1
|
Xu J, Wang G, Ding K, Wang X. Dirhodium-Palladium Dual-Catalyzed [1 + 1 + 3] Annulation to Heterocycles Using Primary Amines or H 2O as the Heteroatom Sources. J Am Chem Soc 2025; 147:2000-2009. [PMID: 39772613 DOI: 10.1021/jacs.4c15161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The ever-increasing demand in chemical biology and medicinal research requires the development of new synthetic methods for the rapid construction of libraries of heterocycles from simple raw materials. In this context, the utilization of primary amines or H2O as the simple N- or O-sources in the assembly of a heterocyclic ring skeleton is highly desirable from the viewpoint of atom- and step-economy. Herein, we describe a highly efficient three-component reaction of diazo, allylic diacetates, and commercially available anilines (or H2O) to access structurally diverse pyrrolidine and tetrahydrofuran derivatives. This formal [1 + 1 + 3] annulation reaction features high efficiency, good yields, and broad functional group compatibility, making it a versatile and robust platform for the (formal) synthesis of several important bioactive molecules. Mechanistic studies suggested that the dirhodium-palladium bimetallic relay catalysis should play a key role in the successive steps of the current reaction, including sequential carbene insertion into the X-H bond and double allylic substitutions, thus allowing for building up molecular complexity from these simple raw materials.
Collapse
Affiliation(s)
- Jie Xu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Gaoyin Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Murakami R, Mori T, Murata K, Fuwa H. Total Synthesis of Exiguolide Stereoisomers: Impact of Stereochemical Permutation on Reactivity, Conformation, and Biological Activity. J Org Chem 2025; 90:753-767. [PMID: 39718544 DOI: 10.1021/acs.joc.4c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
(-)-Exiguolide is a marine macrolide natural product with potent anticancer activity. In this study, the total synthesis of exiguolide stereoisomers, (9R)-exiguolide, (9R,13S)-exiguolide, and (9R,13S,19R)-exiguolide, was achieved by capitalizing on our macrocyclization/transannular pyran cyclization strategy. The impact of the stereochemical permutation on the reactivity of advanced intermediates, the conformation of the macrocyclic skeleton, and the antiproliferative activity against human cancer cells were investigated in detail. The total synthesis of (9R,13S)-exiguolide and (9R,13S,19R)-exiguolide was completed in much the same way as that of the parent natural product using stereoisomeric building blocks. Nevertheless, the reactivity of the (9R,13S)- and (9R,13S,19R)-series of intermediates in macrocyclic ring-closing metathesis and transannular pyran-forming reactions was significantly different from that of naturally configured counterparts. The conformation of exiguolide stereoisomers, deduced by means of NMR spectroscopic analysis and DFT calculations, was clearly different from that of the parent natural product. Evaluation of the antiproliferative activity of exiguolide and its stereoisomers suggested the importance of the stereochemistry of the macrocyclic skeleton.
Collapse
Affiliation(s)
- Reika Murakami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomo Mori
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keisuke Murata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
3
|
Ren LC, Wang M, Zha X, Jian YR, Zhang LR, Tan JJ, Cui BD, Zhang Y, Mou XQ, Chen YZ. Electrochemical Oxidative Cascade Cyclization of Alkenyl Alcohols with External Nucleophiles to Access Amino- and Hydroxy-Functionalized O-Heterocycles. J Org Chem 2025; 90:412-427. [PMID: 39705110 DOI: 10.1021/acs.joc.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
A convenient electrochemical oxidative cascade cyclization of alkenes equipped with pendant alcohols with general nucleophiles was developed. Using readily available diarylmethanimine and carboxylic acids as nucleophilic sources, a broad range of internal alkene and terminal alkene substrates could produce RCO2- and Ar2CN-functionalized O-heterocycles in moderate to high yields without the requirement for external oxidants and metals. These resulting products can subsequently be hydrolyzed to yield valuable NH2- and OH-functionalized tetrahydrofurans and tetrahydropyranes under mild conditions. Importantly, the efficient conversion of secondary alcohol products to amines with complete inversion of configuration enhances the methodology, enabling the construction of 2-aryl-3-amino tetrahydrofuran with high and complementary diastereoselectivity.
Collapse
Affiliation(s)
- Liang-Chen Ren
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Min Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Xiao Zha
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yu-Rui Jian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Li-Ren Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Jia-Jing Tan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
4
|
Belyakova YY, Radulov PS, Novikov RA, Prolomov IV, Krivoshchapov NV, Medvedev MG, Yaremenko IA, Alabugin IV, Terent'ev AO. FeCl 2-Mediated Rearrangement of Aminoperoxides into Functionalized Tetrahydrofurans: Dynamic Non-innocence of O-Ligands at an Fe Center Coordinates a Radical Cascade. J Am Chem Soc 2025; 147:965-977. [PMID: 39727309 DOI: 10.1021/jacs.4c14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The selective reaction of cyclic aminoperoxides with FeCl2 proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans. Although the aminoperoxide cores undergo multiple bond scissions, this cascade is atom-economical. Computational analysis shows that the O-ligands at the Fe center have enough radical character to promote C-C bond fragmentation and subsequent cyclization. The stereoelectronic flexibility of oxygen, combined with iron's capacity to stabilize multiple reactive intermediates during the multistep cascade, explains the efficiency of this new atom-economic peroxide rearrangement.
Collapse
Affiliation(s)
- Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Ilya V Prolomov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- Mendeleev University of Chemical Technology, Miusskaya Sq. 9, Moscow 125047, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| |
Collapse
|
5
|
Wang LC, Wu XF. Carbonylation Reactions at Carbon-Centered Radicals with an Adjacent Heteroatom. Angew Chem Int Ed Engl 2024; 63:e202413374. [PMID: 39248444 DOI: 10.1002/anie.202413374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Heteroatoms are essential to living organisms and present in almost all molecules with medicinal usage. The catalytic functionalization at the carbon-centered radical with an adjacent heteroatom provides an effective way to value added moiety while retaining the unique physicochemical and pharmacological properties of heteroatoms, which can promote the development of pharmaceutical and fine chemical production. Carbonylative transformation was discovered nearly a century ago which is an efficient method for the synthesis of carbonyl-containing molecules with potent applications in both industry and academia. Despite numerous advances in new reaction development, carbonylative transformation involving adjacent heteroatom carbon radical remain a subject that deserves to be discussed. In this minireview, we systematically summarized and discussed the recent advances in carbonylative transformations involving carbon-centered radicals with an adjacent heteroatom, including oxygen (O), nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), boron (B), fluorine (F), and chlorine (Cl). The related reaction mechanism was also discussed.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
6
|
Obregón EB, Rost LG, Kocemba IR, Kristensen A, McLeod DA, Jørgensen KA. Enantioselective (3+2) Annulation of Donor-Acceptor Cyclopropanes with Aldehydes and Ketones Catalyzed by Brønsted Bases. Angew Chem Int Ed Engl 2024; 63:e202410524. [PMID: 39007180 DOI: 10.1002/anie.202410524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
The substituted tetrahydrofuran core is a structural motif in many biologically active and natural compounds. However, the scarcity of enantioselective methods developed towards its synthesis makes this field challenging and attractive to explore. Herein, the first Brønsted-base catalyzed enantioselective (3+2) annulation of donor-acceptor cyclopropanes with aldehydes and ketones affording enantioenriched 2,3,5-substituted tetrahydrofurans is reported. The reaction concept is based on activation of racemic β-cyclopropyl ketones by a chiral bifunctional Brønsted base which catalyzes the (3+2) annulation for a range of aldehydes and ketones. For aldehydes, the annulation furnished tetrahydrofurans in excellent yield, good diastereoselectivity and with excellent enantioselectivity up to >99 % ee. Surprisingly, aromatic aldehydes afforded the cis-2,5-substituted tetrahydrofurans as the major diastereoisomer, while for aliphatic aldehydes the trans-cycloadduct was favored. The reaction also proceeds well for ketones affording spiro tetrahydrofurans in excellent yields and enantioselectivities (up to 99 % ee). Hammett studies have been conducted to elucidate the influence of the electronic nature of benzaldehydes on the stereoselectivity. Based on the diastereochemical outcome for the aldehydes, two reaction paths for aromatic and aliphatic aldehydes are proposed. Finally, two diastereoselective synthetic transformations have been conducted to demonstrate the synthetic potential of the obtained products.
Collapse
Affiliation(s)
| | - Louise G Rost
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Ida R Kocemba
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Anne Kristensen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - David A McLeod
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | |
Collapse
|
7
|
Song DX, Song YH, Huang HH, Huang XY, Yang F, Ji K, Chen ZS. Divergent Reactions of α-Diazo 1,3-Dicarbonyl Compounds with Allylic Carbonates Involving Ketene versus Carbene Intermediates Enabled by Cooperative Rh(II)/Pd(0) Dual Catalysis. Org Lett 2024; 26:7920-7925. [PMID: 39248657 DOI: 10.1021/acs.orglett.4c02947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A cooperative Rh(II)/Pd(0) dual-catalysis strategy that enabled divergent reactions of α-diazo 1,3-dicarbonyl compounds with allylic carbonates involving ketene versus carbene intermediates is described. The efficient synthesis of α-quaternary allylated β-keto-esters was accomplished by the Rh(II)/Pd(0) dual-catalysis allylic alkylation of α-diazo 1,3-dicarbonyl compounds. Alternatively, an unprecedented (1+4) annulation of α-diazo 1,3-dicarbonyl compounds with 2-(hydroxymethyl)allyl carbonates via Rh(II)/Pd(0) dual catalysis was also successfully developed, affording a wide variety of α-quaternary tetrahydrofurans in good to high yields.
Collapse
Affiliation(s)
- De-Xin Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yu-Hua Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Heng-Hua Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Xiao-Yan Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Fang Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
8
|
Zhao L, Hu P, Tian J, Zhang X, Yang C, Guo L, Xia W. Electrochemical Deconstructive and Ring-Expansion Functionalization of Unstrained Cycloalkanols. Org Lett 2024; 26:4882-4886. [PMID: 38815060 DOI: 10.1021/acs.orglett.4c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
An efficient and sustainable electrochemical method for the synthesis of cyclic ethers and acyclic aldehydes from alkanols has been reported. This strategy has been successfully applied to cycloalkanols bearing different ring sizes and different types of nucleophiles. In addition, mechanistic investigations show that the reactions undergo sequential processes, including anodic oxidation, β-scission, and nucleophilic addition. This method provides a new synthetic approach to constructing cyclic ethers and terminal aldehydes from cycloalkanols and nucleophiles.
Collapse
Affiliation(s)
- Lulu Zhao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Pengwei Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jian Tian
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiao Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Xu J, Liu B. Metal Free Functionalization of Saturated Heterocycles with Vinylarenes and Pyridine Enabled by Photocatalytic Hydrogen Atom Transfer. Chemistry 2024; 30:e202400612. [PMID: 38566284 DOI: 10.1002/chem.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
Saturated heterocycles are important class of structural scaffolds in small-molecule drugs, natural products, and synthetic intermediates. Here, we disclosed a metal free, mild, and scalable functionalization of saturated heterocycles using vinylarenes as a linchpin approach. Key to success of this transformation is the employing of simple and cheap benzophenone as a hydrogen atom transfer (HAT) catalyst. This operationally robust process was used for the making of diverse functionalized saturated heterocycles. Furthermore, aldehydes, alkane, and alcohol have been functionalized under the optimized conditions. The potential pharmaceutical utility of the procedure has also been demonstrated by late-stage functionalization of bioactive natural compounds and pharmaceutical molecules. Initial mechanism studies and control experiments were performed to elucidate the mechanism of the reactions.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| |
Collapse
|
10
|
Hussein AA, Jafar NNA, Ma Y. Elucidating the Mechanism of Tetrahydrofuran-Diol Formation through Os(VI)-Catalyzed Oxidative Cyclization of 5,6-Dihydroxyalkenes Ligated by Citric Acid. J Org Chem 2024; 89:6892-6902. [PMID: 38701335 DOI: 10.1021/acs.joc.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A computational study is reported here on the mechanism of tetrahydrofuran (THF)-diol formation from the Os(VI)-catalyzed oxidative cyclization of 5,6-dihydroxyalkene ligated with citric acid and in the presence of Bro̷nsted acid. Initiated by Os(VI) dioxo citrate formation, coordination of co-oxidant pyridine-N-oxide (PNO) and protonation of its oxo group generate the active catalyst. The catalytic cycle commences through successive steps, including dihydroxyalkene addition to the active catalyst in a concerted mechanism to form hexacoordinated alkoxy-protonated PNO-complexed Os(VI) bisglycolate as a turnover-limiting step (TLS), cyclization to Os(IV) THF-diolate, reoxidation to Os(VI) THF-diolate, and hydrolysis via a dissociative mechanism to furnish the THF-diol and regenerate the active species, sustaining the catalytic cycle through an Os(VI)/Os(IV) cycle. Despite the overall exergonic nature of catalytic cycle (ΔGrcycle = -45.0 kcal/mol), the TLS is accelerated by the formation of an open-valence 16-electron Os(VI) intermediate but decelerated by the undesired formation of a saturated/hexacoordinate 18-electron Os(VI) intermediate. Bro̷nsted acid plays crucial roles in the formation of Os(VI) citrate and the active catalyst, impediment of the second cycle, and the cyclization step. Additionally, besides its role as a co-oxidant, and in the presence of acid, PNO is found to assist the insertion of dihydroxyalkene and, importantly, in releasing the THF-diol to regenerate the active intermediate.
Collapse
Affiliation(s)
- Aqeel A Hussein
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qasim, Babylon 51013, Iraq
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala 56001, Iraq
| | - Nadhir N A Jafar
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala 56001, Iraq
| | - Yumiao Ma
- BSJ Institute, Beijing 100084, People's Republic of China
- Beijing Orienda Instrument Co. Ltd., Beijing 102200, People's Republic of China
| |
Collapse
|
11
|
Mozumi R, Fukaya K, Ito H, Komatsu T, Urabe D. Synthesis of Macrolactone Core of ent-Formosalide A via Regioselective Ether Cyclization. J Org Chem 2024. [PMID: 38712873 DOI: 10.1021/acs.joc.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Formosalide A is a cytotoxic macrolide isolated from the dinoflagellate Prorocentrum sp, whose structure is characterized by functionalized 5- and 6-membered ether rings embedded in the macrolactone and an all cis-tetraene side chain. Here, we report the synthesis of the macrolactone core of ent-formosalide A. Our approach is highlighted by the Au-mediated 6-exo-dig cyclization for the synthesis of the 6-membered ether ring, which proceeded in a highly regioselective manner. Control experiments demonstrated that the acyclic protecting group of the C9,C10-diol was crucial for the desired 6-exo-dig cyclization. Theoretical studies were performed focusing on structural component analysis, which suggested that the C8-C9-C10-C11 dihedral angle induced by the protecting group controlled the regioselectivity. An additional 6 steps including Shiina macrolactone formation from the 6-membered ether ring completed the synthesis of the macrolactone core of ent-formosalide A.
Collapse
Affiliation(s)
- Risa Mozumi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hina Ito
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tomomi Komatsu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
12
|
Li Y, Yan XL, Hu LY, Luo K, Zhu J, Wu L. Pd-catalyzed divergent regioselective annulation of phosphinyl allenes accessing polyarylfurans and 2 H-chromenes. Chem Commun (Camb) 2024; 60:3814-3817. [PMID: 38488128 DOI: 10.1039/d3cc05974j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A novel and efficient regioselective annulation of phosphinyl allenes with 2-bromophenol or 1-bromo-2-naphthol is achieved by palladium catalysis. The divergent pathway delivers structurally diverse polyarylfurans and 2H-chromene skeletons via two different Heck-type annulations. This protocol represents regioselectivity-tunable transformation of allenes into functionalized O-containing heterocycles with excellent group compatibility.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
- School of Bioengineering, Huainan Normal University, Huainan, 232038, P. R. China
| | - Xiao-Long Yan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
13
|
Wilson DM, Driedger DJ, Liu DY, Keerthisinghe S, Hermann A, Bieniossek C, Linington RG, Britton RA. Targeted sampling of natural product space to identify bioactive natural product-like polyketide macrolides. Nat Commun 2024; 15:2534. [PMID: 38514617 PMCID: PMC10958047 DOI: 10.1038/s41467-024-46721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Polyketide or polyketide-like macrolides (pMLs) continue to serve as a source of inspiration for drug discovery. However, their inherent structural and stereochemical complexity challenges efforts to explore related regions of chemical space more broadly. Here, we report a strategy termed the Targeted Sampling of Natural Product space (TSNaP) that is designed to identify and assess regions of chemical space bounded by this important class of molecules. Using TSNaP, a family of tetrahydrofuran-containing pMLs are computationally assembled from pML inspired building blocks to provide a large collection of natural product-like virtual pMLs. By scoring functional group and volumetric overlap against their natural counterparts, a collection of compounds are prioritized for targeted synthesis. Using a modular and stereoselective synthetic approach, a library of polyketide-like macrolides are prepared to sample these unpopulated regions of pML chemical space. Validation of this TSNaP approach by screening this library against a panel of whole-cell biological assays, reveals hit rates exceeding those typically encountered in small molecule libraries. This study suggests that the TSNaP approach may be more broadly useful for the design of improved chemical libraries for drug discovery.
Collapse
Affiliation(s)
- Darryl M Wilson
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Daniel J Driedger
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Sandra Keerthisinghe
- Center for High-Throughput Chemical Biology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Adrian Hermann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Center for High-Throughput Chemical Biology, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Robert A Britton
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
14
|
Park SM, Kwon CH. Deciphering the conformational preference and ionization dynamics of tetrahydrofuran: Insights from advanced spectroscopic techniques. J Chem Phys 2024; 160:114308. [PMID: 38497473 DOI: 10.1063/5.0186570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Tetrahydrofuran (THF) has garnered significant attention due to its pivotal role in biological and chemical processes. The diverse array of conformations exhibited by THF profoundly impacts its reactivity and interactions with other molecules. Understanding these conformational preferences is crucial for comprehending its molecular behavior. In this study, we utilize infrared (IR) resonant vacuum ultraviolet photoionization/mass-analyzed threshold ionization (VUV-PI/MATI) mass spectroscopies to capture distinctive vibrational spectra of individual conformers, namely, "twisted" and "bent," within THF. Our conformer-specific vibrational spectra provide valuable insights into the relative populations of these two conformers. The analysis reveals that the twisted (C2) conformer is more stable than the bent (CS) conformer by 17 ± 15 cm-1. By precisely tuning the VUV photon energy to coincide with vibrational excitation via IR absorption, we selectively ionize specific conformers, yielding two-photon IR + VUV-PI/MATI spectra corresponding to the twisted and bent conformers. This investigation conclusively affirms that both the twisted and bent conformers coexist in the neutral state, while only the twisted conformer exists in the cationic state. These findings not only bridge gaps in existing knowledge but also provide profound insights into the behavior of this pivotal molecule in the realms of biology and medicine.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan Ho Kwon
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
15
|
Li Z, Liu B, Yao CY, Gao GW, Zhang JY, Tong YZ, Zhou JX, Sun HK, Liu Q, Lu X, Fu Y. Ligand-Controlled Cobalt-Catalyzed Regio-, Enantio-, and Diastereoselective Oxyheterocyclic Alkene Hydroalkylation. J Am Chem Soc 2024; 146:3405-3415. [PMID: 38282378 DOI: 10.1021/jacs.3c12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal-hydride-catalyzed alkene hydroalkylation has been developed as an efficient method for C(sp3)-C(sp3) coupling with broad substrate availability and high functional group compatibility. However, auxiliary groups, a conjugated group or a chelation-directing group, are commonly required to attain high regio- and enantioselectivities. Herein, we reported a ligand-controlled cobalt-hydride-catalyzed regio-, enantio-, and diastereoselective oxyheterocyclic alkene hydroalkylation without chelation-directing groups. This reaction enables the hydroalkylation of conjugated and unconjugated oxyheterocyclic alkenes to deliver C2- or C3-alkylated tetrahydrofuran or tetrahydropyran in uniformly good yields and with high regio- and enantioselectivities. In addition, hydroalkylation of C2-substituted 2,5-dihydrofuran resulted in the simultaneous construction of 1,3-distereocenters, providing convenient access to polysubstituted tetrahydrofuran with multiple enantioenriched C(sp3) centers.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Bingxue Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng-Yu Yao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Gen-Wei Gao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jun-Yang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Zhou Tong
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Xiang Zhou
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Kai Sun
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Nakate AK, Kataria P, Sambherao PI, Krishna GR, Kontham R. Divergent access to polycyclic spiro- and fused- N,O-ketals through Bi(OTf) 3-catalyzed [4+2]-annulation of cyclic N-sulfonyl ketimines and alkynols. Chem Commun (Camb) 2024; 60:1144-1147. [PMID: 38189113 DOI: 10.1039/d3cc05599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Bismuth(III) triflate-catalyzed [4+2]-annulation of cyclic N-sulfonyl ketimines (derived from saccharin) and alkynyl alcohols (4-pentyn-1-ols and 5-hexyn-1-ols) has been reported. This cascade annulation provides a diverse array of polycyclic spiro-and-fused N,O-ketals with excellent substrate scope, good isolated yields, and diastereoselectivities under mild reaction conditions.
Collapse
Affiliation(s)
- Ashwini K Nakate
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Kataria
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pooja I Sambherao
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gamidi Rama Krishna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Zhu S, Ye Z, Chen MJ, Wang L, Wang YZ, Zhang KN, Li WB, Ding HM, Li Z, Zhang J. Mechanistic study on the side arm effect in a palladium/Xu-Phos-catalyzed enantioselective alkoxyalkenylation of γ-hydroxyalkenes. Nat Commun 2023; 14:7611. [PMID: 37993423 PMCID: PMC10665319 DOI: 10.1038/s41467-023-43202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Recently, the asymmetric bifunctionalization of alkenes has received much attention. However, the development of enantioselective alkoxyalkenylation has posed a considerable challenge and has lagged largely behind. Herein, we report a new palladium-catalyzed enantioselective alkoxyalkenylation reaction, using a range of primary, secondary, and tertiary γ-hydroxy-alkenes with alkenyl halides. By employing newly identified Xu-Phos (Xu8 and Xu9) with a suitable side-arm adjacent to the PCy2 motif, a series of allyl-substituted tetrahydrofurans were obtained in good yields with up to 95% ee. Besides (E)-alkenyl halides, (Z)-alkenyl halide was also examined and provided the corresponding (Z)-product as a single diastereomer, supporting a stereospecific oxidative addition and reductive elimination step. Moreover, deuterium labeling and VCD experiments were employed to determine a cis-oxypalladation mechanism. DFT calculations helped us gain deeper insight into the side-arm effect on the chiral ligand. Finally, the practicability of this method is further demonstrated through a gram-scale synthesis and versatile transformations of the products.
Collapse
Affiliation(s)
- Shuai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Zihao Ye
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China
| | - Ming-Jie Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Lei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China
| | - Yu-Zhuo Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Ke-Nan Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Wen-Bo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Han-Ming Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China.
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China.
- School of Chemistry & Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P.R. China.
| |
Collapse
|
18
|
Zhong B, Chen F, Ge Y, Liu D. Developing a fast and catalyst-free protocol to form C=N double bond with high functional group tolerance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231263. [PMID: 37800155 PMCID: PMC10548102 DOI: 10.1098/rsos.231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The carbon-nitrogen double bond (C=N) is a fundamentally important functional group in organic chemistry. This is largely due to the fact that C=N acts as electrophilic synthon to give nitrogen-containing compounds. Here, we report the condensation of primary amine or hydrazine with very electron-deficient aldehyde to form C=N bond in the absence of any catalysts (metals and acids). The protocol performs at room temperature and applies water as co-solvent. Two hundred examples are presented here. With its intrinsic advantages of wide substrate scopes, excellent efficiency (high yields and short reaction time), operational simplicity, mild condition (room temperature as reaction temperature, no catalysts, no additions, water as co-solvent and opening to air) and available starting materials, the protocol can be compatible with various drugs, prodrugs, dyes and pharmacophores containing primary amino group. In addition, we also successfully apply this protocol to rapidly synthesize the core scaffolds of bioactive molecules.
Collapse
Affiliation(s)
- Bin Zhong
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Feng Chen
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yushu Ge
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Dan Liu
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| |
Collapse
|
19
|
Tang J, Bai JF, Zheng J, Li S, Jiang ZJ, Chen J, Gao K, Gao Z. B(C 6F 5) 3-Catalyzed Intramolecular Hydroalkoxylation Deuteration Reactions of Unactivated Alkynyl Alcohols. Org Lett 2023; 25:6891-6896. [PMID: 37735994 DOI: 10.1021/acs.orglett.3c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Using D2O as a deuterium source, a method for the deuteration of intra- and extra-cyclic methylene has been developed for cyclic ethers with moderate yield and excellent deuterium incorporation. This transformation features superb functional group tolerance in a wide range of alkynols. Notably, the critical factor to achieve high deuterium incorporation is determined by the hydrogen isotope exchange reaction of an unstable oxonium ion. This novel methodology provides an efficient and concise synthetic route to a number of valuable deuterated cyclic ethers that are often difficult to prepare with other methods.
Collapse
Affiliation(s)
- Jianbo Tang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jinfeng Zheng
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shuangshuang Li
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Jia Chen
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, People's Republic of China
- Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People's Republic of China
| |
Collapse
|
20
|
Saini D, Jangid D, Fernandes RA. Asymmetric total synthesis of diosniponols A and B. Org Biomol Chem 2023; 21:6524-6530. [PMID: 37523207 DOI: 10.1039/d3ob00863k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A concise asymmetric total synthesis of diosniponols A and B has been achieved based on an enantioselective Jacobsen kinetic resolution of racemic epoxide and the important 2,3-dihydro-4H-pyran-4-one moiety being installed by the metal-free δ-hydroxyalkynone rearrangement catalyzed by p-TsOH. A diastereoselective catalytic hydrogenation set the required all-syn stereochemistry leading to diosniponol A, which then, under the Mitsunobu inversion conditions, provided diosniponol B. The structure and absolute stereochemistry of the natural products were further confirmed.
Collapse
Affiliation(s)
- Deepak Saini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Dashrath Jangid
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
21
|
Minami R, Kasai T, Murata K, Fuwa H. Total Synthesis of (+)-Muricatetrocin B via a Late-Stage Co-Catalyzed Hartung-Mukaiyama Cyclization. Org Lett 2023; 25:5745-5749. [PMID: 37530592 DOI: 10.1021/acs.orglett.3c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Convergent total synthesis of (+)-muricatetrocin B, a tetrahydrofuran-containing acetogenin with potent and selective cytotoxicity against the HT-29 human colon adenocarcinoma cell line, was achieved in 13 steps. Our synthesis is highlighted by a late-stage sequential olefin cross-metathesis/Hartung-Mukaiyama cyclization for convergent assembly of the 2,5-trans-substituted tetrahydrofuran ring.
Collapse
Affiliation(s)
- Riko Minami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tsubasa Kasai
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keisuke Murata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
22
|
Guan C, Yin J, Ji J, Liu J, Wu X, Zhu T, Liu S. Regioselectively Electrochemical Synthesis of N2-Selective C-H Amination of Ethers with N-Tosyl 1,2,3-Triazole via Triazole Radical Cation. Org Lett 2023. [PMID: 37418313 DOI: 10.1021/acs.orglett.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A regioselective electrochemical C-H amination method to synthesize N2-substituted 1,2,3-triazole using easily accessible ethers has been developed. Various substituents, including heterocycles, have a good tolerance, and 24 examples were obtained in moderate to good yields. Control experiments and DFT calculation investigations demonstrate that the electrochemical synthesis undergoes a N-tosyl 1,2,3-triazole radical cation process promoted by the single-electron transfer of the lone pair electrons of the aromatic N-heterocycle, and the desulfonation is responsible for the high N2-regioselectivity.
Collapse
Affiliation(s)
- Cong Guan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jiabin Yin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jian Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinhua Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
23
|
El Baraka Y, Hamdoun G, El Brahmi N, El Kazzouli S. Unlocking the Potential of Deep Eutectic Solvents for C-H Activation and Cross-Coupling Reactions: A Review. Molecules 2023; 28:4651. [PMID: 37375204 DOI: 10.3390/molecules28124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Green chemistry principles have underpinned the development of deep eutectic solvents (DESs). In this brief overview, we discuss the potential of DESs as a greener alternative to volatile organic solvents for cross-coupling and C-H activation reactions in organic chemistry. DESs offer numerous benefits, such as easy preparation, low toxicity, high biodegradability, and the potential to replace volatile organic compounds. The ability of DESs to recover the catalyst-solvent system enhances their sustainability. This review highlights recent advances and challenges in utilizing DESs as a reaction media, as well as the impact of physicochemical properties on the reaction process. Several types of reactions are studied to highlight their effectiveness at promoting C-C bond formation. Aside from demonstrating the success of DESs in this context, this review also discusses the limitations and future prospects of DESs in organic chemistry.
Collapse
Affiliation(s)
- Yassine El Baraka
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| | - Ghanem Hamdoun
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco
| |
Collapse
|
24
|
Byrne TJM, Mylrea ME, Cuthbertson JD. A Redox-Relay Heck Approach to Substituted Tetrahydrofurans. Org Lett 2023; 25:2361-2365. [PMID: 36988968 PMCID: PMC10088021 DOI: 10.1021/acs.orglett.3c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
An operationally simple and efficient strategy for the synthesis of substituted tetrahydrofurans from readily available cis-butene-1,4-diol is described. A redox-relay Heck reaction is used to rapidly access cyclic hemiacetals that can be directly reduced to afford the corresponding 3-aryl tetrahydrofuran. Furthermore, the hemiacetals can also serve as precursors to a range of disubstituted tetrahydrofurans, including the calyxolane natural products.
Collapse
Affiliation(s)
- Tom J M Byrne
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, U.K
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Megan E Mylrea
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, U.K
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - James D Cuthbertson
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham NG7 2TU, U.K
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
25
|
Fernandes AJ, Michelet B, Panossian A, Martin-Mingot A, Leroux FR, Thibaudeau S. Exploring F/CF 3 substituted oxocarbenium ions for the diastereoselective assembly of highly substituted tetrahydrofurans. Chem Commun (Camb) 2023; 59:4083-4086. [PMID: 36938713 DOI: 10.1039/d2cc06521e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Understanding the influence of emerging fluorinated motifs is of a crucial importance in the context of the exponentially growing exploitation of fluorine in many fields. Herein, we report on the dramatic effect of a local partial charge inversion by replacing a CHCH3 group by a CFCF3. This strategy allows the diastereoselective reduction of 5-membered ring oxocarbenium ions to access highly substituted tetrahydrofurans.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France.
| | - Bastien Michelet
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe "Synthèse Organique", 4 Rue Michel Brunet, Poitiers Cedex 9 86073, France.
| | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France.
| | - Agnès Martin-Mingot
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe "Synthèse Organique", 4 Rue Michel Brunet, Poitiers Cedex 9 86073, France.
| | - Frédéric R Leroux
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France.
| | - Sébastien Thibaudeau
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe "Synthèse Organique", 4 Rue Michel Brunet, Poitiers Cedex 9 86073, France.
| |
Collapse
|
26
|
Chatterjee B, Mondal D, Bera S. Macrocyclization Strategies Towards the Synthesis of Amphidinolide Natural Products. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Bhaskar Chatterjee
- Department of Chemistry Nabadwip Vidyasagar College 741302 Nabadwip West Bengal India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat (India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat 382030 Gandhinagar Gujarat (India
| |
Collapse
|
27
|
Qi D, Bai J, Song Z, Li B, Yang C, Guo L, Xia W. Photoinduced Synthesis of Functionalized Oxacyclic Spirooxindoles Via Ring Expansion. Org Lett 2023; 25:506-511. [PMID: 36637222 DOI: 10.1021/acs.orglett.2c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A versatile photochemical ring-expansion protocol for the synthesis of oxacyclic spirooxindoles under catalyst-free conditions is described. The reaction is enabled by the use of unstrained O-containing heterocycles with 3-diazoindolin-2-ones under visible-light irradiation. Several synthetic advantages for this method are exhibited, including mild conditions, good functional group tolerance, operational simplicity, and scalability. Mechanistic studies indicate that the transformation may proceed through the formation of oxonium ylide intermediate followed by an ionic cyclization.
Collapse
Affiliation(s)
- Dan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jinrui Bai
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuoheng Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bin Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
28
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
29
|
Choi H, Choi J, Lee K. Nickel Carbene-Mediated One-Carbon Homologative γ-Butyrolactonization. Org Lett 2022; 24:9238-9242. [PMID: 36480446 DOI: 10.1021/acs.orglett.2c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this report, we present a highly efficient approach for the synthesis of β,γ-disubstituted γ-butyrolactone motifs. This newly developed strategy is based on the combination of a diastereoselective aldol and a nickel carbene-mediated γ-butyrolactonization and uses an effective intramolecular ring closure to rapidly access a range of functionalized chiral γ-butyrolactones. This single-step approach was applied to produce straightforward asymmetric syntheses of (-)-talaumidin methyl ether, (+)-veraguensin, and (+)-dubiusamine A and a formal synthesis of (+)-phaseolinic acid as one of the shortest syntheses disclosed to date.
Collapse
Affiliation(s)
- Hosam Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joohee Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
30
|
Jiang Y, Mondal D, Lewis JC. Expanding the Reactivity of Flavin-Dependent Halogenases toward Olefins via Enantioselective Intramolecular Haloetherification and Chemoenzymatic Oxidative Rearrangements. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhua Jiang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
31
|
Kaur N, Sharma K, Ahlawat N. Synthesis of heterocycles by use of thioureas as chiral auxiliaries and as reactants. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2134375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry & Division of Research and Development, Lovely Professional University, Phagwara, India
- Department of Physical Sciences, Chemistry, Banasthali Vidyapith, Jaipur, India
| | - Khushi Sharma
- Department of Physical Sciences, Chemistry, Banasthali Vidyapith, Jaipur, India
| | - Neha Ahlawat
- Department of Physical Sciences, Chemistry, Banasthali Vidyapith, Jaipur, India
| |
Collapse
|
32
|
Otsuka K, Miyahara M, Takaki S, Wakabayashi R, Miyako K, Irie R, Takamizawa S, Sakai R, Oikawa M. Synthetic Studies on the Initially Proposed Structure of Protoaculeine B: Discovery of Neuronally Active Heterotricyclic Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kazunori Otsuka
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Masayoshi Miyahara
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Sara Takaki
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Ryoya Wakabayashi
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Kei Miyako
- Hokkaido University Faculty of Fisheries Sciences Graduate School of Fisheries Sciences School of Fisheries Sciences: Hokkaido Daigaku Daigakuin Suisan Kagaku Kenkyuin Daigakuin Suisan Kagakuin Suisan Gakubu Faculty of Fisheries Sciences JAPAN
| | - Raku Irie
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Satoshi Takamizawa
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Ryuichi Sakai
- Hokkaido University Faculty of Fisheries Sciences Graduate School of Fisheries Sciences School of Fisheries Sciences: Hokkaido Daigaku Daigakuin Suisan Kagaku Kenkyuin Daigakuin Suisan Kagakuin Suisan Gakubu Faculty of Fisheries Sciences JAPAN
| | - Masato Oikawa
- Yokohama City University Graduate School of Nanobioscience Seto 22-2Kanazawa-ku 236-0027 Yokohama JAPAN
| |
Collapse
|
33
|
Koizumi J, Tanaka K, Fukaya K, Urabe D. Stereocontrolled Synthesis of C20 S-C26 and C20 R-C26 Fragments of Amphidinolide L. J Org Chem 2022; 87:11185-11195. [PMID: 35948026 DOI: 10.1021/acs.joc.2c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amphidinolide L is a cytotoxic macrolide isolated from marine symbiotic dinoflagellates of the genus Amphidinium. While its planar structure and the absolute stereochemistry of the C21-C26 part have been determined, six stereocenters have remained unassigned. Aiming at structure determination, we have developed a synthetic route to the C20S-C26 and C20R-C26 fragments via the Li-mediated stereocontrolled aldol reaction. Two aldehydes, 16 with the C22-hydroxy group and 19 with the C22-TES ether, were synthesized from lactone 4. The aldol reactions using the Li-enolate of 4-methyl-2-pentanone in THF provided the C20S-C26 fragment 20 from 16 and a 1:3.5 mixture of the C20-C26 fragment 22 favoring the C20R-isomer. Mechanistic studies based on an extensive search of transition states in explicit solvents indicated that the C20S-isomer would be generated via a tri-solvated transition state, while the C20R-isomer would be formed via a di-solvated transition state. The calculation emphasizes the importance of the coordination network as a higher-order complex composed of solvent molecules, aldehyde, enolate, and Li atoms in the reaction of 16 to minimize steric interactions but maximize the stabilizing effect by the coordination of solvents. The presence of the rotationally free aldehyde in the reaction of 19 results in moderate diastereoselectivity.
Collapse
Affiliation(s)
- Jun Koizumi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaoru Tanaka
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
34
|
Gharpure S, Chavan R, Ardhapure A. Iron‐Catalyzed Reductive Cyclization of Alkenyl Vinylogous Carbonates for Stereoselective Synthesis of Substituted Tetrahydrofurans, Tetrahydropyrans and Chromans. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Casali E, Porta A, Toma L, Zanoni G. Oxo-Rhenium-Mediated Allylation of Furanoside Derivatives: A Computational Study on the Mechanism and the Stereoselectivity. J Org Chem 2022; 87:9497-9506. [PMID: 35820228 PMCID: PMC9361356 DOI: 10.1021/acs.joc.2c00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Properly substituted tetrahydrofuran (THF) rings are
important
building blocks in the synthesis of many natural metabolites. Having
reliable procedures to control the stereoselectivity at the THF core
while decorating it with different substituents is a fundamental requirement
to achieve and fulfill the complexity of nature. We recently reported
a new chemical approach to control the stereochemistry in the alkylation
and arylation of furanoside derivatives by using a rhenium(V) complex
to form an intermediate oxo-carbenium species able to react with proper
soft nucleophiles. Here, we describe theoretical calculations, performed
at the DFT B3LYP level, to disclose the important mechanistic features
which regulate the entire catalytic cycle of the reaction of mono-
and disubstituted furanosides with allyltrimethylsilane catalyzed
by Re(O)Cl3(OPPh3)(Me2S). Moreover,
the key factors governing the allylation step were investigated, confirming
that the stereoselectivity, which is independent of the anomeric configuration
of starting acetal, mainly arises from the orientation of the substituent
at C-4, with only marginal contribution of the substituent at C-5.
Finally, puckering Cremer–Pople parameters were used to take
trace of the structural modifications throughout the catalytic cycle.
Collapse
Affiliation(s)
- Emanuele Casali
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Alessio Porta
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Lucio Toma
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli, 12, 27100 Pavia, Italy
| |
Collapse
|
36
|
Huang MY, Zhao YT, Zhang CD, Zhu SF. Highly Regio-, Stereo-, and Enantioselective Copper-Catalyzed B-H Bond Insertion of α-Silylcarbenes: Efficient Access to Chiral Allylic gem-Silylboranes. Angew Chem Int Ed Engl 2022; 61:e202203343. [PMID: 35437891 DOI: 10.1002/anie.202203343] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Herein, we report the development of a method for highly regio-, stereo-, and enantioselective B-H bond insertion reactions of α-silylcarbenes generated from 1-silylcyclopropenes in the presence of a chiral copper(I)/bisoxazoline catalyst for the construction of chiral γ,γ-disubstituted allylic gem-silylboranes, which cannot be prepared by any other known methods. This reaction is the first highly enantioselective carbene insertion reaction of α-silylcarbenes ever to be reported. The method shows general applicability for various 3,3-disubstituted silylcyclopropenes and exclusively affords E-products. The novel chiral γ,γ-disubstituted allylic gem-silylborane products are versatile allylic bimetallic reagents with high stability and have great synthetic potential, especially for the construction of complex molecules with continuous chiral centers.
Collapse
Affiliation(s)
- Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Tao Zhao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Cheng-Da Zhang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
37
|
Mizukami D, Iio K, Oda M, Onodera Y, Fuwa H. Tandem Macrolactone Synthesis: Total Synthesis of (-)-Exiguolide by a Macrocyclization/Transannular Pyran Cyclization Strategy. Angew Chem Int Ed Engl 2022; 61:e202202549. [PMID: 35243740 DOI: 10.1002/anie.202202549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/25/2022]
Abstract
Tetrahydropyran-containing macrolactones were synthesized by integrating Meyer-Schuster rearrangement, macrocyclic ring-closing metathesis, and transannular oxa-Michael addition under gold and ruthenium catalysis. Single-step access to a variety of 14- to 20-membered macrolactones containing a tetrahydropyran ring was possible from readily available linear precursors in good yields and with moderate to excellent diastereoselectivity. A 13-step synthesis of (-)-exiguolide, an anticancer marine macrolide, showcased the feasibility of our tandem reaction sequence for macrolactone synthesis and also demonstrated the power of transannular reactions for rapid assembly of the tetrahydropyran rings of the target natural product.
Collapse
Affiliation(s)
- Daichi Mizukami
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kei Iio
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mami Oda
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yu Onodera
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 981-8577, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
38
|
Fiorito D, Keskin S, Bateman JM, George M, Noble A, Aggarwal VK. Stereocontrolled Total Synthesis of Bastimolide B Using Iterative Homologation of Boronic Esters. J Am Chem Soc 2022; 144:7995-8001. [PMID: 35499478 PMCID: PMC9100475 DOI: 10.1021/jacs.2c03192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/29/2022]
Abstract
Bastimolide B is a polyhydroxy macrolide isolated from marine cyanobacteria displaying antimalarial activity. It features a dense array of hydroxylated stereogenic centers with 1,5-relationships along a hydrocarbon chain. These 1,5-polyols represent a particularly challenging motif for synthesis, as the remote position of the stereocenters hampers stereocontrol. Herein, we present a strategy for 1,5-polyol stereocontrolled synthesis based on iterative boronic ester homologation with enantiopure magnesium carbenoids. By merging boronic ester homologation and transition-metal-catalyzed alkene hydroboration and diboration, the acyclic backbone of bastimolide B was rapidly assembled from readily available building blocks with full control over the remote stereocenters, enabling the total synthesis to be completed in 16 steps (LLS).
Collapse
Affiliation(s)
- Daniele Fiorito
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | | | - Joseph M. Bateman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Malcolm George
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
39
|
Huang M, Zhao Y, Zhang C, Zhu S. Highly Regio‐, Stereo‐, and Enantioselective Copper‐Catalyzed B−H Bond Insertion of α‐Silylcarbenes: Efficient Access to Chiral Allylic
gem
‐Silylboranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming‐Yao Huang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu‐Tao Zhao
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Cheng‐Da Zhang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shou‐Fei Zhu
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
40
|
Ke M, Qiao B, Yu Y, Li X, Xiao X, Li SJ, Lan Y, Chen F. Palladium-Catalyzed Asymmetric [3 + 2] Annulation of Vinylethylene Carbonates with Alkenes Installed on Cyclic N-Sulfonyl Imines: Highly Enantio- and Diastereoselective Construction of Chiral Tetrahydrofuran Scaffolds Bearing Three Vicinal and Quaternary Stereocenters. J Org Chem 2022; 87:5166-5177. [PMID: 35377155 DOI: 10.1021/acs.joc.1c03157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multisubstituted tetrahydrofuran building block bearing three vicinal chiral carbon centers widely exists in a broad spectrum of bioactive natural products, and the development of efficient and convenient methods to establish this skeleton remains a challenging task. Herein, we have developed an efficient method for the construction of significant tetrahydrofuran scaffolds bearing three vicinal and α-quaternary chiral carbon stereocenters through Pd-catalyzed asymmetric [3 + 2] annulation of vinylethylene carbonates with alkenes installed on cyclic N-sulfonyl imines. A series of multisubstituted tetrahydrofuran derivatives are obtained in high efficiencies with excellent enantioselectivities and diastereoselectivities. Density functional theory (DFT) studies are accomplished to rationalize the stereocontrol of the annulation process and disclose that methanol could be applied to stabilize the reactive zwitterionic π-allylpalladium via the H-bond interaction.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bolin Qiao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
41
|
Silver-catalyzed site-selective C(sp 3)-H benzylation of ethers with N-triftosylhydrazones. Nat Commun 2022; 13:1674. [PMID: 35354822 PMCID: PMC8967862 DOI: 10.1038/s41467-022-29323-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
The insertion of carbenes into the α-C-H bonds of ethers represents one of the most powerful approaches to access polysubstituted α-branched ethers. However, intermolecular carbene insertions remain challenging, since current approaches are generally limited to the use of toxic and potentially explosive α-diazocarbonyl compounds. We now report a silver-catalyzed α-C-H benzylation of ethers using bench-stable N-triftosylhydrazones as safe and convenient carbene precursors. This approach is well suited for both inter- and intramolecular insertions to deliver medicinally relevant homobenzylic ethers and 5-8-membered oxacycles in good yields. The synthetic utility of this strategy is demonstrated by its easy scalability, broad scope with valuable functional groups, high regioselectivity, and late-stage functionalization of complex oxygen-containing molecules. The relative reactivities of different types of silver carbenes and C-H bonds were also investigated by experments and DFT calculations.
Collapse
|
42
|
Li H, Khan I, Li Q, Zhang YJ. Pd-Catalyzed Asymmetric Three-Component Allenol Carbopalladation and Allylic Cycloaddition Cascade: A Route to Functionalized Tetrahydrofurans. Org Lett 2022; 24:2081-2086. [PMID: 35274964 DOI: 10.1021/acs.orglett.2c00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first Pd-catalyzed asymmetric three-component reaction of 2,3-allenol, aryl iodides, and 2-arylmethylenemolononitriles has been developed via an allenol carbopalladation and an allylic cycloaddition cascade. This process allows rapid access to substituted tetrahydrofurans bearing diverse functional groups in good yields with high diastereoselectivities and excellent enantioselectivities. The concise total synthesis of a lignan, (-)-2-episesaminone, has been achieved by the elaboration of a functionalized tetrahydrofuran obtained from this reaction.
Collapse
Affiliation(s)
- Hongfang Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ijaz Khan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
43
|
Mizukami D, Iio K, Oda M, Onodera Y, Fuwa H. Tandem Macrolactone Synthesis: Total Synthesis of (−)‐Exiguolide by a Macrocyclization/Transannular Pyran Cyclization Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daichi Mizukami
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Kei Iio
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Mami Oda
- Chuo University - Korakuen Campus: Chuo Daigaku - Korakuen Campus Department of Applied Chemistry JAPAN
| | - Yu Onodera
- Tohoku University - Katahira Campus: Tohoku Daigaku Graduate School of Life Sciences JAPAN
| | - Haruhiko Fuwa
- Chuo University Department of Applied Chemistry 1-13-27 KasugaBunkyo-ku 112-8551 Tokyo JAPAN
| |
Collapse
|
44
|
Rico L, Li D, Hanessian S. Stereocontrolled Synthesis of 1,3‐Substituted 2‐Oxabicyclo[3.1.0]hexanes as Ring‐Constrained Tetrahydrofuranosyl C‐Glycosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lorena Rico
- Department of Chemistry Université de Montréal Station Centre-Ville, C.P. 6128 Montreal QC, H3 C 3 J7 Canada
| | - Da Li
- Department of Chemistry Université de Montréal Station Centre-Ville, C.P. 6128 Montreal QC, H3 C 3 J7 Canada
| | - Stephen Hanessian
- Department of Chemistry Université de Montréal Station Centre-Ville, C.P. 6128 Montreal QC, H3 C 3 J7 Canada
| |
Collapse
|
45
|
Fernández-Peña L, Díez-Poza C, González-Andrés P, Barbero A. The Tetrahydrofuran Motif in Polyketide Marine Drugs. Mar Drugs 2022; 20:120. [PMID: 35200649 PMCID: PMC8880653 DOI: 10.3390/md20020120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Oxygen heterocycles are units that are abundant in a great number of marine natural products. Among them, marine polyketides containing tetrahydrofuran rings have attracted great attention within the scientific community due to their challenging structures and promising biological activities. An overview of the most important marine tetrahydrofuran polyketides, with a focused discussion on their isolation, structure determination, approaches to their total synthesis, and biological studies is provided.
Collapse
Affiliation(s)
| | | | | | - Asunción Barbero
- Department of Organic Chemistry, Campus Miguel Delibes, University of Valladolid, 47011 Valladolid, Spain; (L.F.-P.); (C.D.-P.); (P.G.-A.)
| |
Collapse
|
46
|
Zheng R, Xu A, Huang J, Zhang Z, Yin X, Zhang T, Hu W, Qian Y. A Rh(II)-catalyzed highly stereoselective [3 + 2] annulation of vinyl diazoacetates with indole-2-carbaldehyde for the synthesis of indolyl dihydrofurans. Mol Divers 2022; 26:3379-3386. [PMID: 35050450 DOI: 10.1007/s11030-022-10381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
A highly stereoselective Rh2(Oct)4-catalyzed [3 + 2] cycloaddition of vinyl diazoacetates with indolyl aldehyde has been developed. This protocol provides an efficient access to both cis and trans indolyl dihydrofurans with high yields and diastereoselectivities under mild conditions without or with Lewis acid as additive, respectively. Moreover, these generated functionalized dihydrofurans exhibit potent antiproliferation activity in three different cancer cell lines.
Collapse
Affiliation(s)
- Rimei Zheng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Aimin Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiawu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhijing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinru Yin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tianyuan Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Wang YN, Wang X, Li SJ, Lan Y. Carbene-enabled ether activation through the formation of oxonium: a theoretical view. Org Chem Front 2022. [DOI: 10.1039/d1qo01730f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we report a theoretical investigation of the reactivity and chemoselectivity of carbene-enabled ether activation.
Collapse
Affiliation(s)
- Ya-Nan Wang
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Xinghua Wang
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
48
|
Wang J, Li X. Asymmetric β-Arylation of Cyclopropanols Enabled by Photoredox and Nickel Dual Catalysis. Chem Sci 2022; 13:3020-3026. [PMID: 35382467 PMCID: PMC8905987 DOI: 10.1039/d1sc07237d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The enantioselective functionalization and transformation of readily available cyclopropyl compounds are synthetically appealing yet challenging topics in organic synthesis. Here we report an asymmetric β-arylation of cyclopropanols with aryl bromides...
Collapse
Affiliation(s)
- Jianhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| |
Collapse
|
49
|
Bora P, Konwar D, Dewan A, Das MR, Bora U. Bio-carbon-layered CuO-catalyzed decarboxylative alkenylation of cyclic ethers. NEW J CHEM 2022. [DOI: 10.1039/d2nj01213h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient methodology for the direct decarboxylative functionalization of cinnamic acid derivatives with cyclic ethers has been developed by using biogenic CuO/C nanoparticles. This protocol is compatible with broad range of substrates.
Collapse
Affiliation(s)
- Porag Bora
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India
| | - Dipika Konwar
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India
| | - Anindita Dewan
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India
| | - Manash R. Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East, Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Utpal Bora
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India
| |
Collapse
|
50
|
Qiao J, Song Z, Huang C, Ci R, Liu Z, Chen B, Tung C, Wu L. Direct, Site‐Selective and Redox‐Neutral α‐C−H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zi‐Qi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Cheng Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Rui‐Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|