinsic nature of the doping effects. The accumulation rate of the surface bidentate carbonates determined the CO oxidation. A definition to evaluate the doping effect was proposed, which is anticipated to be useful for developing a rational catalyst with a high CO oxidation activity. The CO oxidation reactivities displayed strong correlations with the surface factors obtained from operando DRIFTS-MS analysis and the structure factors from XPS and Raman analyses.
Collapse
Affiliation(s)
- Shiyu Fang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Lianxin Dai
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
| | - Weihua Liu
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
| | - Buhe Zhang
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
| | - Junwei Zhang
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China.
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| |
Collapse
|
24
|
Sun Y, Fang S, Xu J, Zhang T, Wu Z, Li J, Gao E, Wang W, Dai L, Liu W, Zhang B, Zhang J, Yao S, Zhu J. Unveiling the Surface Chemical Reactions during Multi-Phase Catalytic Oxidation of Soot on Nanoengineering/Interfacing/Doping-Prepared Mn-CeO 2 Catalysts Using TG-MS and Operando DRIFTS-MS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15773-15784. [PMID: 37883132 DOI: 10.1021/acs.langmuir.3c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The aerosol pyrolysis method from nitrate precursors was used to prepare the Mn-CeO2 catalyst containing Mn2O3, CeO2, and Mn-doped CeO2 nanoparticles for catalyzing carbonous soot oxidation. The prepared Mn-CeO2 catalysts have high specific surface areas, Ce3+ ratio, and oxygen vacancy defects; these are a benefit for soot oxidation. The T50 for soot oxidation on the 0.57Mn-CeO2 catalyst is as low as 355 °C, which is 329 °C lower than that for soot oxidation without a catalyst. The catalysts were characterized using XRD, SEM-EDS, HRTEM, XPS, Raman spectroscopy, H2-TPR-MS, O2-TPD-MS, soot-TPR-MS, and operando DRIFTS-MS. The functions of Mn2O3, CeO2, and Mn-doped CeO2 in the 0.57Mn-CeO2 catalyst are unveiled. Mn-doped CeO2 plays a key role and CeO2 participates in soot oxidation, while Mn2O3 is used to enhance higher ratios of Ce3+, via the reaction of Mn3+ + Ce4+ = Mn4+ + Ce3+. The mechanism of soot oxidation on Mn-CeO2 was proposed.
Collapse
Affiliation(s)
- Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shiyu Fang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Lianxin Dai
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an, Jiangxi 343100, China
| | - Weihua Liu
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an, Jiangxi 343100, China
| | - Buhe Zhang
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an, Jiangxi 343100, China
| | - Junwei Zhang
- Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an, Jiangxi 343100, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| |
Collapse
|
25
|
Di Liberto G, Pacchioni G. Modeling Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307150. [PMID: 37749881 DOI: 10.1002/adma.202307150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Electronic structure calculations represent an essential complement of experiments to characterize single-atom catalysts (SACs), consisting of isolated metal atoms stabilized on a support, but also to predict new catalysts. However, simulating SACs with quantum chemistry approaches is not as simple as often assumed. In this work, the essential factors that characterize a reliable simulation of SACs activity are examined. The Perspective focuses on the importance of precise atomistic characterization of the active site, since even small changes in the metal atom's surroundings can result in large changes in reactivity. The dynamical behavior and stability of SACs under working conditions, as well as the importance of adopting appropriate methods to solve the Schrödinger equation for a quantitative evaluation of reaction energies are addressed. The Perspective also focuses on the relevance of the model adopted. For electrocatalysis this must include the effects of the solvent, the presence of electrolytes, the pH, and the external potential. Finally, it is discussed how the similarities between SACs and coordination compounds may result in reaction intermediates that usually are not observed on metal electrodes. When these aspects are not adequately considered, the predictive power of electronic structure calculations is quite limited.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli studi di Milano Bicocca, Via R. Cozzi 55, Milano, 20125, Italy
| |
Collapse
|
26
|
Xu Y, Gao L, Hou Q, Wu P, Zhou Y, Ding Z. Enhanced Oxygen Storage Capacity of Porous CeO 2 by Rare Earth Doping. Molecules 2023; 28:6005. [PMID: 37630256 PMCID: PMC10458135 DOI: 10.3390/molecules28166005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
CeO2 is an important rare earth (RE) oxide and has served as a typical oxygen storage material in practical applications. In the present study, the oxygen storage capacity (OSC) of CeO2 was enhanced by doping with other rare earth ions (RE, RE = Yb, Y, Sm and La). A series of Undoped and RE-doped CeO2 with different doping levels were synthesized using a solvothermal method following a subsequent calcination process, in which just Ce(NO3)3∙6H2O, RE(NO3)3∙nH2O, ethylene glycol and water were used as raw materials. Surprisingly, the Undoped CeO2 was proved to be a porous material with a multilayered special morphology without any additional templates in this work. The lattice parameters of CeO2 were refined by the least-squares method with highly pure NaCl as the internal standard for peak position calibrations, and the solubility limits of RE ions into CeO2 were determined; the amounts of reducible-reoxidizable Cen+ ions were estimated by fitting the Ce 3d core-levels XPS spectra; the non-stoichiometric oxygen vacancy (VO) defects of CeO2 were analyzed qualitatively and quantitatively by O 1s XPS fitting and Raman scattering; and the OSC was quantified by the amount of H2 consumption per gram of CeO2 based on hydrogen temperature programmed reduction (H2-TPR) measurements. The maximum [OSC] of CeO2 appeared at 5 mol.% Yb-, 4 mol.% Y-, 4 mol.% Sm- and 7 mol.% La-doping with the values of 0.444, 0.387, 0.352 and 0.380 mmol H2/g by an increase of 93.04, 68.26, 53.04 and 65.22%. Moreover, the dominant factor for promoting the OSC of RE-doped CeO2 was analyzed.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China;
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China;
| | - Quanhui Hou
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Pingkeng Wu
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Yunxuan Zhou
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Zhao Ding
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| |
Collapse
|
27
|
Xu H, Qi J, Zhang Y, Liu H, Hu L, Feng M, Lü W. Magnetic Field-Enhanced Oxygen Evolution Reaction via the Tuneability of Spin Polarization in a Half-Metal Catalyst. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384856 DOI: 10.1021/acsami.3c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The magnetic field response of an electrochemistry process, such as the oxygen evolution reaction (OER), provides not only a strategy for enhanced catalytic activity by applying an external field but also a platform for revealing the functionality of the multiple degrees of freedom of the catalyst. However, the mechanism of the magnetic field tuneable OER is controversial. The strong correlation between the d and p orbitals of transition metal and oxygen still puzzles the dominant role of spin in an OER process. Here in this study, we have employed the manganite La0.7Sr0.2Ca0.1MnO3 as the ferromagnetic OER catalyst, which has a ferromagnetic/paramagnetic transition (TC) around the room temperature. It is found that the overpotential can be reduced by ∼18% after applying a 5 kOe magnetic field. Furthermore, this magnetic field can trigger a further improvement of the OER performance, and it demonstrates a strong temperature dependence which is incongruent with its magnetoresistive behavior. So our experiments suggest that the observed magnetic response originates dominantly from the triplet state of the O2, where the spin-polarized d and oxygen p orbitals lower the Gibbs free energy for every reaction step in OER. This study offers experimental evidence on comprehending the spin degree in the OER process, meanwhile benefiting the further design and engineering of the promising magnetic electrochemistry catalysts.
Collapse
Affiliation(s)
- Hang Xu
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ji Qi
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yuan Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Huan Liu
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Linglong Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Weiming Lü
- Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
28
|
Hua Y, Ahmadi Y, Kim KH. Thermocatalytic Degradation of Gaseous Formaldehyde Using Transition Metal-Based Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300079. [PMID: 37114840 PMCID: PMC10375094 DOI: 10.1002/advs.202300079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Formaldehyde (HCHO: FA) is one of the most abundant but hazardous gaseous pollutants. Transition metal oxide (TMO)-based thermocatalysts have gained much attention in its removal due to their excellent thermal stability and cost-effectiveness. Herein, a comprehensive review is offered to highlight the current progress in TMO-based thermocatalysts (e.g., manganese, cerium, cobalt, and their composites) in association with the strategies established for catalytic removal of FA. Efforts are hence made to describe the interactive role of key factors (e.g., exposed crystal facets, alkali metal/nitrogen modification, type of precursors, and alkali/acid treatment) governing the catalytic activity of TMO-based thermocatalysts against FA. Their performance has been evaluated further between two distinctive operation conditions (i.e., low versus high temperature) based on computational metrics such as reaction rate. Accordingly, the superiority of TMO-based composite catalysts over mono- and bi-metallic TMO catalysts is evident to reflect the abundant surface oxygen vacancies and enhanced FA adsorptivity of the former group. Finally, the present challenges and future prospects for TMO-based catalysts are discussed with respect to the catalytic oxidation of FA. This review is expected to offer valuable information to design and build high performance catalysts for the efficient degradation of volatile organic compounds.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| |
Collapse
|
29
|
Lv S, Wang H, Zhou Y, Tang D, Bi S. Recent advances in heterogeneous single-atom nanomaterials: From engineered metal-support interaction to applications in sensors. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Gates BC, Katz A, Liu J. Nested Metal Catalysts: Metal Atoms and Clusters Stabilized by Confinement with Accessibility on Supports. PRECISION CHEMISTRY 2023; 1:3-13. [PMID: 37025973 PMCID: PMC10069032 DOI: 10.1021/prechem.2c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters. When the metals are noble, they are typically unstable-susceptible to sintering-especially under reducing conditions. Embedding the metals in supports such as organic polymers, metal oxides, and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants. An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports. The nests include zeolite pore mouths, zeolite surface cups (half-cages), raft-like islands of oxophilic metals bonded to metal oxide supports, clusters of non-noble metals (e.g., hosting noble metals as single-atom alloys), and nanoscale metal oxide islands that selectively bond to the catalytic metals, isolating them from the support. These examples illustrate a trend toward precision in the synthesis of solid catalysts, and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.
Collapse
Affiliation(s)
- Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jingyue Liu
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
31
|
Ahn SY, Jang WJ, Shim JO, Jeon BH, Roh HS. CeO 2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: extended application and key catalytic properties. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2022.2162677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seon-Yong Ahn
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, South Korea
| | - Won-Jun Jang
- Department of Environmental and Energy Engineering, Kyungnam University, Changwon-si, South Korea
| | - Jae-Oh Shim
- Department of Chemical Engineering, Wonkwang University, Iksan-si, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, South Korea
| |
Collapse
|
32
|
Predicting the catalytic performance of Nb-doped nickel oxide catalysts for the oxidative dehydrogenation of ethane by knowing their electrochemical properties. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
33
|
Ramesh M, Sankar C, Umamatheswari S, Balamurugan J, Jayavel R, Gowran M. Hydrothermal synthesis of ZnZrO 2/chitosan (ZnZrO 2/CS) nanocomposite for highly sensitive detection of glucose and hydrogen peroxide. Int J Biol Macromol 2023; 226:618-627. [PMID: 36481338 DOI: 10.1016/j.ijbiomac.2022.11.318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In this work, pure ZnZrO2 and chitosan supported (ZnZrO2/CS) nanocomposite have been synthesized at low coast by hydrothermal method. FT-IR, Micro Raman, PXRD, HR-SEM-EDAX, HR-TEM, AFM, BET and XPS were used to analyze the structural and morphological properties of the fabricated nanocomposites. The fabricated ZnZrO2 and ZnZrO2/CS nanocomposites were measured for their electrocatalytic activity towards glucose and hydrogen peroxide determinations. The ZnZrO2/CS sensor exhibited wide detection range (5 μM to 5.85 mM), high sensitivity (6.78 μA mM-1 cm-2), LOD (2.31 μM), and long-term stability for glucose detection in alkaline solution. Also, as a multifunctional electrochemical sensor, ZnZrO2/CS sensor exhibits excellent sensing ability towards hydrogen peroxide, with a wide dynamic range (20 μM to 6.85 mM), a high sensitivity (2.22 μA mM-1 cm-2), and a LOD (2.08 μM) (S/N = 3). The electrochemical measurement shows that the ZnZrO2/CS sensor has excellent catalytic activity and a much LOD than ZnZrO2. The modified electrode showed excellent anti interference nature. Furthermore, this ZnZrO2/CS electrode was used to detection of glucose and H2O2 in human blood serum and HeLa cells respectively.
Collapse
Affiliation(s)
- M Ramesh
- Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli - 620 022, Tamil Nadu, India
| | - C Sankar
- Department of Chemistry, SRM TRP Engineering College, Tiruchirappalli - 621 105, Tamil Nadu, India
| | - S Umamatheswari
- Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli - 620 022, Tamil Nadu, India.
| | - J Balamurugan
- National Creative Research Initiative (CRI) Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - R Jayavel
- Centre for Nanoscience and Technology, Anna University, Chennai - 600025, Tamil Nadu, India
| | - M Gowran
- Department of Chemistry, Anna University, Chennai - 60002, Tamil Nadu, India
| |
Collapse
|
34
|
Molecular Dynamics Approach to the Physical Mixture of In 2O 3 and ZrO 2: Defect Formation and Ionic Diffusion. Int J Mol Sci 2023; 24:ijms24032426. [PMID: 36768746 PMCID: PMC9917225 DOI: 10.3390/ijms24032426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Recent research on the use of physical mixtures In2O3-ZrO2 has raised interesting questions as to how their combination enhances catalytic activity and selectivity. Specifically, the relationship between oxygen diffusion and defect formation and the epitaxial tension in the mixture should be further investigated. In this study, we aim to clarify some of these relationships through a molecular dynamics approach. Various potentials for the two oxides are compared and selected to describe the physical mixture of In2O3 and ZrO2. Different configurations of each single crystal and their physical mixture are simulated, and oxygen defect formation and diffusion are measured and compared. Significant oxygen defect formation is found in both crystals. In2O3 seems to be stabilized by the mixture, while ZrO2 is destabilized. Similar results were found for the ZrO2 doping with In and ln2O3 doping with Zr. The results explain the high activity and selectivity catalyst activity of the mixture for the production of isobutylene from ethanol.
Collapse
|
35
|
Catalytic Activity of Ni Based Materials Prepared by Different Methods for Hydrogen Production via the Water Gas Shift Reaction. Catalysts 2023. [DOI: 10.3390/catal13010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Water gas shift reactions (WGS) were evaluated over Ni/CeO2 and Ni/CeSmO catalysts for hydrogen production. The effects of catalyst preparation method and Sm loading were investigated. The Ni/ceria and Ni/CeSmO catalysts were synthesized by combustion, sol gel and sol gel-combustion method. After WGS tests, the catalysts were determined the carbon deposition by thermogravimetric analysis. The thermogravimetric analysis and temperature programmed NH3 desorption showed that addition of Sm promoter made higher the weak acid sites and lower the amount of carbon deposition than the unpromoted catalyst due to it being easily removed. CO chemisorption result indicated that Ni/Ce5%SmO catalyst prepared by combustion method has the highest Ni metal dispersion and metallic surface area compared to the other catalysts. The enhancement of WGS activity of this catalyst is due to more surface active sites being exposed to reactants. Furthermore, H2-temperature programmed reduction analysis confirmed an easiest reduction of this catalyst. This behavior accelerates the redox process at the ceria surface and enhances the oxygen vacancy concentration. The catalytic activity measurements exhibited that the optimum Sm loading was 5% wt. and the best catalyst preparation was the combustion method. The high surface area and small crystallite size of the 5%Ni/Ce5%SmO (combustion) catalyst resulted in sufficient dispersion, which closely related to the WGS activity of the catalyst.
Collapse
|
36
|
Mancuso A, Blangetti N, Sacco O, Freyria FS, Bonelli B, Esposito S, Sannino D, Vaiano V. Photocatalytic Degradation of Crystal Violet Dye under Visible Light by Fe-Doped TiO 2 Prepared by Reverse-Micelle Sol-Gel Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020270. [PMID: 36678023 PMCID: PMC9861999 DOI: 10.3390/nano13020270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 05/31/2023]
Abstract
A reverse-micelle sol-gel method was chosen for the preparation of Fe-doped TiO2 samples that were employed in the photodegradation of the crystal violet dye under visible light irradiation in a batch reactor. The dopant amount was varied to assess the optimal photocatalyst composition towards the target dye degradation. The photocatalysts were characterized through a multi-technique approach, envisaging XRPD and QPA as obtained by Rietveld refinement, FE-SEM analysis, DR UV-vis spectroscopy, N2 adsorption/desorption isotherms measurement at -196 °C, ζ-potential measurement, and XPS analysis. The physical-chemical characterization showed that the adopted synthesis method allows obtaining NPs with uniform shape and size and promotes the introduction of Fe into the titania matrix, finally affecting the relative amounts of the three occurring polymorphs of TiO2 (anatase, rutile and brookite). By increasing the Fe content, the band gap energy decreases from 3.13 eV (with undoped TiO2) to 2.65 eV (with both 2.5 and 3.5 wt.% nominal Fe contents). At higher Fe content, surface Fe oxo-hydroxide species occur, as shown by DR UV-vis and XP spectroscopies. All the Fe-doped TiO2 photocatalysts were active in the degradation and mineralization of the target dye, showing a TOC removal higher than the undoped sample. The photoactivity under visible light was ascribed both to the band-gap reduction (as confirmed by phenol photodegradation) and to dye sensitization of the photocatalyst surface (as confirmed by photocatalytic tests carried out using different visible-emission spectra LEDs). The main reactive species involved in the dye degradation were determined to be positive holes.
Collapse
Affiliation(s)
- Antonietta Mancuso
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Nicola Blangetti
- Department of Applied Science and Technology and INSTM Unit of Torino Politecnico, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Olga Sacco
- Department of Chemistry and Biology “A. Zambelli” and INSTM Research Unit, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Francesca Stefania Freyria
- Department of Applied Science and Technology and INSTM Unit of Torino Politecnico, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Barbara Bonelli
- Department of Applied Science and Technology and INSTM Unit of Torino Politecnico, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- Interdepartmental Centre PolitoBIOMed Lab., Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Serena Esposito
- Department of Applied Science and Technology and INSTM Unit of Torino Politecnico, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Diana Sannino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
37
|
Yan L, Tang J, Qiao QA, Cai H, Dong Y, Jin J, Xu Y, Gao H. Construction and Enhanced Efficiency of Bi 2MoO 6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:214. [PMID: 36616124 PMCID: PMC9824808 DOI: 10.3390/nano13010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Bi2MoO6 was one of the important bismuth-based semiconductors with a narrow bandgap, and has been widely used in selective oxidation catalysts, supercapacitors, and energy-storage devices. A series of Bi2MoO6/ZnO composite photocatalysts with different mass ratios were synthesized by the hydrothermal method. The synthesized samples were characterized by XRD, PL, UV-Vis, SEM, TEM, XPS, and BET analysis techniques. Under visible light conditions, Methylene blue (MB) was used as the target degradation product to evaluate its photocatalytic performance. The results showed that the degradation rate constant of Bi2MoO6/ZnO (0.4-BZO) was about twice that of the traditional photocatalysis of ZnO. The Bi2MoO6/ZnO composite catalyst maintained stable performance after four consecutive runs. The high photocatalytic activity of Bi2MoO6/ZnO was attributed to the efficient electron transport of the heterojunction, which accelerates the separation of electron-hole pairs and reduces the probability of carrier recombination near the Bi2MoO6/ZnO heterojunction. Bi2MoO6/ZnO nanocomposites have potential applications in the field of photodegradation.
Collapse
Affiliation(s)
- Liyun Yan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jiahui Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qing-an Qiao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Honglan Cai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuqi Dong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Jin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai 264025, China
| |
Collapse
|
38
|
Selectivity of CO2, carbonic acid and bicarbonate electroreduction over Iron-porphyrin catalyst: a DFT study. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Deng Y, Fu L, Song W, Ouyang L, Yuan S. Transition metal and Pr co-doping induced oxygen vacancy in Pd/CeO2 catalyst boosts low-temperature CO oxidation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Lal Bose A, Agarwal V. Oxygen Healing and CO 2 /H 2 /Anisole Dissociation on Reduced Molybdenum Oxide Surfaces Studied by Density Functional Theory. Chemphyschem 2022; 23:e202200510. [PMID: 35983612 DOI: 10.1002/cphc.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Indexed: 01/05/2023]
Abstract
Reduced molybdenum oxides are versatile catalysts for deoxygenation and hydrodeoxygenation reactions. In this work, we have performed spin-polarized DFT calculations to investigate oxygen healing energies on reduced molybdenum oxides (reduced α-MoO3 , γ-Mo4 O11 and MoO2 ). We find that Mo+4 on MoO2 (100) is the most active for abstracting an oxygen from the oxygenated compounds. We further explored CO2 adsorption and dissociation on reduced α-MoO3 (010) and MoO2 (100). In comparison to reduced α-MoO3 (010), CO2 adsorbs more strongly on MoO2 (100). We find that CO2 dissociates on MoO2 (100) via a two-step process, the overall barrier for which is 0.6 eV. This barrier is 1.7 eV lower than that on reduced α-MoO3 (010), suggesting a much higher activity for deoxygenation of CO2 to CO. As H2 dissociation is shown to be the rate-limiting step for hydrodeoxygenation reactions, we also studied activation barriers for H2 chemisorption on MoO2 (100). We find that the chemisorption barriers are 0.7 eV lower than that reported on reduced α-MoO3 (010). Finally, we have studied the dissociation (C-O cleavage) of anisole (a lignin-based biofuel model compound) on MoO2 (100). We find that anisole binds very strongly on MoO2 (100) with an adsorption energy of -1.47 eV. According to Sabatier's principle, strongly adsorbing reactants poison the catalyst surface, which may explain the low activity of MoO2 observed during experiments for hydrodeoxygenation of anisole.
Collapse
Affiliation(s)
- Abir Lal Bose
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Vishal Agarwal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
41
|
Zhang K, Meng Q, Wu H, Yan J, Mei X, An P, Zheng L, Zhang J, He M, Han B. Selective Hydrodeoxygenation of Aromatics to Cyclohexanols over Ru Single Atoms Supported on CeO 2. J Am Chem Soc 2022; 144:20834-20846. [DOI: 10.1021/jacs.2c08992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kaili Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming,20 Cuiniao Road, Chongming
District, Chenjia Town, Shanghai 202162, China
| | - Qinglei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming,20 Cuiniao Road, Chongming
District, Chenjia Town, Shanghai 202162, China
| | - Jiang Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming,20 Cuiniao Road, Chongming
District, Chenjia Town, Shanghai 202162, China
| | - Pengfei An
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming,20 Cuiniao Road, Chongming
District, Chenjia Town, Shanghai 202162, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Eco-Chongming,20 Cuiniao Road, Chongming
District, Chenjia Town, Shanghai 202162, China
| |
Collapse
|
42
|
Deng Y, Liu S, Fu L, Yuan Y, Zhao A, Wang D, Zheng H, Ouyang L, Yuan S. Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Ntola P, Friedrich HB, Singh S, Olivier EJ, Farahani M, Mahomed AS. Effect of the fuel on the surface VOx concentration, speciation and physico-chemical characteristics of solution combustion synthesised VOx/MgO catalysts for n-octane activation. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Investigation of In Promotion on Cu/ZrO2 Catalysts and Application in CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Chen H, Chen S, Zhang Z, Sheng L, Zhao J, Fu W, Xi S, Si R, Wang L, Fan M, Yang B. Single-Atom-Induced Adsorption Optimization of Adjacent Sites Boosted Oxygen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huihuang Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Shaoqing Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen518055, P. R. China
| | - Zhirong Zhang
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, P. R. China
| | - Li Sheng
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, P. R. China
| | - Jiankang Zhao
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, P. R. China
| | - Weng Fu
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Jurong Island, Singapore627833, Singapore
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai201204, P. R. China
| | - Lianzhou Wang
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming82071, United States
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, P. R. China
| |
Collapse
|
46
|
Yang W, Yu H, Wang B, Wang X, Zhang H, Lei D, Lou LL, Yu K, Liu S. Leveraging Pt/Ce 1-xLa xO 2-δ To Elucidate Interfacial Oxygen Vacancy Active Sites for Aerobic Oxidation of 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37667-37680. [PMID: 35968674 DOI: 10.1021/acsami.2c07065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interfacial oxygen-defective sites of oxide-supported metal catalysts are generally regarded as active centers in diverse redox reactions. Identification of their structure-property relationship at the atomic scale is of great importance but challenging. Herein, a series of La3+-doped three-dimensionally ordered macroporous CeO2 (3D-Ce1-xLaxO2-δ) were synthesized and applied as supports for Pt nanoparticles. The pieces of evidence from a suite of in-situ/ex-situ characterizations and theoretical calculations revealed that the La3+-mono-substituted La-□(-Ce)2 sites (where □ represents an oxygen vacancy) exhibited superior charge transfer ability, behaving as trapping centers for Pt nanoparticles. The resulting interfacial Ptδ+/La-□(-Ce)2 sites served as the reversible active species in the aerobic oxidation of 5-hydroxymethylfurfural to boost catalytic performance by simultaneously promoting oxygen activated capacity and the cleavage of O-H/C-H bonds of adsorbed hydroxymethyl groups. Consequently, the Pt/3D-Ce0.9La0.1O2-δ catalyst possessing the highest number of Ptδ+/La-□(-Ce)2 sites showed the best catalytic performance with 99.6% yield to 2,5-furandicarboxylic acid in 10 h. These results offer more insights into the promoting mechanism of interfacial oxygen-defective sites for the liquid-phase aerobic oxidation of aldehydes and alcohols.
Collapse
Affiliation(s)
- Weiping Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Haochen Yu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuemin Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Hao Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Da Lei
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lan-Lan Lou
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangxi Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
47
|
Abstract
Fuel cells (FCs), water electrolyzers (WEs), unitized regenerative fuel cells (URFCs), and metal-air batteries (MABs) are among the emerging electrochemical technologies for energy storage, fuel (H2), oxidant (O2), and clean energy production. Their commercial applications are hindered by the low oxygen reduction reaction/oxygen evolution reaction (ORR/OER) bifunctional activity (for URFCs and MABs), OER selectivity (brine electrolysis in seawater and Martian environments), and high cost of the benchmark electrocatalysts (OER: RuO2, IrO2 and ORR: Pt/C) which affects the performance and affordability of the devices. Low-cost electrocatalysts with highly symmetric ORR/OER bifunctional activity and high OER selectivity are crucial for large-scale FC, WE, URFC, and MAB application. Recent studies have revealed that tuning the structure of pyrochlore oxides provides a pathway to enhancing OER and ORR activity over a wide range of pH. Pyrochlore oxides commonly contain a cubic A2B2O7-x structure with two types of tetrahedrally coordinated O atoms containing (1) A-O-A and (2) A-O-B types with a cationic radii mismatch of rA/rB > 1.5 and propensity toward oxygen vacancy formation. The variety of pyrochlore oxides and their tunable properties make them attractive for a wide spectrum of applications. Among all the metal oxides, Ru-based pyrochlores (e.g., Pb2Ru2O7-x) exhibit the best bifunctional oxygen electrocatalytic activity, i.e., low bifunctionality index (BI), in alkaline medium. Furthermore, pyrochlores exhibit high OER selectivity in brine electrolytes due to the presence of surface oxygen vacancies, making them suitable for space applications (brine electrolysis on Mars) and coastal hydrogen generation. Their bifunctional activity and selectivity can be further amplified by (1) substituting "A" and "B" sites of pyrochlores (AA'BB'O7-x), (2) tuning metal oxidation states of A and B by varying synthesis conditions, and (3) modulating oxygen vacancy concentration, each of which yield favorable structural and electronic variations. In recent years, research on the synthesis and understanding of pyrochlores has significantly enhanced their viability, offering a new horizon in the quest for economical and active electrocatalysts. However, an account that focuses on critical developments in this field is still lacking.In this Account, we focus on the recent development of a variety of pyrochlore electrocatalysts to understand intrinsic structure-activity-selectivity-stability relationships in these materials. Recent developments and applications of pyrochlore-based electrocatalysts are discussed under the following headings: (1) modulation of crystal and electronic structure of pyrochlores, (2) structure-activity-stability relationships of different pyrochlores for OER and ORR, (3) development of OER-selective pyrochlores for brine electrolysis, and (4) the application of pyrochlores in electrochemical devices. Finally, we highlight some unaddressed issues such as the precise identification of active sites, which can be addressed in the future through advanced in situ and ex situ characterization techniques coupled with the density functional theory-based analyses. This Account provides foundational understanding to guide the comprehensive development of highly active, selective, stable and low-cost structurally engineered pyrochlores for high performance electrochemical devices.
Collapse
Affiliation(s)
- Pralay Gayen
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Sulay Saha
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Vijay Ramani
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
48
|
Liu Y, Han Z, Gewinner S, Schöllkopf W, Levchenko SV, Kuhlenbeck H, Roldan Cuenya B. Adatom Bonding Sites in a Nickel-Fe 3 O 4 (001) Single-Atom Model Catalyst and O 2 Reactivity Unveiled by Surface Action Spectroscopy with Infrared Free-Electron Laser Light. Angew Chem Int Ed Engl 2022; 61:e202202561. [PMID: 35502625 PMCID: PMC9400859 DOI: 10.1002/anie.202202561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Single-atom (SA) catalysis presently receives much attention with its promise to decrease the cost of the active material while increasing the catalyst's performance. However, key details such as the exact location of SA species and their stability are often unclear due to a lack of atomic level information. Here, we show how vibrational spectra measured with surface action spectroscopy (SAS) and density functional theory (DFT) simulations can differentiate between different adatom binding sites and determine the location of Ni and Au single atoms on Fe3 O4 (001). We reveal that Ni and Au adatoms selectively bind to surface oxygen ions which are octahedrally coordinated to Fe ions. In addition, we find that the Ni adatoms can activate O2 to superoxide in contrast to the bare surface and Ni in subsurface positions. Overall, we unveil the advantages of combining SAS and DFT for improving the understanding of single-atom catalysts.
Collapse
Affiliation(s)
- Yun Liu
- Department of Interface ScienceFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Zhongkang Han
- Center for Energy Science and TechnologySkolkovo Institute of Science and TechnologyBolshoy Blvd. 30/1121205MoscowRussia
| | - Sandy Gewinner
- Molecular Physics DepartmentFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Wieland Schöllkopf
- Molecular Physics DepartmentFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Sergey V. Levchenko
- Center for Energy Science and TechnologySkolkovo Institute of Science and TechnologyBolshoy Blvd. 30/1121205MoscowRussia
| | - Helmut Kuhlenbeck
- Department of Interface ScienceFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Beatriz Roldan Cuenya
- Department of Interface ScienceFritz-Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| |
Collapse
|
49
|
Yi H, Wang Y, Diao L, Xin Y, Chai C, Cui D, Ma D. Ultrasonic treatment enhances the formation of oxygen vacancies and trivalent manganese on α-MnO 2 surfaces: Mechanism and application. J Colloid Interface Sci 2022; 626:629-638. [PMID: 35810702 DOI: 10.1016/j.jcis.2022.06.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 10/31/2022]
Abstract
Catalytic activity is the main obstacle limiting the application of peroxymonosulfate (PMS) activation on transition metal oxide catalysts in organic pollutant removal. Herein, ultrasonic treatment was applied to α-MnO2 to fabricate a new u-α-MnO2 catalyst for PMS activation. Dimethyl phthalate (DMP, 10 mg/L) was almost completely degraded within 90 min, and the pseudofirst-order rate constant for DMP degradation in the u-α-MnO2/PMS system was ∼7 times that in the initial α-MnO2/PMS system. The ultrasonic treatment altered the crystalline and pore structures of α-MnO2 and produced defects on the u-α-MnO2 catalyst. According to the XPS, TG, and EPR results, higher contents of trivalent Mn and oxygen vacancies (OVs) were produced on the catalyst surfaces. The OVs induced the decomposition of PMS to produce 1O2, which was identified as the main reactive oxygen species (ROS) responsible for DMP degradation. The u-α-MnO2 catalyst presented great reusability, especially by ultrasonic regeneration of OVs toward the used catalyst. This study provides new insights into regulating OVs generation and strengthening catalyst activity in the PMS activation process for its application in water purification.
Collapse
Affiliation(s)
- Hailing Yi
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanhao Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lingling Diao
- Chengyang Branch of Qingdao Ecological Environment Bureau, Qingdao 266109, China
| | - Yanjun Xin
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Chai
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Dejie Cui
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Dong Ma
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
50
|
Molybdenum Modified Sol–Gel Synthesized TiO2 for the Photocatalytic Degradation of Carbamazepine under UV Irradiation. Processes (Basel) 2022. [DOI: 10.3390/pr10061113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmaceutical CEC compounds are a potential threat to man, animals, and the environment. In this study, a sol–gel-derived TiO2 (SynTiO2) was produced and subsequently sonochemically doped with a 1.5 wt% Mo to obtain the final product (Mo (1.5 wt%)/SynTiO2). The as-prepared materials were characterized for phase structure, surface, and optical properties by XRD, TEM, N2 adsorption–desorption BET isotherm at 77 K, and PSD by BJH applications, FTIR, XPS, and UV-Vis measurements in DRS mode. Estimated average crystallite size, particle size, surface area, pore-volume, pore size, and energy bandgap were 16.10 nm, 24.55 nm, 43.30 m2/g, 0.07 cm3/g, 6.23 nm, and 3.05 eV, respectively, for Mo/SynTiO2. The same structural parameters were also estimated for the unmodified SynTiO2 with respective values of 14.24 nm, 16.02 nm, 133.87 m2/g, 0.08 cm3/g, 2.32 nm, and 3.3 eV. Structurally improved (Mo (1.5 wt%)/SynTiO2) achieved ≈100% carbamazepine (CBZ) degradation after 240 min UV irradiation under natural (unmodified) pH conditions. Effects of initial pH, catalyst dosage, initial pollutant concentration, chemical scavengers, contaminant ions, hydrogen peroxide (H2O2), and humic acid (HA) were also investigated and discussed. The chemical scavenger test was used to propose involved photocatalytic degradation process mechanism of CBZ.
Collapse
|