1
|
Ageitos L, Boaro A, Cesaro A, Torres MDT, Broset E, de la Fuente-Nunez C. Frog-derived synthetic peptides display anti-infective activity against Gram-negative pathogens. Trends Biotechnol 2025:S0167-7799(25)00044-7. [PMID: 40140310 DOI: 10.1016/j.tibtech.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 03/28/2025]
Abstract
Novel antibiotics are urgently needed since bacteria are becoming increasingly resistant to existing antimicrobial drugs. Furthermore, available antibiotics are broad spectrum, often causing off-target effects on host cells and the beneficial microbiome. To overcome these limitations, we used structure-guided design to generate synthetic peptides derived from Andersonin-D1, an antimicrobial peptide (AMP) produced by the odorous frog Odorrana andersonii. We found that both hydrophobicity and net charge were critical for its bioactivity, enabling the design of novel, optimized synthetic peptides. These peptides selectively targeted Gram-negative pathogens in single cultures and complex microbial consortia, showed no off-target effects on human cells or beneficial gut microbes, and did not select for bacterial resistance. Notably, they also exhibited in vivo activity in two preclinical murine models. Overall, we present synthetic peptides that selectively target pathogenic infections and offer promising preclinical antibiotic candidates.
Collapse
Affiliation(s)
- Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Cesaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Esther Broset
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Zheng L, Zafir M, Zhang Z, Ma Y, Yang F, Wang X, Xue X, Wang C, Li P, Liu P, El-Gohary FA, Zhao X, Xue H. Antimicrobial peptide DiPGLa-H exhibits the most outstanding anti-infective activity among the PGLa variants based on a systematic comparison. Appl Environ Microbiol 2025; 91:e0206224. [PMID: 39907455 PMCID: PMC11921344 DOI: 10.1128/aem.02062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
The escalating threat of antibiotic-resistant bacteria has heightened global interest in antimicrobial peptides as promising candidates due to their potent broad-spectrum activity and low likelihood of resistance development. Despite this potential, these peptides face challenges, including modest bactericidal efficacy, insufficient safety assessment, and expensive production. In this study, we systematically evaluated a panel of nine AMP variants of PGLa, a natural AMP derived from Xenopus laevis. All peptides retained α-helical structures and exhibited high biocompatibility, with hemolytic concentrations above 128 µg/mL and macrophage survival rates over 80%. Among them, a tandem-repeat variant DiPGLa-H demonstrated the most potent antimicrobial activity, with a therapeutic index of 35.94, against key pathogens such as Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. A DAMP4-DiPGLa-H fusion protein was engineered to mitigate potential host toxicity, and we achieved high-purity biosynthesis of DiPGLa-H by employing a combination of acid cleavage and non-chromatographic purification, with yields reaching 21.2 mg/mL. The biosynthesized DiPGLa-H exhibited robust stability across a wide pH range and high temperatures, effectively disrupting biofilms formed by multiple pathogenic species. Mechanistically, DiPGLa-H disrupts both the inner and outer bacterial membranes, causing cell shrinkage, vesiculation, and intracellular leakage. In vivo, DiPGLa-H significantly improved survival rates in mice with induced peritoneal inflammation by 31%-38% while reducing bacterial burdens in key organs by 100-fold to 1,000-fold. These findings unearthed DiPGLa-H as a highly promising AMP. Moreover, the successful development of a cost-effective, high-purity biosynthesis method for DiPGLa-H, utilizing DAMP4 fusion technology, enables its low-cost application in combating multidrug-resistant pathogens. IMPORTANCE AMPs are innate defense molecules in animals, plants, and microorganisms. Notably, one-third of these peptides in databases originate from amphibians. We discovered that naturally weak AMPs from this source can be enhanced through artificial design. Specifically, variant DiPGLa-H showed superior germicidal efficacy and cell selectivity both in vivo and in vitro and can be biosynthesized and purified by combining DAMP4 fusion protein strategy and a simple non-chromatographic method that facilitates large-scale production. Our focus is on understanding the structure-activity relationships of PGLa. Furthermore, the development of a non-chromatographic purification technique for AMPs offers a viable pathway for the large-scale production of these essential compounds.
Collapse
Affiliation(s)
- Liangjun Zheng
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Muhammad Zafir
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Ziqian Zhang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Yadong Ma
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Fengyi Yang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Xiaokun Wang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Xuemei Xue
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Chen Wang
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Ping Li
- Olymbel Bioengineering Institute, Zhangye, Gansu, China
| | - Pilong Liu
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| | - Fatma A El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Huping Xue
- Department of Animal Science and Technology, University of Northwest A&F, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Huang D, Gao F, Huang Y, Zheng R, Fang C, Huang W, Wang K, Bo J. Antimicrobial activity and immunomodulation of four novel cathelicidin genes isolated from the tiger frog Hoplobatrachus rugulosus. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110091. [PMID: 39710086 DOI: 10.1016/j.cbpc.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/01/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
Cathelicidin is a family of antimicrobial peptides in vertebrates that plays an important role in resistance and immunization against pathogenic microorganisms. In the present study, the full-length cDNA sequences of four novel cathelicidins (cathelicidin-1 to cathelicidin-4) in the tiger frog Hoplobatrachus rugulosus, encoding 153, 188, 132, and 160 amino acids, respectively, were firstly cloned by rapid amplification of the cDNA ends (RACE) technique. Sequence comparison and phylogenetic tree analysis indicated that the structures of the four cathelicidins are highly diverse. Afterwards, the tissue distribution profiles and antimicrobial patterns of cathelicidins in H. rugulosus were determined by real-time PCR. The four cathelicidins showed tissue-specific distribution patterns in the healthy frogs, and the transcriptional levels of cathelicidins exhibited a tissue- and time-dependency profile in the frogs challenged with pathogenic bacteria Aeromonas hydrophila for 72 h. The synthetic peptides of cathelicidin-1 and cathelicidin-2 exhibited broad-spectrum in vitro antimicrobial activity, and cathelicidins exerted antimicrobial activities through excessive induction of reactive oxygen species and direct disruption of the microbial membrane structure. In addition, the intraperitoneal injection of cathelicidin proteins significantly increased the marine medaka Oryzias melastigma resistance to bacterial challenges. The existence of multiple cathelicidins, their distinct tissue distribution patterns, and the inducible expression profiles suggest a sophisticated, highly redundant, and multilevel network of antimicrobial defense mechanisms in tiger frogs. This study provides evidence that cathelicidins have antimicrobial and immunomodulatory activities, and cathelicidins derived from H. rugulosus have potential therapeutic applications against pathogenic infections in aquaculture.
Collapse
Affiliation(s)
- Danni Huang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; Fisheries College, Jimei University, Xiamen, China
| | - Fulong Gao
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yixin Huang
- China-ASEAN College of Marine Science, Xiamen University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Ronghui Zheng
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chao Fang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen, China.
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China
| | - Jun Bo
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| |
Collapse
|
4
|
Dennison SR, Morton LHG, Badiani K, Harris F, Phoenix DA. The effect of C-terminal deamidation on bacterial susceptibility and resistance to modelin-5. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025; 54:45-63. [PMID: 39932554 PMCID: PMC11880157 DOI: 10.1007/s00249-025-01732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 03/05/2025]
Abstract
The C-terminal amide carried by antimicrobial peptides (AMPs) can play a variable role in their antibacterial action and here, this role is investigated here for the synthetic peptide modelin-5 (M5-NH2). The peptide showed potent activity against Pseudomonas aeruginosa (MLC = 5.9 µM), with strong binding to the cytoplasmic membrane (CM) (Kd = 21.5 μM) and the adoption of high levels of amphiphilic α-helical structure (80.1%) which promoted strong CM penetration (9.6 mN m-1) and CM lysis (89.0%). In contrast, Staphylococcus aureus was resistant to M5-NH2 (MLC = 139.6 µM), probably due electrostatic repulsion effects mediated by Lys-PG in the organism's CM. These effects promoted weak CM binding (Kd = 120.6 μM) and the formation of low levels of amphiphilic α-helical structure (30.1%), with low levels of CM penetration (4.8 mN m-1) and lysis (36.4%). C-terminal deamidation had a variable influence on the antibacterial activity of M5-NH2, and in the case of S. aureus, loss of this structural moiety had no apparent effect on activity. The resistance of S. aureus to M5-NH2 isoforms appeared to be facilitated by the high level of charge carried by these peptides, as well as the density and distribution of this charge. In the case of P. aeruginosa, the activity of M5-NH2 was greatly reduced by C-terminal deamidation (MLC = 138.6 µM), primarily through decreased CM binding (Kd = 118.4 μM) and amphiphilic α-helix formation (39.6%) that led to lower levels of CM penetration (5.1 mN m-1) and lysis (39.0%).
Collapse
Affiliation(s)
- Sarah R Dennison
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| | - Leslie H G Morton
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kamal Badiani
- Biosynth Ltd, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire, LE19 4JS, UK
| | - Frederick Harris
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| |
Collapse
|
5
|
Nogueira A, Brango-Vanegas J, Vasconcelos AG, Coleone AP, Barbosa ÉA, Moreira DC, da Silva MDG, Cabral WF, Nascimento JD, Vinícius de Sousa França J, Arcanjo DDR, Lima FCDA, Batagin-Neto A, Kückelhaus SAS, Brand GD, Plácido A, Leite JRSA. Novel tryptophyllin peptides from Physalaemus centralis inhibit oxidative stress-induced endothelial dysfunction in rat aorta preparation. Toxicon 2025; 255:108234. [PMID: 39800077 DOI: 10.1016/j.toxicon.2025.108234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Amphibian skin is a rich source of molecules with biotechnological potential, including the tryptophyllin family of peptides. Here, we report the identification and characterization of two tryptophyllin peptides, FPPEWISR and FPWLLS-NH2, from the skin of the Central Dwarf Frog, Physalaemus centralis. These peptides were identified through cDNA cloning and sequence comparison. FPWLLS-NH2 shares its primary structure with a previously identified peptide from the skin of Pelophylax perezi, named PpT-2. Another peptide, FPPEWISR, is novel and was named PcT-1. After solid-phase peptide synthesis, both peptides exhibited significant antioxidant activity, with PcT-1 and PpT-2 demonstrating ABTS radical scavenging capacities of 0.305 and 0.269 mg Trolox equivalents/mg peptide, respectively, and ORAC values of 0.319 and 0.248 mg Trolox equivalents/mg peptide. Additionally, PcT-1 and PpT-2 inhibited AAPH-induced hemolysis in human red blood cells, achieving a protection level comparable to Trolox at 0.2 mg/mL. In rat aorta preparations, both peptides partially restored acetylcholine-induced vasorelaxation following pyrogallol-induced oxidative stress, with a greater protective effect of PpT-2. Hemolytic activity assay indicated no cytotoxicity in human red blood cells, and tests on Galleria mellonella larvae confirmed their low toxicity in vivo. These findings highlight the biotechnological potential of PcT-1 and PpT-2 as antioxidant agents, paving the way for new therapeutic applications in combating oxidative stress-related diseases.
Collapse
Affiliation(s)
- Ariane Nogueira
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - José Brango-Vanegas
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Andreanne G Vasconcelos
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Alex P Coleone
- São Paulo State University (UNESP), POSMAT, Bauru, SP, Brazil
| | - Éder A Barbosa
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil; Laboratory of Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, IQ, University of Brasília, Brasília, Brazil
| | - Daniel C Moreira
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Maria da Gloria da Silva
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Wanessa F Cabral
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Jhones D Nascimento
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil; Biomedicine Course, Federal University of Delta do Parnaíba, UFDPar, Parnaíba, Brazil
| | - José Vinícius de Sousa França
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí, 64049550, Teresina, PI, Brazil
| | - Daniel Dias Rufino Arcanjo
- LAFMOL-Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí, 64049550, Teresina, PI, Brazil
| | | | - Augusto Batagin-Neto
- São Paulo State University (UNESP), POSMAT, Bauru, SP, Brazil; São Paulo State University (UNESP), Institute of Sciences and Engineering, Itapeva, SP, Brazil
| | - Selma A S Kückelhaus
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil
| | - Guilherme D Brand
- Laboratory of Synthesis and Analysis of Biomolecules, LSAB, Institute of Chemistry, IQ, University of Brasília, Brasília, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - José Roberto S A Leite
- Applied Immunology and Morphology Research Centre, NuPMIA, Morphology Area, Faculty of Medicine, University of Brasília, UnB, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
6
|
Silva Ortíz YL, de Sousa TC, Kruklis NE, Galeano García P, Brango-Vanegas J, Soller Ramada MH, Franco OL. The Role of Amphibian AMPs Against Oxidative Stress and Related Diseases. Antibiotics (Basel) 2025; 14:126. [PMID: 40001370 PMCID: PMC11851847 DOI: 10.3390/antibiotics14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Amphibians use their skin as an effective defense mechanism against predators and microorganisms. Specialized glands produce antimicrobial peptides (AMPs) that possess antioxidant properties, effectively reducing reactive oxygen species (ROS) levels. These peptides are promising candidates for treating diseases associated with oxidative stress (OS) and redox imbalance, including neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), as well as age-related conditions, like cardiovascular diseases and cancer. This review highlights the multifaceted roles of AMPs and antioxidant peptides (AOPs) in amphibians, emphasizing their protective capabilities against oxidative damage. They scavenge ROS, activate antioxidant enzyme systems, and inhibit cellular damage. AOPs often share structural characteristics with AMPs, suggesting a potential evolutionary connection and similar biosynthetic pathways. Peptides such as brevinin-1FL and Cath-KP demonstrate neuroprotective effects, indicating their therapeutic potential in managing oxidative stress-related diseases. The antioxidant properties of amphibian-derived peptides pave the way for novel therapeutic developments. However, a deeper understanding of the molecular mechanisms underlying these peptides and their interactions with oxidative stress is essential to addressing ROS-related diseases and advancing therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Yudy Lorena Silva Ortíz
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Caquetá, Colombia; (Y.L.S.O.); (P.G.G.)
| | - Thaís Campos de Sousa
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
| | - Natália Elisabeth Kruklis
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
| | - Paula Galeano García
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Caquetá, Colombia; (Y.L.S.O.); (P.G.G.)
| | - José Brango-Vanegas
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, MS, Brazil
| | - Marcelo Henrique Soller Ramada
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
- Graduate Program in Gerontology, Catholic University of Brasília, Brasília 71966-700, DF, Brazil
| | - Octávio Luiz Franco
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, MS, Brazil
| |
Collapse
|
7
|
Han Z, Wang Y, Wang W, Cheng M, Yang H, Liu Y. Design, synthesis and activity evaluation of reduction-responsive anticancer peptide temporin-1CEa drug conjugates. Bioorg Chem 2025; 154:108103. [PMID: 39753038 DOI: 10.1016/j.bioorg.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
Membranes that destroy anticancer peptides can bind to negatively charged cancer cell membranes through electrostatic interactions, destroying their functions and leading to cancer cell necrosis. Temporin-1CEa, obtained from the skin secretions of the Chinese frog Rana chensinensis, is an anticancer peptide with 17 amino acid residues that exhibits concentration-dependent cytotoxicity against a variety of cancer cell lines, although it has no obvious cytotoxicity to normal HUVECs. In this work, we designed and synthesized 12 derivative peptides through double-cysteine scanning of temporin-1CEa-truncated peptides. Most of these peptides had greater anticancer activity than the lead peptide temporin-1CEa. Among these derivative peptides, Nu-7 had the strongest anticancer activity. Nu-7 has a greater α-helicity than does temporin-1CEa. We connected Nu-7 to podophyllotoxin through a reduction-responsive linker to obtain Nu-7-1, which showed better anticancer activity than free podophyllotoxin. Nu-7-1 was less toxic to HUVECs and had low hemolytic activity at therapeutic concentrations (although Nu-7-1 showed hemolytic activity at 100 μM). Nu-7-1 functions through two mechanisms: damage to cell membranes and promotion of cell apoptosis. Nu-7-1 is less toxic to normal HUVECs than is podophyllotoxin and shows better safety. In summary, we carried out a series of modifications on temporin-1CEa, among which the anticancer activity of Nu-7-1 was significantly improved compared with that of the lead peptide temporin-1CEa, providing a useful reference for the structural modification of anticancer peptides.
Collapse
Affiliation(s)
- Zhenbin Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxuan Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Lu Y, Zhu Y, Ma C, Wang L, Zhou M, Chen T, Ma X, Zhang X, Fan Z. Senegalin-2: A Novel Hexadecapeptide from Kassina senegalensis with Antibacterial and Muscle Relaxant Activities, and Its Derivative Senegalin-2BK as a Bradykinin Antagonist. Biomolecules 2024; 15:30. [PMID: 39858425 PMCID: PMC11764382 DOI: 10.3390/biom15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of Kassina senegalensis frog. Senegalin-2 relaxed rat bladder smooth muscle (EC50 17.94 nM) and ileum smooth muscle (EC50 135 nM), inhibited S. aureus and MRSA at 2 μM, and exhibited low hemolytic activity with no cytotoxicity. To design effective bradykinin antagonists, Senegalin-2 was conjugated with bradykinin to synthesize Senegalin-2BK. This modification retained potent activity against Gram-positive bacteria. Compared to Senegalin-2, Senegalin-2BK significantly reduced hemolysis and exhibited a more than threefold increase in the selectivity index. Furthermore, Senegalin-2BK contracted the bladder (EC50 2.83 μM) and ileum (EC50 56.64 nM)'s smooth muscle. The pretreatment with 10-7 M Senegalin-2BK reduced the 10-6 M bradykinin contraction on the bladder by over 70%. In conclusion, Senegalin-2 has dual functionalities as an antibacterial agent and muscle relaxant, positioning it as a potential therapeutic candidate for managing overactive bladder. As a synthetically derived bradykinin antagonist and myotropic peptide with antibacterial properties, Senegalin-2BK shows promise in effective therapies for relieving pain, inflammation, and addressing muscular disorders such as urinary retention, constipation, and infections.
Collapse
Affiliation(s)
- Yueyang Lu
- Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China;
| | - Yanguo Zhu
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Xiaonan Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.Z.); (C.M.); (L.W.); (M.Z.); (T.C.); (X.M.)
| | - Xu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Zhimin Fan
- Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China;
| |
Collapse
|
9
|
Chai J, Wu J, Yang J, Ye T, Gao Y, Zeng B, Xiong W, Kotsyfakis M, Dijkgraaf I, Liu J, Chen X, Xu X. Cath-HG improves the survival rates and symptoms in LPS-induced septic mice due to its multifunctional properties. Int Immunopharmacol 2024; 143:113332. [PMID: 39395379 DOI: 10.1016/j.intimp.2024.113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
The clinical syndrome of sepsis arises from severe infection, triggering an abnormal immune response that can lead to multiple organ dysfunction and ultimately the death of the host. Current therapies for sepsis are often limited in efficacy and fail to target the complex interplay of infection, inflammation and coagulation, leading to high mortality rates, which underscores the urgent need for novel therapeutics to combat sepsis. We previously identified Cath-HG, a compound capable of alleviating platelet dysfunction by suppressing GPVI-mediated platelet activation, thereby improving the survival of septic mice subjected to cecal ligation and puncture. Here, we further explored the antimicrobial, anti-inflammatory, LPS-neutralizing and anticoagulant properties of Cath-HG, as well as its protective effects in LPS-induced septic mice. Our results demonstrated that Cath-HG can bind to LPS, aggregate bacteria, and disrupt bacterial cell membranes, subsequently resulting in microbial death. Unlike most other Cathelicidins, Cath-HG displayed anticoagulation properties by regulating the enzymes plasmin, thrombin, β-tryptase, chymase and tissue plasminogen activator. In septic mice, Cath-HG provided protection against sepsis induced by LPS injection and exhibited bactericidal killing, LPS neutralization and inhibition of coagulation and MAPK signal transduction. Furthermore, Cath-HG obviously reduced the expression of pro-inflammatory cytokines and improved the pathological manifestations of tissue injury across multiple organs. Thus, Cath-HG emerges as a promising drug candidate for protecting against sepsis.
Collapse
Affiliation(s)
- Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxi Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiaofei Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yihan Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Baishuang Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Michail Kotsyfakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, Netherlands
| | - Junfang Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Wang J, Hu J, Pu W, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Zhou M, Wang L. Discovery, development and optimisation of a novel frog antimicrobial peptide with combined mode of action against drug-resistant bacteria. Comput Struct Biotechnol J 2024; 23:3391-3406. [PMID: 39345903 PMCID: PMC11437748 DOI: 10.1016/j.csbj.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Antimicrobial peptides (AMP) have emerged as promising candidates for addressing the clinical challenges posed by the rapid evolution of antibiotic-resistant microorganisms. Brevinins, a representative frog-derived AMP family, exhibited broad-spectrum antimicrobial activities, attacking great attentions in previous studies. However, their strong haemolytic activity and cytotoxicity, greatly limit their further development. In this work, we identified and characterised a novel brevinin-1 peptide, brevinin-1pl, from the skin secretions of the northern leopard frog, Rana pipiens. Like many brevinins, brevinin-1pl also displayed strong haemolytic activity, resulting in a lower therapeutic index. We employed several bioinformatics tools to analyse the structure and potential membrane interactions of brevinin-1pl, leading to a series of modifications. Among these analogues, des-Ala16-[Lys4]brevinin-1pl exhibited great enhanced therapeutic efficacy in both in vitro and in vivo tests, particularly against some antibiotics-resistant Escherichia coli strains. Mechanistic studies suggest that des-Ala16-[Lys4]brevinin-1pl may exert bactericidal effects through multiple mechanisms, including membrane disruption and DNA binding. Consequently, des-Ala16-[Lys4]brevinin-1pl holds promise as a candidate for the treatment of drug-resistant Escherichia coli infections.
Collapse
Affiliation(s)
- Jingkai Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Jibo Hu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- China Medical University-The Queen's University of Belfast Joint College, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Wenyuan Pu
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- China Medical University-The Queen's University of Belfast Joint College, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
11
|
Tang S, Zhang M, Cai J, Wen Q, Mo J, Long M, Lu Y, Gan Z. Identification and functional characterization of a long-type peptidoglycan recognition protein, PGRP-L in amphibian Xenopus laevis. Gene 2024; 928:148770. [PMID: 39032703 DOI: 10.1016/j.gene.2024.148770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of multifunctional proteins playing vital roles in PGN metabolism and antibacterial defense, and their functions have been well-characterized in mammals, bony fishes, and insects. However, the information about the functions of amphibian long-type PGRP is rather limited. Here, we identified and cloned a long-type PGRP gene (named Xl-PGRP-L) from African clawed frog, Xenopus laevis. Xl-PGRP-L gene was detected in all orangs/tissues examined, and was rapidly induced in intestine, liver, and lung following the stimulation of PGN. Sequence analysis showed that Xl-PGRP-L possesses four Zn2+-binding residues (His358, Tyr395, His470, and Cys478) required for amidase activity of catalytic PGRPs, and assays for amidase activity revealed that recombinant Xl-PGRP-L cloud degrade PGN in a Zn2+-dependent manner, indicating that Xl-PGRP-L is belonging to catalytic PGRPs. In addition, Xl-PGRP-L have antibacterial activity against Gram-negative bacteria Edwardsiella tarda and Gram-positive bacteria Streptococcus agalactiae. The present investigation represents the first characterization regarding the biological activities of amphibian long-type PGRPs, thus contributes to a better understanding of the functions of tetrapod PGRPs and the molecular mechanisms of amphibian antibacterial defense.
Collapse
Affiliation(s)
- Shaoshuai Tang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Jiaqiao Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qingqing Wen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Meng Long
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| |
Collapse
|
12
|
Fan X, Ye J, Zhong W, Shen H, Li H, Liu Z, Bai J, Du S. The Promoting Effect of Animal Bioactive Proteins and Peptide Components on Wound Healing: A Review. Int J Mol Sci 2024; 25:12561. [PMID: 39684273 DOI: 10.3390/ijms252312561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the first line of defense to protect the host from external environmental damage. When the skin is damaged, the wound provides convenience for the invasion of external substances. The prolonged nonhealing of wounds can also lead to numerous subsequent complications, seriously affecting the quality of life of patients. To solve this problem, proteins and peptide components that promote wound healing have been discovered in animals, which can act on key pathways involved in wound healing, such as the PI3K/AKT, TGF-β, NF-κ B, and JAK/STAT pathways. So far, some formulations for topical drug delivery have been developed, including hydrogels, microneedles, and electrospinning nanofibers. In addition, some high-performance dressings have been utilized, which also have great potential in wound healing. Here, research progress on the promotion of wound healing by animal-derived proteins and peptide components is summarized, and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaoyu Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Zhong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijuan Shen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhuyuan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shouying Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
13
|
Canè C, Tammaro L, Duilio A, Di Somma A. Investigation of the Mechanism of Action of AMPs from Amphibians to Identify Bacterial Protein Targets for Therapeutic Applications. Antibiotics (Basel) 2024; 13:1076. [PMID: 39596769 PMCID: PMC11591259 DOI: 10.3390/antibiotics13111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial peptides (AMPs) from amphibians represent a promising source of novel antibacterial agents due to their potent and broad-spectrum antimicrobial activity, which positions them as valid alternatives to conventional antibiotics. This review provides a comprehensive analysis of the mechanisms through which amphibian-derived AMPs exert their effects against bacterial pathogens. We focus on the identification of bacterial protein targets implicated in the action of these peptides and on biological processes altered by the effect of AMPs. By examining recent advances in countering multidrug-resistant bacteria through multi-omics approaches, we elucidate how AMPs interact with bacterial membranes, enter bacterial cells, and target a specific protein. We discuss the implications of these interactions in developing targeted therapies and overcoming antibiotic resistance (ABR). This review aims to integrate the current knowledge on AMPs' mechanisms, identify gaps in our understanding, and propose future directions for research to harness amphibian AMPs in clinical applications.
Collapse
Affiliation(s)
- Carolina Canè
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Lidia Tammaro
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
- National Institute of Biostructures and Biosystems (INBB), Via dei Carpegna 19, 00165 Roma, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
| |
Collapse
|
14
|
Wang Z, Ding W, Shi D, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Wang L, Zhou M. Functional characterisation and modification of a novel Kunitzin peptide for use as an anti-trypsin antimicrobial peptide against drug-resistant Escherichia coli. Biochem Pharmacol 2024; 229:116508. [PMID: 39186954 DOI: 10.1016/j.bcp.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
In recent decades, antimicrobial peptides (AMPs) have emerged as highly promising candidates for the next generation of antibiotic agents, garnering significant attention. Although their potent antimicrobial activities and ability to combat drug resistance make them stand out among alternative agents, their poor stability has presented a great challenge for further development. In this work, we report a novel Kunitzin AMP, Kunitzin-OL, from the frog Odorrana lividia, exhibiting dual antimicrobial and anti-trypsin activities. Through functional screening and comparison with previously reported Kunitzin peptides, we serendipitously discovered a unique motif (-KVKF-) and unveiled its crucial role in the antibacterial functions of Kunitzin-OL by modifying it through motif removal and duplication. Among the designed derivatives, peptides 4 and 8 demonstrated remarkable antimicrobial activities and low cytotoxicity, with high therapeutic index (TI) values (TI4 = 20.8, TI8 = 20.8). Furthermore, they showed potent antibacterial efficacy against drug-resistant Escherichia coli strains and exhibited lipopolysaccharide (LPS)-neutralising activity, effectively alleviating LPS-induced inflammatory responses. Overall, our findings provide a new short motif for designing effective AMP drugs and highlight the potential of the Kunitztin trypsin inhibitory loop as a valuable motif for the design of AMPs with enhancing proteolytic stability.
Collapse
Affiliation(s)
- Zhizhong Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Wenjing Ding
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China.
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
15
|
Barbosa GG, de Santana CJC, Silva TL, Santana BCG, Paiva PMG, de Freitas GG, Brand GD, Júnior ORP, Castro MS, Napoleão TH. A new temporin with antibacterial activity and cytotoxicity from the skin secretion of Lithobates palmipes (Spix, 1824) (Amphibia: Ranidae) from Brazilian Atlantic Forest. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111041. [PMID: 39427973 DOI: 10.1016/j.cbpb.2024.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
This work investigated the peptide profile of skin secretion from Lithobates palmipes collected from the Brazilian Atlantic Forest. The secretion was submitted to reversed phase high-performance liquid chromatography (RP-HPLC) and the fractions were screened for antibacterial activity. RP-HPLC resulted in the separation of several peaks, among which 10 showed antibacterial activity and contained peptides of the ranatuerin, brevinin and temporin families. Fraction 6 was resubmitted to RP-HPLC and a novel peptide from temporin family (temporin-PMb) had its primary structure determined. Temporin-PMb and non-amidated temporin-PMb were synthesized, purified, and evaluated for antibacterial activity, hemolytic activity and cytotoxicity to keratinocytes and cancer cells. Temporin-PMb was active against Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa as well as against methicilin-resistant S. aureus (MRSA) and Acinetobacter baumannii. It was cytotoxic to human cervical adenocarcinoma cells (HeLa) and human mammary adenocarcinoma cells (MCF7) with IC50 of 32.4 and 24.1 μM, respectively. It was also toxic to human keratinocytes (HaCaT; IC50 of 25.0 μM) and showed hemolytic activity. The non-amidated form showed low hemolytic activity and lower HaCaT toxicity, but was only effective against E. coli, S. aureus MRSA, and A. baumanii. In conclusion, Atlantic Forest L. palmipes skin secretion contained different bioactive peptides, including a novel temporin with antibacterial effect and cytotoxicity towards human cancer cells. The amide group was responsible for the activities of the wild-type temporin-PMb. Peptide engineering studies are encouraged aiming at minimizing unwanted effects.
Collapse
Affiliation(s)
- Géssica Gomes Barbosa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Carlos José Correia de Santana
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Tulíbia Laurindo Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriel Gonçalves de Freitas
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Osmindo Rodrigues Pires Júnior
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Mariana S Castro
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
16
|
Mitra S, Chen MT, Stedman F, Hernandez J, Kumble G, Kang X, Zhang C, Tang G, Daugherty I, Liu W, Ocloo J, Klucznik KR, Li AA, Heinrich F, Deslouches B, Tristram-Nagle S. How Unnatural Amino Acids in Antimicrobial Peptides Change Interactions with Lipid Model Membranes. J Phys Chem B 2024; 128:9772-9784. [PMID: 39328031 PMCID: PMC11472314 DOI: 10.1021/acs.jpcb.4c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
This study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is replaced by 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). Microbiological studies reveal their potent activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria without any toxicity to eukaryotic cells at test concentrations up to 32 μM. Circular dichroism (CD) spectroscopy indicates that these peptides maintain α-helical structures when interacting with G(-) and G(+) lipid model membranes (LMMs), a feature linked to their efficacy. X-ray diffuse scattering (XDS) demonstrates a softening of G(-), G(+) and eukaryotic (Euk33) LMMs and a nonmonotonic decrease in chain order as a potential determinant for bacterial membrane destabilization. Additionally, XDS finds a significant link between both peptides' interfacial location in G(-) and G(+) LMMs and their efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Lack of toxicity in eukaryotic cells may be related to their loss of α-helicity and their hydrocarbon location in Euk33 LMMs. Both AMPs with UAAs offer a novel strategy to wipe out antibiotic-resistant strains while maintaining human cells. These findings are compared with previously published data on E2-35, which consists of the natural amino acids arginine, tryptophan, and valine.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mei-Tung Chen
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francisca Stedman
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jedidiah Hernandez
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Kumble
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xi Kang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Churan Zhang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grace Tang
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ian Daugherty
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wanqing Liu
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jeremy Ocloo
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kevin Raphael Klucznik
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander Anzhi Li
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Berthony Deslouches
- Department
of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie Tristram-Nagle
- Biological
Physics Group, Physics Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Adebowale A, Oyaluna Z, Falobi AA, Abolaji AO, Olaiya CO, Ojo OO. Magainin-AM2 inhibits sucrose-induced hyperglycaemia, oxidative stress, and cognitive dysfunction in Drosophila melanogaster. Free Radic Biol Med 2024; 222:414-423. [PMID: 38964592 DOI: 10.1016/j.freeradbiomed.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Hyperglycaemia-induced oxidative stress plays significant roles in the development of type 2 diabetes and its complications. This study investigates effects of magainin-AM2 on high-sucrose diet induced redox imbalance and cognitive impairment in Drosophila melanogaster. Effects of various concentrations of sucrose, magainin-AM2 or a combination of both agents on mortality, eclosion rate, generation of reactive oxygen and nitrogen species, activities of antioxidant enzymes, thiol system, and markers of cognitive functions in control and treated flies were examined. Results showed that the exposure of flies to high sucrose (30 %-60 % w/w) diet increased mortality rate (38-67 %, P < 0.001) and levels of glucose (1.8-1.9-fold, P < 0.001), hydrogen peroxide (1.4-1.5-fold, P < 0.01) and nitrite/nitrate (1.2-fold, P < 0.01). Decreased levels of total thiol (53-59 %, P < 0.01), non-protein thiols (59-63 %, P < 0.01), catalase activities (39-47 %, P < 0.01-0.05) and glutathione-s-transferase activities (31-43 %, P < 0.01-0.05) were also observed. Magainin-AM2 (0-10 μM/kg diet) did not affect fly mortality rate, levels of hydrogen peroxide and nitrite/nitrate, and activities of catalase and glutathione-s-transferase. However, the peptide produced a dose-dependent increase in total thiol 1.2-1.6-fold, P < 0.001-0.01)and increases non-protein thiol levels at 10 μM/kg diet (2.0-fold, P < 0.01). Magainin-AM2 inhibited sucrose-induced elevation of glucose (55-70 %, P < 0.001), hydrogen peroxide (11-12 %, P < 0.01) and nitrite/nitrate (20-34 %, P < 0.01-0.05). The peptide prevented sucrose-induced reduction in total and non-protein thiols (1.9-2.0-fold, P < 0.05) levels and activities of catalase (2.3-3.1-fold, P < 0.001) and glutathione-s-transferase (1.8-2.8-fold, P < 0.001-0.05). Magainin-AM2 inhibited sucrose-induced reduction in acetylcholinesterase activities (3.6-4.0-fold, P < 0.001), eclosion rate (18 %, P < 0.001) and negative geotaxis (1.3-14-fold, P < 0.001). These results indicate that beneficial actions of magainin-AM2 may also involve the prevention of hyperglycaemia-induced oxidative damage and encourage its further development as an anti-diabetic agent.
Collapse
Affiliation(s)
- Adeola Adebowale
- Nutritional and Industrial Biochemistry Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Zeniat Oyaluna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Ayodele A Falobi
- Diabetes Research Laboratory, Research Institute in Healthcare Sciences, University of Wolverhampton, WV1 1LY, United Kingdom
| | - Amos O Abolaji
- Nutritional and Industrial Biochemistry Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Drosophila Research and Training Centre, Ibadan, Nigeria
| | - Charles O Olaiya
- Nutritional and Industrial Biochemistry Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Opeolu O Ojo
- Diabetes Research Laboratory, Research Institute in Healthcare Sciences, University of Wolverhampton, WV1 1LY, United Kingdom; Bioscience Research Education and Advisory Centre, Ibadan, Nigeria; IRID Biosciences, Stoke-On-Trent, United Kingdom.
| |
Collapse
|
18
|
Ye Z, Fu L, Li S, Chen Z, Ouyang J, Shang X, Liu Y, Gao L, Wang Y. Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides. Nat Commun 2024; 15:7319. [PMID: 39183339 PMCID: PMC11345435 DOI: 10.1038/s41467-024-51730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Non-direct antimicrobial cationic peptides (NDACPs) are components of the animal innate immune system. But their functions and association with antimicrobial peptides (AMPs) are incompletely understood. Here, we reveal a synergistic interaction between the AMP AW1 and the NDACP AW2, which are co-expressed in the frog Amolops wuyiensis. AW2 enhances the antibacterial activity of AW1 both in vitro and in vivo, while mitigating the development of bacterial resistance and eradicating biofilms. AW1 and AW2 synergistically damage bacterial membranes, facilitating cellular uptake and interaction of AW2 with the intracellular target bacterial genomic DNA. Simultaneously, they trigger the generation of ROS in bacteria, contributing to cell death upon reaching a threshold level. Moreover, we demonstrate that this synergistic antibacterial effect between AMPs and NDACPs is prevalent across diverse animal species. These findings unveil a robust and previously unknown correlation between AMPs and NDACPs as a widespread antibacterial immune defense strategy in animals.
Collapse
Affiliation(s)
- Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuangyu Li
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ziying Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinci Shang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yanli Liu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
19
|
Yeung HY, Ramiro IBL, Andersen DB, Koch TL, Hamilton A, Bjørn-Yoshimoto WE, Espino S, Vakhrushev SY, Pedersen KB, de Haan N, Hipgrave Ederveen AL, Olivera BM, Knudsen JG, Bräuner-Osborne H, Schjoldager KT, Holst JJ, Safavi-Hemami H. Fish-hunting cone snail disrupts prey's glucose homeostasis with weaponized mimetics of somatostatin and insulin. Nat Commun 2024; 15:6408. [PMID: 39164229 PMCID: PMC11336141 DOI: 10.1038/s41467-024-50470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024] Open
Abstract
Venomous animals have evolved diverse molecular mechanisms to incapacitate prey and defend against predators. Most venom components disrupt nervous, locomotor, and cardiovascular systems or cause tissue damage. The discovery that certain fish-hunting cone snails use weaponized insulins to induce hypoglycemic shock in prey highlights a unique example of toxins targeting glucose homeostasis. Here, we show that, in addition to insulins, the deadly fish hunter, Conus geographus, uses a selective somatostatin receptor 2 (SSTR2) agonist that blocks the release of the insulin-counteracting hormone glucagon, thereby exacerbating insulin-induced hypoglycemia in prey. The native toxin, Consomatin nG1, exists in several proteoforms with a minimized vertebrate somatostatin-like core motif connected to a heavily glycosylated N-terminal region. We demonstrate that the toxin's N-terminal tail closely mimics a glycosylated somatostatin from fish pancreas and is crucial for activating the fish SSTR2. Collectively, these findings provide a stunning example of chemical mimicry, highlight the combinatorial nature of venom components, and establish glucose homeostasis as an effective target for prey capture.
Collapse
Affiliation(s)
- Ho Yan Yeung
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA
| | - Iris Bea L Ramiro
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Thomas Lund Koch
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Alexander Hamilton
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University, Malmö, Sweden
| | - Walden E Bjørn-Yoshimoto
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Samuel Espino
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Kasper B Pedersen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Noortje de Haan
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2333, ZA, Leiden, The Netherlands
| | - Agnes L Hipgrave Ederveen
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2333, ZA, Leiden, The Netherlands
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Jakob G Knudsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, UT, 84112, USA.
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
20
|
Samgina TY, Mazur DM, Lebedev AT. Assessing the Efficacy of Protease Inactivation for the Preservation of Bioactive Amphibian Skin Peptides. Int J Mol Sci 2024; 25:8759. [PMID: 39201446 PMCID: PMC11354720 DOI: 10.3390/ijms25168759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The skin of amphibians is a rich source of peptides with a wide range of biological activities. They are stored in secretory granules in an inactive form. Upon stimulation, they are secreted together with proteases into the skin. Once activated, they rapidly exert their biological effects, including fighting microorganisms and predators, while their excess is immediately destroyed by the released proteases. To keep bioactive peptides in their initial form, it is necessary to inhibit these enzymes. Several inhibitors for this purpose have previously been mentioned; however, there has not been any reliable comparison of their efficiency so far. Here, we studied the efficiency of methanol and hydrochloric and formic acids, as well as phenylmethylsulfonyl fluoride, in the inhibition of nine frog peptides with the known sequence, belonging to five families in the secretion of Pelophylax esculentus. The results demonstrated that methanol had the highest inhibitory efficiency, while phenylmethylsulfonyl fluoride was the least efficient, probably due to its instability in aqueous media. Possible cleavages between certain amino acid residues in the sequence were established for each of the inhibitors. These results may be helpful for future studies on the nature of proteases and on prediction of the possible cleavage sites in novel peptides.
Collapse
Affiliation(s)
- Tatiana Yu. Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitrii M. Mazur
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Albert T. Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
21
|
Lee J, Amatya R, Kim KE, Park YH, Hong E, Djayanti K, Min KA, Roh GS, Shin MC. Genetically engineered long-acting Esculentin-2CHa(1-30) fusion protein with potential applicability for the treatment of NAFLD. J Control Release 2024; 372:699-712. [PMID: 38925336 DOI: 10.1016/j.jconrel.2024.06.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Esculentin-2CHa(1-30) (‟ESC") has been reported as a potent anti-diabetic peptide with little toxicity. However, its very short plasma residence time severely limits the therapeutic efficacy. To address this issue, we genetically engineered a fusion protein of tandem trimeric ESC with an albumin binding domain (ABD) and a fusion partner, SUMO (named ‟SUMO-3×ESC-ABD"). The SUMO-3×ESC-ABD, successfully produced from E. coli, showed low cellular and hemolytic toxicity while displaying potent activities for the amelioration of hyperglycemia as well as non-alcoholic fatty liver disease (NAFLD) in vitro. In animal studies, the estimated plasma half-life of SUMO-3×ESC-ABD was markedly longer (427-fold) than that of the ESC peptide. In virtue of the extended plasma residence, the SUMO-3×ESC-ABD could produce significant anti-hyperglycemic effects that lasted for >2 days, while both the ESC or ESC-ABD peptides elicited little effects. Further, twice-weekly treatment for 10 weeks, the SUMO-3×ESC-ABD displayed significant improvement in blood glucose control with a reduction in body weight. Most importantly, a significant improvement in the conditions of NAFLD was observed in the SUMO-3×ESC-ABD-treated mice. Along the systemic effects (by improved glucose tolerance and body weight reduction), direct inhibition of the hepatocyte lipid uptake was suggested as the major mechanism of the anti-NAFLD effects. Overall, this study demonstrated the utility of the long-acting SUMO-3×ESC-ABD as a potent drug candidate for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| | - Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu, Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Eunmi Hong
- New Drug Development Center, Daegu, Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Krismala Djayanti
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727, Republic of Korea.
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju, Gyeongnam 52828, Republic of Korea.
| |
Collapse
|
22
|
Conlon JM, Sridhar A, Khan D, Cunning TS, Delaney JJ, Taggart MG, Ternan NG, Leprince J, Coquet L, Jouenne T, Attoub S, Mechkarska M. Multifunctional host-defense peptides isolated from skin secretions of the banana tree dwelling frog Boana platanera (Hylidae; Hylinae). Biochimie 2024; 223:23-30. [PMID: 38561076 DOI: 10.1016/j.biochi.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Five host-defense peptides (figainin 2PL, hylin PL, raniseptin PL, plasticin PL, and peptide YL) were isolated from norepinephrine-stimulated skin secretions of the banana tree dwelling frog Boana platanera (Hylidae; Hylinae) collected in Trinidad. Raniseptin PL (GVFDTVKKIGKAVGKFALGVAKNYLNS.NH2) and figainin 2PL (FLGTVLKLGKAIAKTVVPMLTNAMQPKQ. NH2) showed potent and rapid bactericidal activity against a range of clinically relevant Gram-positive and Gram-negative ESKAPE + pathogens and Clostridioides difficile. The peptides also showed potent cytotoxic activity (LC50 values < 30 μM) against A549, MDA-MB-231 and HT29 human tumor-derived cell lines but appreciably lower hemolytic activity against mouse erythrocytes (LC50 = 262 ± 14 μM for raniseptin PL and 157 ± 16 μM for figainin 2PL). Hylin PL (FLGLIPALAGAIGNLIK.NH2) showed relatively weak activity against microorganisms but was more hemolytic. The glycine-leucine-rich peptide with structural similarity to the plasticins (GLLSTVGGLVGGLLNNLGL.NH2) and the non-cytotoxic peptide YL (YVPGVIESLL.NH2) lacked antimicrobial and cytotoxic activities. Hylin PL, raniseptinPL and peptide YL stimulated the rate of release of insulin from BRIN-BD11 clonal β-cells at concentrations ≥100 nM. Peptide YL was the most effective (2.3-fold increase compared with basal rate at 1 μM concentration) and may represent a template for the design of a new class of incretin-based anti-diabetic drugs.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK.
| | - Ananyaa Sridhar
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Dawood Khan
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Taylor S Cunning
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Jack J Delaney
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Megan G Taggart
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Jérôme Leprince
- Université Rouen Normandie, Inserm, NorDiC UMR 1239, HeRacLeS, US 51, PRIMACEN, F-76000, Rouen, France
| | - Laurent Coquet
- CNRS UAR2026 HeRacLeS-PISSARO, CNRS UMR 6270 PBS, Université Rouen Normandie, 76821, Mont-Saint-Aignan, France
| | - Thierry Jouenne
- CNRS UAR2026 HeRacLeS-PISSARO, CNRS UMR 6270 PBS, Université Rouen Normandie, 76821, Mont-Saint-Aignan, France
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Milena Mechkarska
- Department of Life Sciences, Faculty of Science and Technology, University of The West Indies, St. Augustine Campus, Trinidad and Tobago
| |
Collapse
|
23
|
Du C, Chen L, Liu G, Yuan F, Zhang Z, Rong M, Mo G, Liu C. Tick-Derived Peptide Blocks Potassium Channel TREK-1. Int J Mol Sci 2024; 25:8377. [PMID: 39125945 PMCID: PMC11312834 DOI: 10.3390/ijms25158377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Ticks transmit a variety of pathogens, including rickettsia and viruses, when they feed on blood, afflicting humans and other animals. Bioactive components acting on inflammation, coagulation, and the immune system were reported to facilitate ticks' ability to suck blood and transmit tick-borne diseases. In this study, a novel peptide, IstTx, from an Ixodes scapularis cDNA library was analyzed. The peptide IstTx, obtained by recombinant expression and purification, selectively inhibited a potassium channel, TREK-1, in a dose-dependent manner, with an IC50 of 23.46 ± 0.22 μM. The peptide IstTx exhibited different characteristics from fluoxetine, and the possible interaction of the peptide IstTx binding to the channel was explored by molecular docking. Notably, extracellular acidification raised its inhibitory efficacy on the TREK-1 channel. Our results found that the tick-derived peptide IstTx blocked the TREK-1 channel and provided a novel tool acting on the potassium channel.
Collapse
Affiliation(s)
- Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linyan Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohao Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fuchu Yuan
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Zheyang Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingqiang Rong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, No. 387-201 Heming Street, Chengdu 610212, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
24
|
Cancelarich NL, Arrulo M, Gugliotti ST, Barbosa EA, Moreira DC, Basso NG, Pérez LO, Teixeira C, Gomes P, de la Torre BG, Albericio F, Eaton P, Leite JRSA, Marani MM. First Bioprospecting Study of Skin Host-Defense Peptides in Odontophrynus americanus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1714-1724. [PMID: 38900961 DOI: 10.1021/acs.jnatprod.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The adaptation of amphibians to diverse environments is closely related to the characteristics of their skin. The complex glandular system of frog skin plays a pivotal role in enabling these animals to thrive in both aquatic and terrestrial habitats and consists of crucial functions such as respiration and water balance as well as serving as a defensive barrier due to the secretion of bioactive compounds. We herein report the first investigation on the skin secretion of Odontophrynus americanus, as a potential source of bioactive peptides and also as an indicator of its evolutionary adaptations to changing environments. Americanin-1 was isolated and identified as a neutral peptide exhibiting moderate antibacterial activity against E. coli. Its amphipathic sequence including 19 amino acids and showing a propensity for α-helix structure is discussed. Comparisons of the histomorphology of the skin of O. americanus with other previously documented species within the same genus revealed distinctive features in the Patagonian specimen, differing from conspecifics from other Argentine provinces. The presence of the Eberth-Katschenko layer, a prevalence of iridophores, and the existence of glycoconjugates in its serous glands suggest that the integument is adapted to retain skin moisture. This adaptation is consistent with the prevailing aridity of its native habitat.
Collapse
Affiliation(s)
- Natalia L Cancelarich
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Miriam Arrulo
- School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Eder A Barbosa
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
- Laboratorio de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química-UnB, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Néstor G Basso
- Instituto de Diversidad y Evolución Austral (IDEAus), CONICET, Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Luis Orlando Pérez
- Instituto Patagónico de Ciencias Sociales y Humanas (IPCSH), CONICET, Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Gyros Protein Technologies, Inc., Tucson, Arizona 85714, United States
| | - Paula Gomes
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Beatriz G de la Torre
- Kwazulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Peter Eaton
- Bridge, School of Chemistry, University of Lincoln, Lincoln LN6 7EL, United Kingdom
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| |
Collapse
|
25
|
Samgina TY, Vasileva ID, Zubarev RA, Lebedev AT. EThcD as a Unique Tool for the Top-Down De Novo Sequencing of Intact Natural Ranid Amphibian Peptides. Anal Chem 2024; 96:12057-12064. [PMID: 38979842 DOI: 10.1021/acs.analchem.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
De novo sequencing of any novel peptide/protein is a difficult task. Full sequence coverage, isomeric amino acid residues, inter- and intramolecular S-S bonds, and numerous other post-translational modifications make the investigators employ various chemical modifications, providing a variety of specific fragmentation MSn patterns. The chemical processes are time-consuming, and their yields never reach 100%, while the subsequent purification often leads to the loss of minor components of the initial peptide mixture. Here, we present the advantages of the EThcD method that enables establishing the full sequence of natural intact peptides of ranid frogs in de novo top-down mode without any chemical modifications. The method provides complete sequence coverage, including the cyclic disulfide section, and reliable identification of isomeric leucine/isoleucine residues. The proposed approach demonstrated its efficiency in the analysis of peptidomes of ranid frogs from several populations of Rana arvalis, Rana temporaria, and Pelophylax esculentus complexes.
Collapse
Affiliation(s)
- Tatiana Yu Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina D Vasileva
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, Stockholm 17177, Sweden
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Albert T Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
26
|
Kong X, Vishwanath V, Neelakantan P, Ye Z. Harnessing antimicrobial peptides in endodontics. Int Endod J 2024; 57:815-840. [PMID: 38441321 DOI: 10.1111/iej.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 06/13/2024]
Abstract
Endodontic therapy includes various procedures such as vital pulp therapy, root canal treatment and retreatment, surgical endodontic treatment and regenerative endodontic procedures. Disinfection and tissue repair are crucial for the success of these therapies, necessitating the development of therapeutics that can effectively target microbiota, eliminate biofilms, modulate inflammation and promote tissue repair. However, no current endodontic agents can achieve these goals. Antimicrobial peptides (AMPs), which are sequences of amino acids, have gained attention due to their unique advantages, including reduced susceptibility to drug resistance, broad-spectrum antibacterial properties and the ability to modulate the immune response of the organism effectively. This review systematically discusses the structure, mechanisms of action, novel designs and limitations of AMPs. Additionally, it highlights the efforts made by researchers to overcome peptide shortcomings and emphasizes the potential applications of AMPs in endodontic treatments.
Collapse
Affiliation(s)
- Xinzi Kong
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Vijetha Vishwanath
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Prasanna Neelakantan
- Department of Endodontics, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, California, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| |
Collapse
|
27
|
Yang T, Geng F, Tang X, Yu Z, Liu Y, Song B, Tang Z, Wang B, Ye B, Yu D, Zhang S. UV radiation-induced peptides in frog skin confer protection against cutaneous photodamage through suppressing MAPK signaling. MedComm (Beijing) 2024; 5:e625. [PMID: 38919335 PMCID: PMC11196897 DOI: 10.1002/mco2.625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Overexposure to ultraviolet light (UV) has become a major dermatological problem since the intensity of ultraviolet radiation is increasing. As an adaption to outside environments, amphibians gained an excellent peptide-based defense system in their naked skin from secular evolution. Here, we first determined the adaptation and resistance of the dark-spotted frogs (Pelophylax nigromaculatus) to constant ultraviolet B (UVB) exposure. Subsequently, peptidomics of frog skin identified a series of novel peptides in response to UVB. These UV-induced frog skin peptides (UIFSPs) conferred significant protection against UVB-induced death and senescence in skin cells. Moreover, the protective effects of UIFSPs were boosted by coupling with the transcription trans-activating (TAT) protein transduction domain. In vivo, TAT-conjugated UIFSPs mitigated skin photodamage and accelerated wound healing. Transcriptomic profiling revealed that multiple pathways were modulated by TAT-conjugated UIFSPs, including small GTPase/Ras signaling and MAPK signaling. Importantly, pharmacological activation of MAPK kinases counteracted UIFSP-induced decrease in cell death after UVB exposure. Taken together, our findings provide evidence for the potential preventive and therapeutic significance of UIFSPs in UV-induced skin damage by antagonizing MAPK signaling pathways. In addition, these results suggest a practicable alternative in which potential therapeutic agents can be mined from organisms with a fascinating ability to adapt.
Collapse
Affiliation(s)
- Tingyi Yang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Fenghao Geng
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Xiaoyou Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Zuxiang Yu
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Bin Song
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Zhihui Tang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Baoning Wang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Bengui Ye
- Medical College of Tibet University, Tibet UniversityLhasaChina
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Medical College of Tibet University, Tibet UniversityLhasaChina
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital)MianyangChina
| |
Collapse
|
28
|
Liu X, Shi D, Cheng S, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Wang L, Zhou M. Modification and Synergistic Studies of a Novel Frog Antimicrobial Peptide against Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2024; 13:574. [PMID: 39061256 PMCID: PMC11274128 DOI: 10.3390/antibiotics13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The overuse of traditional antibiotics has resulted in bacterial resistance and seriously compromised the therapeutic efficacy of traditional antibiotics, making the exploration of new antimicrobials particularly important. Several studies have shown that bioactive peptides have become an important source of new antimicrobial drugs due to their broad-spectrum antibacterial action and lack of susceptibility to resistance. In this study, a novel bioactive peptide Nigrosin-6VL was characterised from the skin secretion of the golden cross band frog, Odorrana andersonii, by using the 'shotgun' cloning strategy. Modifications on the Rana Box of Nigrosin-6VL revealed its critical role in antimicrobial functions. The peptide analogue, 2170-2R, designed to preserve the Rana Box structure while enhancing cationicity, exhibited improved therapeutic efficacy, particularly against Gram-negative bacteria, with a therapeutic value of 45.27. Synergistic studies demonstrated that 2170-2R inherits the synergistic antimicrobial activities of the parent peptides and effectively enhances the antimicrobial capacity of cefepime and gentamicin against both planktonic cells and biofilms. Specifically, 2170-2R can synergise effectively with cefepime and gentamicin against different strains of P. aeruginosa biofilms. Consequently, 2170-2R holds promise as a potent antimicrobial agent developed to combat infections induced by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Xinze Liu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Shiya Cheng
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| |
Collapse
|
29
|
Xiong W, Chai J, Wu J, Li J, Lu W, Tian M, Jmel MA, Ippel JH, Kotsyfakis M, Dijkgraaf I, Liu S, Xu X. Cathelicidin-HG Alleviates Sepsis-Induced Platelet Dysfunction by Inhibiting GPVI-Mediated Platelet Activation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0381. [PMID: 38840901 PMCID: PMC11151873 DOI: 10.34133/research.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024]
Abstract
Platelet activation contributes to sepsis development, leading to microthrombosis and increased inflammation, which results in disseminated intravascular coagulation and multiple organ dysfunction. Although Cathelicidin can alleviate sepsis, its role in sepsis regulation remains largely unexplored. In this study, we identified Cath-HG, a novel Cathelicidin from Hylarana guentheri skin, and analyzed its structure using nuclear magnetic resonance spectroscopy. The modulatory effect of Cath-HG on the symptoms of mice with sepsis induced by cecal ligation and puncture was evaluated in vivo, and the platelet count, degree of organ damage, and microthrombosis were measured. The antiplatelet aggregation activity of Cath-HG was studied in vitro, and its target was verified. Finally, we further investigated whether Cath-HG could regulate thrombosis in vivo in a FeCl3 injury-induced carotid artery model. The results showed that Cath-HG exhibited an α-helical structure in sodium dodecyl sulfate solution and effectively reduced organ inflammation and damage, improving survival in septic mice. It alleviated sepsis-induced thrombocytopenia and microthrombosis. In vitro, Cath-HG specifically inhibited collagen-induced platelet aggregation and modulated glycoprotein VI (GPVI) signaling pathways. Dot blotting, enzyme-linked immunosorbent assay, and pull-down experiments confirmed GPVI as the target of Cath-HG. Molecular docking and amino acid residue truncations/mutations identified crucial sites of Cath-HG. These findings suggest that GPVI represents a promising therapeutic target for sepsis, and Cath-HG may serve as a potential treatment for sepsis-related thrombocytopenia and thrombotic events. Additionally, identifying Cath-HG as a GPVI inhibitor provides insights for developing novel antithrombotic therapies targeting platelet activation mediated by GPVI.
Collapse
Affiliation(s)
- Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Jiali Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Wancheng Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Maolin Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Mohamed Amine Jmel
- Institute of Parasitology,
Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
| | - Johannes H. Ippel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, 6229 ER Maastricht, Netherlands
| | - Michail Kotsyfakis
- Institute of Parasitology,
Biology Centre of the Czech Academy of Sciences, Branisovska 31, Budweis (Ceske Budejovice) 37005, Czech Republic
- Institute of Molecular Biology and Biotechnology,
Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM),
Maastricht University, 6229 ER Maastricht, Netherlands
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
30
|
Mitra S, Chandersekhar B, Li Y, Coopershlyak M, Mahoney ME, Evans B, Koenig R, Hall SCL, Klösgen B, Heinrich F, Deslouches B, Tristram-Nagle S. Novel non-helical antimicrobial peptides insert into and fuse lipid model membranes. SOFT MATTER 2024; 20:4088-4101. [PMID: 38712559 PMCID: PMC11109824 DOI: 10.1039/d4sm00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
This research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells. The heightened effectiveness of LE-53 is attributed to its increased hydrophobicity (H) compared to LE-55. Circular dichroism (CD) reveals that LE-53 and LE-55 both adopt β-sheet and random coil structures in lipid model membranes (LMMs) mimicking G(-) and G(+) bacteria, so secondary structure is not the cause of the potency difference. X-ray diffuse scattering (XDS) reveals increased lipid chain order in LE-53, a potential key distinction. Additionally, XDS study uncovers a significant link between LE-53's upper hydrocarbon location in G(-) and G(+) LMMs and its efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Solution small angle X-ray scattering (SAXS) demonstrates LE-53's ability to induce vesicle fusion in bacterial LMMs without affecting eukaryotic LMMs, offering a promising strategy to combat antibiotic-resistant strains while preserving human cell integrity, whereas LE-55 has a smaller ability to induce fusion.
Collapse
Affiliation(s)
- Saheli Mitra
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Bhairavi Chandersekhar
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Yunshu Li
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Mark Coopershlyak
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Margot E Mahoney
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Brandt Evans
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Rachel Koenig
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Stephen C L Hall
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Beate Klösgen
- University of Southern Denmark, Dept. Physics, Chemistry & Pharmacy, PhyLife, Campusvej 55, Odense M5230, Denmark
| | - Frank Heinrich
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
Kröner L, Lötters S, Hopp MT. Insights into caudate amphibian skin secretions with a focus on the chemistry and bioactivity of derived peptides. Biol Chem 2024; 0:hsz-2024-0035. [PMID: 38766708 DOI: 10.1515/hsz-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Amphibians are well-known for their ability to produce and secrete a mixture of bioactive substances in specialized skin glands for the purpose of antibiotic self-protection and defense against predators. Some of these secretions contain various small molecules, such as the highly toxic batrachotoxin, tetrodotoxin, and samandarine. For some time, the presence of peptides in amphibian skin secretions has attracted researchers, consisting of a diverse collection of - to the current state of knowledge - three to 104 amino acid long sequences. From these more than 2000 peptides many are known to exert antimicrobial effects. In addition, there are some reports on amphibian skin peptides that can promote wound healing, regulate immunoreactions, and may serve as antiparasitic and antioxidative substances. So far, the focus has mainly been on skin peptides from frogs and toads (Anura), eclipsing the research on skin peptides of the ca. 700 salamanders and newts (Caudata). Just recently, several novel observations dealing with caudate peptides and their structure-function relationships were reported. This review focuses on the chemistry and bioactivity of caudate amphibian skin peptides and their potential as novel agents for clinical applications.
Collapse
Affiliation(s)
- Lorena Kröner
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| | - Stefan Lötters
- Department of Biogeography, University of Trier, D-54286 Trier, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, 38899 University of Koblenz , D-56070 Koblenz, Germany
| |
Collapse
|
32
|
Conlon JM, Owolabi BO, Flatt PR, Abdel-Wahab YHA. Amphibian host-defense peptides with potential for Type 2 diabetes therapy - an updated review. Peptides 2024; 175:171180. [PMID: 38401671 DOI: 10.1016/j.peptides.2024.171180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Investigations conducted since 2018 have identified several host-defense peptides present in frog skin secretions whose properties suggest the possibility of their development into a new class of agent for Type 2 diabetes (T2D) therapy. Studies in vitro have described peptides that (a) stimulate insulin release from BRIN-BD11 clonal β-cells and isolated mouse islets, (b) display β-cell proliferative activity and protect against cytokine-mediated apoptosis and (c) stimulate production of the anti-inflammatory cytokine IL-10 and inhibit production of the pro-inflammatory cytokines TNF-α and IL-1β. Rhinophrynin-27, phylloseptin-3.2TR and temporin F are peptides with therapeutic potential. Studies in vivo carried out in db/db and high fat-fed mice have shown that twice-daily administration of [S4K]CPF-AM1 and [A14K]PGLa-AM1, analogs of peptides first isolated from the octoploid frog Xenopus amieti, over 28 days lowers circulating glucose and HbA1c concentrations, increases insulin sensitivity and improves glucose tolerance and lipid profile. Peptide treatment produced potentially beneficial changes in the expression of skeletal muscle genes involved in insulin signaling and islet genes involved in insulin secretion in these murine models of T2D. Lead compounds uncovered by the study of frog HDPs may provide a basis for the design of new types of agents that can be used, alone or in combination with existing therapies, for the treatment of T2D.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Bosede O Owolabi
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Yasser H A Abdel-Wahab
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
33
|
Gach-Janczak K, Biernat M, Kuczer M, Adamska-Bartłomiejczyk A, Kluczyk A. Analgesic Peptides: From Natural Diversity to Rational Design. Molecules 2024; 29:1544. [PMID: 38611824 PMCID: PMC11013236 DOI: 10.3390/molecules29071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pain affects one-third of the global population and is a significant public health issue. The use of opioid drugs, which are the strongest painkillers, is associated with several side effects, such as tolerance, addiction, overdose, and even death. An increasing demand for novel, safer analgesic agents is a driving force for exploring natural sources of bioactive peptides with antinociceptive activity. Since the G protein-coupled receptors (GPCRs) play a crucial role in pain modulation, the discovery of new peptide ligands for GPCRs is a significant challenge for novel drug development. The aim of this review is to present peptides of human and animal origin with antinociceptive potential and to show the possibilities of their modification, as well as the design of novel structures. The study presents the current knowledge on structure-activity relationship in the design of peptide-based biomimetic compounds, the modification strategies directed at increasing the antinociceptive activity, and improvement of metabolic stability and pharmacodynamic profile. The procedures employed in prolonged drug delivery of emerging compounds are also discussed. The work summarizes the conditions leading to the development of potential morphine replacements.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Monika Biernat
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.A.-B.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.B.); (M.K.)
| |
Collapse
|
34
|
Lombardo GP, Miller A, Aragona M, Messina E, Fumia A, Kuciel M, Alesci A, Pergolizzi S, Lauriano ER. Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species. BIOLOGY 2024; 13:210. [PMID: 38666822 PMCID: PMC11048468 DOI: 10.3390/biology13040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The amphibian taxon includes three orders that present different morphological characteristics: Anura, Caudata, and Apoda. Their skin has a crucial role: it acts as an immune organ constituting a physical, chemical, immunological, and microbiological barrier to pathogen insult and conducts essential physiological processes. Amphibians have developed specialized features to protect the vulnerable skin barrier, including a glandular network beneath the skin surface that can produce antimicrobial and toxic substances, thus contributing to the defense against pathogens and predators. This study aims to characterize Langerhans cells in the skin of Lithobates catesbeianus (order: Anura; Shaw, 1802), Amphiuma means (order: Caudata; Garden, 1821), and Typhlonectes natans (order: Apoda; Fischer, 1880) with the following antibodies: Langerin/CD207 (c-type lectin), Major Histocompatibility Complex (MHC)II, and Toll-like receptor (TLR)2 (expressed by different types of DCs). Our results showed Langerhans cells positive for Langerin CD/207 in the epidermis of the three species; moreover, some antigen-presenting cells (APCs) in the connective tissue expressed TLR2 and MHCII. The distribution of the Langerhans cells is very similar in the three amphibians examined, despite their different habitats. A greater knowledge of the amphibian immune system could be useful to better understand the phylogeny of vertebrates and to safeguard amphibians from population declines. Furthermore, the similarities between amphibians' and human skin concerning immunological features may be useful in both biology and translational medicine.
Collapse
Affiliation(s)
- Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kopernika 15, 30-501 Krakòw, Poland;
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| |
Collapse
|
35
|
García FA, Fuentes TF, Alonso IP, Bosch RA, Brunetti AE, Lopes NP. A Comprehensive Review of Patented Antimicrobial Peptides from Amphibian Anurans. JOURNAL OF NATURAL PRODUCTS 2024; 87:600-616. [PMID: 38412091 DOI: 10.1021/acs.jnatprod.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Since the 1980s, studies of antimicrobial peptides (AMPs) derived from anuran skin secretions have unveiled remarkable structural diversity and a wide range of activities. This study explores the potential of these peptides for drug development by examining granted patents, amino acid modifications related to patented peptides, and recent amphibians' taxonomic updates influencing AMP names. A total of 188 granted patents related to different anuran peptides were found, with Asia and North America being the predominant regions, contributing 65.4% and 15.4%, respectively. Conversely, although the Neotropical region is the world's most diversified region for amphibians, it holds only 3.7% of the identified patents. The antimicrobial activities of the peptides are claimed in 118 of these 188 patents. Additionally, for 160 of these peptides, 66 patents were registered for the natural sequence, 69 for both natural and derivative sequences, and 20 exclusively for sequence derivatives. Notably, common modifications include alterations in the side chains of amino acids and modifications to the peptides' N- and C-termini. This review underscores the biomedical potential of anuran-derived AMPs, emphasizing the need to bridge the gap between AMP description and practical drug development while highlighting the urgency of biodiversity conservation to facilitate biomedical discoveries.
Collapse
Affiliation(s)
- Fabiola Almeida García
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Avenida do Café, s/no, 14040-903 Ribeirão Preto, Brazil
| | - Talia Frómeta Fuentes
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street No. 455, Vedado 10400, Cuba
| | - Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street No. 455, Vedado 10400, Cuba
| | - Roberto Alonso Bosch
- Natural History Museum Felipe Poey, Faculty of Biology, University of Havana, Vedado 10400, Cuba
| | - Andrés E Brunetti
- Institute of Subtropical Biology (CONICET-UNAM), National University of Misiones, Posadas N3300LQH, Argentina
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Avenida do Café, s/no, 14040-903 Ribeirão Preto, Brazil
| |
Collapse
|
36
|
Benítez-Prián M, Lorente-Martínez H, Agorreta A, Gower DJ, Wilkinson M, Roelants K, San Mauro D. Diversity and Molecular Evolution of Antimicrobial Peptides in Caecilian Amphibians. Toxins (Basel) 2024; 16:150. [PMID: 38535816 PMCID: PMC10975883 DOI: 10.3390/toxins16030150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2025] Open
Abstract
Antimicrobial peptides (AMPs) are key molecules in the innate immune defence of vertebrates with rapid action, broad antimicrobial spectrum, and ability to evade pathogen resistance mechanisms. To date, amphibians are the major group of vertebrates from which most AMPs have been characterised, but most studies have focused on the bioactive skin secretions of anurans (frogs and toads). In this study, we have analysed the complete genomes and/or transcriptomes of eight species of caecilian amphibians (order Gymnophiona) and characterised the diversity, molecular evolution, and antimicrobial potential of the AMP repertoire of this order of amphibians. We have identified 477 candidate AMPs within the studied caecilian genome and transcriptome datasets. These candidates are grouped into 29 AMP families, with four corresponding to peptides primarily exhibiting antimicrobial activity and 25 potentially serving as AMPs in a secondary function, either in their entirety or after cleavage. In silico prediction methods were used to identify 62 of those AMPs as peptides with promising antimicrobial activity potential. Signatures of directional selection were detected for five candidate AMPs, which may indicate adaptation to the different selective pressures imposed by evolutionary arms races with specific pathogens. These findings provide encouraging support for the expectation that caecilians, being one of the least-studied groups of vertebrates, and with ~300 million years of separate evolution, are an underexplored resource of great pharmaceutical potential that could help to contest antibiotic resistance and contribute to biomedical advance.
Collapse
Affiliation(s)
- Mario Benítez-Prián
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-P.); (H.L.-M.)
| | - Héctor Lorente-Martínez
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-P.); (H.L.-M.)
| | - Ainhoa Agorreta
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-P.); (H.L.-M.)
| | | | - Mark Wilkinson
- Herpetology Lab, Natural History Museum, London SW7 5BD, UK;
| | - Kim Roelants
- bDIV, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium;
| | - Diego San Mauro
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (M.B.-P.); (H.L.-M.)
| |
Collapse
|
37
|
Zhou X, Shen H, Wu S, Mu L, Yang H, Wu J. An amphibian-derived cathelicidin accelerates cutaneous wound healing through its main regulatory effect on phagocytes. Int Immunopharmacol 2024; 129:111595. [PMID: 38295541 DOI: 10.1016/j.intimp.2024.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Cathelicidins are an important family of antimicrobial peptides (AMPs) involved in the innate immunity in vertebrates. The mammalian cathelicidins have been well characterized, but the relationship between structure and function in amphibian cathelicidins is still not well understood. In this study, a novel 29-residue cathelicidin antimicrobial peptide (BugaCATH) was identified from the skin of Bufo gargarizans. Unlike other AMPs, BugaCATH does not display any direct antimicrobial effects in vitro. However, it effectively promotes full-thickness wound repair in mice. Following injury, BugaCATH initiates and expedites the inflammatory stage by recruiting neutrophils and macrophages to the wound site. BugaCATH not only regulates neutrophil phagocytic activity but also stimulates the generation of cytokines (TNF-α, IL-6, and IL-1β) and chemokines (CXCL1, CXCL2, CCL2, and CCL3) in macrophages and in mice. Furthermore, it promotes macrophage M2 polarization that facilitates the conversion from a pro-inflammatory macrophage-dominated wound environment to an anti-inflammatory one during the mid to late stages, which is crucial for reducing inflammation and effective wound repair. The MAPK (ERK, JNK, and p38) and NF-κB-NLRP3 signaling pathways are involved in the activity. Moreover, BugaCATH directly enhances the migration of keratinocytes and vascular endothelial cells without affecting their proliferation. Notably, BugaCATH significantly improves the proliferation of keratinocytes and endothelial cells in the presence of macrophages. The current study revealed that in addition to proliferation of keratinocytes and endothelial cells, BugaCATH possesses the ability to modulate inflammatory processes during skin injury through its regulatory effect on phagocytes. The combination of these capabilities makes BugaCATH a potent candidate for skin wound therapy.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Huan Shen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Shuxin Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
38
|
Carrillo JFC, Boaretto AG, Santana DJ, Silva DB. Skin secretions of Leptodactylidae (Anura) and their potential applications. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230042. [PMID: 38374940 PMCID: PMC10876013 DOI: 10.1590/1678-9199-jvatitd-2023-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/04/2023] [Indexed: 02/21/2024] Open
Abstract
The skin of anuran species is a protective barrier against predators and pathogens, showing also chemical defense by substances that represent a potential source for bioactive substances. This review describes the current chemical and biological knowledge from the skin secretions of Leptodactylidae species, one of the most diverse neotropical frog families. These skin secretions reveal a variety of substances such as amines (12), neuropeptides (16), and antimicrobial peptides (72). The amines include histamine and its methylated derivatives, tryptamine derivatives and quaternary amines. The peptides of Leptodactylidae species show molecular weight up to 3364 Da and ocellatins are the most reported. The peptides exhibit commonly glycine (G) or glycine-valine (GV) as C-terminal amino acids, and the most common N-terminal amino acids are glutamic acid (E), lysine (K), and valine (V). The substances from Leptodactylidae species have been evaluated against pathogenic microorganisms, particularly Escherichia coli and Staphylococcus aureus, and the most active peptides showed MIC of 1-15 µM. Furthermore, some compounds showed also pharmacological properties such as immunomodulation, treatment of degenerative diseases, anticancer, and antioxidant. Currently, only 9% of the species in this family have been properly studied, highlighting a large number of unstudied species such as an entire subfamily (Paratelmatobiinae). The ecological context, functions, and evolution of peptides and amines in this family are poorly understood and represent a large field for further exploration.
Collapse
Affiliation(s)
- Juan F. C. Carrillo
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Systematics and Biogeography of Amphibians and
Reptiles (Mapinguari), Institute of Biosciences, Federal University of Mato Grosso
do Sul, Campo Grande, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM),
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University
of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Amanda Galdi Boaretto
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM),
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University
of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Diego J. Santana
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Systematics and Biogeography of Amphibians and
Reptiles (Mapinguari), Institute of Biosciences, Federal University of Mato Grosso
do Sul, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
39
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
40
|
Loffredo MR, Nencioni L, Mangoni ML, Casciaro B. Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic. J Pept Sci 2024; 30:e3534. [PMID: 37501572 DOI: 10.1002/psc.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Conlon JM, Moffett RC, Flatt PR, Leprince J. Strategy for the Identification of Host-Defense Peptides in Frog Skin Secretions with Therapeutic Potential as Antidiabetic Agents. Methods Mol Biol 2024; 2758:291-306. [PMID: 38549020 DOI: 10.1007/978-1-0716-3646-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Several amphibian peptides that were first identified on the basis of their antimicrobial or cytotoxic properties have subsequently shown potential for development into agents for the treatment of patients with Type 2 diabetes. A strategy is presented for the isolation and characterization of such peptides that are present in norepinephrine-stimulated skin secretions from a range of frog species. The methodology involves (1) fractionation of the secretions by reversed-phase HPLC, (2) identification of fractions containing components that stimulate the rate of release of insulin from BRIN-BD11 clonal β-cells without simultaneously stimulating the release of lactate dehydrogenase, (3) identification of active peptides in the fractions in the mass range 1-6 kDa by MALDI-ToF mass spectrometry, (4) purification of the peptides to near homogeneity by further reversed-phase HPLC on various column matrices, and (5) structural characterization by automated Edman degradation. The effect of synthetic replicates of the active peptides on glucose homeostasis in vivo may be evaluated in appropriate animal models of Type 2 diabetes such as db/db mice and mice fed a high fat diet to produce obesity, glucose intolerance, and insulin resistance.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, UK.
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | | |
Collapse
|
42
|
Vasileva ID, Samgina TY, Lebedev AT. Mass Spectrometric De Novo Sequencing of Natural Peptides. Methods Mol Biol 2024; 2758:61-75. [PMID: 38549008 DOI: 10.1007/978-1-0716-3646-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Natural peptides secreted under stress conditions by many organisms are bioactive molecules with a broad spectrum of activities. These molecules could become potential models for novel pharmaceuticals, to which bacteria, according to modern scientific concepts, do not have and cannot develop resistance. Taking this into consideration, it is necessary to clarify the amino acid sequences of such peptides. Here we describe our approach to de novo sequencing of amphibians' skin secretion peptides.
Collapse
|
43
|
Wu J, Xiong W, Li J, Liao H, Chai J, Huang X, Lai S, Kozlov S, Chu X, Xu X. Peptide TK-HR from the Skin of Chinese Folk Medicine Frog Hoplobatrachus Rugulosus Accelerates Wound Healing via the Activation of the Neurokinin-1 Receptor. J Med Chem 2023; 66:16002-16017. [PMID: 38015459 DOI: 10.1021/acs.jmedchem.3c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Wound healing is a complex process and remains a considerable challenge in clinical trials due to the lack of ideal therapeutic drugs. Here, a new peptide TK-HR identified from the skin of the frog Hoplobatrachus rugulosus was tested for its ability to heal cutaneous wounds in mice. Topical application of TK-HR at doses of 50-200 μg/mL significantly accelerated wound closure without causing any adverse effects in the animals. In vitro and in vivo investigations proved the regulatory role of the peptide on neutrophils, macrophages, keratinocytes, and vein endothelial cells involved in the inflammatory, proliferative, and remodeling phases of wound healing. Notably, TK-HR activated the MAPK and TGF-β-Smad signaling pathways by acting on NK1R in RAW264.7 cells and mice. The current work has identified that TK-HR is a potent wound healing regulator that can be applied for the treatment of wounds, including diabetic foot ulcers and infected wounds, in the future.
Collapse
Affiliation(s)
- Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jinqiao Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hang Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shian Lai
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
44
|
Duengo S, Muhajir MI, Hidayat AT, Musa WJA, Maharani R. Epimerisation in Peptide Synthesis. Molecules 2023; 28:8017. [PMID: 38138507 PMCID: PMC10745333 DOI: 10.3390/molecules28248017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/24/2023] Open
Abstract
Epimerisation is basically a chemical conversion that includes the transformation of an epimer into another epimer or its chiral partner. Epimerisation of amino acid is a side reaction that sometimes happens during peptide synthesis. It became the most avoided reaction because the process affects the overall conformation of the molecule, eventually even altering the bioactivity of the peptide. Epimerised products have a high similarity of physical characteristics, thus making it difficult for them to be purified. In regards to amino acids, epimerisation is very important in keeping the chirality of the assembled amino acids unchanged during the peptide synthesis and obtaining the desirable product without any problematic purification. In this review, we report several factors that induce epimerisation during peptide synthesis, including how to characterise and affect the bioactivities. To avoid undesirable epimerisation, we also describe several methods of suppressing the process.
Collapse
Affiliation(s)
- Suleman Duengo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, North Sulawesi, Indonesia;
| | - Muhamad Imam Muhajir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
| | - Ace Tatang Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Central Laboratory, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Weny J. A. Musa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Gorontalo, Gorontalo 96128, North Sulawesi, Indonesia;
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia; (S.D.); (M.I.M.); (A.T.H.)
- Central Laboratory, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceutical, National Research and Innovation Agency (BRIN), Sumedang 45363, West Java, Indonesia
| |
Collapse
|
45
|
Wang Y, Li Y, Ni D, Wei Z, Fu Z, Li C, Sun H, Wu Y, Li Y, Zhang Y, Liu N, Liu Y, Wang Z, Li J, Sun D, He L, Yang Y, Wang Y, Yang X. miR-186-5p targets TGFβR2 to inhibit RAW264.7 cell migration and proliferation during mouse skin wound healing. ENVIRONMENTAL TOXICOLOGY 2023; 38:2826-2835. [PMID: 37565786 DOI: 10.1002/tox.23914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Active peptides play a vital role in the development of new drugs and the identification and discovery of drug targets. As the first reported native peptide homodimer with pro-regenerative potency, OA-GP11d could potentially be used as a novel molecular probe to help elucidate the molecular mechanism of skin wound repair and provide new drug targets. METHODS Bioinformatics analysis and luciferase assay were adopted to determine microRNAs (miRNAs) and its target. The prohealing potency of the miRNA was determined by MTS and a Transwell experiment against mouse macrophages. Enzyme-linked immunosorbent assay, realtime polymerase chain reaction, and western blotting were performed to explore the molecular mechanisms. RESULTS In this study, OA-GP11d was shown to induce Mus musculus microRNA-186-5p (mmu-miR-186-5p) down-regulation. Results showed that miR-186-5p had a negative effect on macrophage migration and proliferation as well as a targeted and negative effect on TGF-β type II receptor (TGFβR2) expression and an inhibitory effect on activation of the downstream SMAD family member 2 (Smad2) and protein-p38 kinase signaling pathways. Importantly, delivery of a miR-186-5p mimic delayed skin wound healing in mice. CONCLUSION miR-186-5p regulated macrophage migration and proliferation to delay wound healing through the TGFβR2/Smad2/p38 molecular axes, thus providing a promising new pro-repair drug target.
Collapse
Affiliation(s)
- Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Chao Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Zhuo Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Dandan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
46
|
Luo J, Gao Y, Zhao R, Shi J, Li YM. Synthesis of disulfide-rich C-terminal Cys-containing peptide acids through a photocleavable side-chain anchoring strategy. Org Biomol Chem 2023; 21:8863-8867. [PMID: 37888757 DOI: 10.1039/d3ob01597a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A side-chain anchoring strategy has been developed as an effective method for the synthesis of C-terminal Cys-containing peptide acids. However, the application of this strategy to CCAs containing more than one disulfide bond is still hindered due to the trifluoroacetic acid (TFA) lability of the anchored side-chain groups. Herein, we report a photocleavable side-chain anchoring strategy using newly developed molecules having photocleavable side-chain protecting groups that are stable against TFA cleavage to assist in the formation of disulfide bonds. The utility of this new strategy was demonstrated by the synthesis of Riparin 1.1 and hCNP22 containing one disulfide bond and α-conotoxin Vc1.1 containing two disulfide bonds. This new strategy will provide new possibilities for the synthesis of disulfide-rich C-terminal Cys-containing peptide acids.
Collapse
Affiliation(s)
- Jie Luo
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Yuan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Rui Zhao
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Jing Shi
- Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
47
|
Serafin P, Kleczkowska P. Bombesins: A New Frontier in Hybrid Compound Development. Pharmaceutics 2023; 15:2597. [PMID: 38004575 PMCID: PMC10674911 DOI: 10.3390/pharmaceutics15112597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Recently, bombesin (BN) and its analogs have attracted much attention as excellent anticancer agents because they interact with specific receptors widely distributed on the surface of various cancer cells. However, their biological properties proceed far beyond this, given a broad spectrum of activity. Bombesin receptor ligands are effective drugs for the treatment of rheumatoid arthritis or gastrointestinal diseases. However, most diseases are complex, and the use of polytherapy may lead to pharmacokinetic and pharmacodynamic drug-drug interactions, resulting in side effects. Therefore, there is a need to develop effective compounds that also contain BN or its analogs, which are combined with other structural entities, thus generating a so-called hybrid drug. Hybrid drugs that contain bombesin pharmacophore(s) may be proposed as a solution to the problem of polytherapy or the lack of an effective cure. Such structures have now demonstrated the desired efficacy, though information on these aforementioned compounds is relatively scarce. Therefore, our paper aims to encourage researchers to focus on bombesins. Herein, we indicate that the hybrid approach should also be firmly applied to bombesins and the BN receptor family. This paper's structure is divided into two main sections demonstrating bombesins and their properties, as well as recent data on bombesin-based hybrid compounds and their potential usefulness in medicine. Overall, it refers to the discovery and synthesis of modified bombesin-based hybrid compounds.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland;
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
| |
Collapse
|
48
|
Han Z, Feng D, Wang W, Wang Y, Cheng M, Yang H, Liu Y. Influence of Fatty Acid Modification on the Anticancer Activity of the Antimicrobial Peptide Figainin 1. ACS OMEGA 2023; 8:41876-41884. [PMID: 37970064 PMCID: PMC10633881 DOI: 10.1021/acsomega.3c06806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Antimicrobial peptides derived from the skin secretions of amphibians have made important progress in tumor therapy due to their unique mechanism of destroying cell membranes. Figainin 1 (F1) is an 18-amino acid antimicrobial peptide from the skin secretions of Boana raniceps frogs. In a previous study, F1 was shown to inhibit cancer cell proliferation. F1 is composed entirely of natural amino acids; therefore, it is easily degraded by a variety of proteases, resulting in poor stability and a short half-life. In the present study, we used a fatty acid modification strategy to improve the stability of Figainin 1. Among the 8 peptides synthesized, A-10 showed the strongest antiproliferative activity against K562 cells and the other four tumor cell lines, and its stability against serum and proteinase K was improved compared with F1. We found that A-10 works through two mechanisms, cell membrane destruction and apoptosis, and can arrest the cell cycle in the G0/G1 phase. Moreover, A-10 exhibited self-assembly behavior. Overall, it is necessary to select a fatty acid with a suitable length for modification to improve the stability and antiproliferative activity of antimicrobial peptides. This study provides a good reference for the development of antimicrobial peptides as effective anticancer compounds.
Collapse
Affiliation(s)
- Zhenbin Han
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongmei Feng
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxuan Wang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Wang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huali Yang
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based
Drug Design & Discovery, Ministry of Education, School of Pharmaceutical
Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
49
|
Rami M, Shafique M, Sarma SP. Structural, Functional, and Mutational Studies of a Potent Subtilisin Inhibitor from Budgett's Frog, Lepidobatrachus laevis. Biochemistry 2023; 62:2952-2969. [PMID: 37796763 DOI: 10.1021/acs.biochem.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Subtilases play a significant role in microbial pathogen infections by degrading the host proteins. Subtilisin inhibitors are crucial in fighting against these harmful microorganisms. LL-TIL, from skin secretions of Lepidobatrachus laevis, is a cysteine-rich peptide belonging to the I8 family of inhibitors. Protease inhibitory assays demonstrated that LL-TIL acts as a slow-tight binding inhibitor of subtilisin Carlsberg and proteinase K with inhibition constants of 91 pM and 2.4 nM, respectively. The solution structures of LL-TIL and a mutant peptide reveal that they adopt a typical TIL-type fold with a canonical conformation of a reactive site loop (RSL). The structure of the LL-TIL-subtilisin complex and molecular dynamics (MD) simulations provided an in-depth view of the structural basis of inhibition. NMR relaxation data and molecular dynamics simulations indicated a rigid conformation of RSL, which does not alter significantly upon subtilisin binding. The energy calculation for subtilisin inhibition predicted Ile31 as the highest contributor to the binding energy, which was confirmed experimentally by site-directed mutagenesis. A chimeric mutant of LL-TIL broadened the inhibitory profile and attenuated subtilisin inhibition by 2 orders of magnitude. These results provide a template to engineer more specific and potent TIL-type subtilisin inhibitors.
Collapse
Affiliation(s)
- Mihir Rami
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Mohd Shafique
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
50
|
Samgina TY, Vasileva ID, Trebše P, Torkar G, Surin AK, Meng Z, Zubarev RA, Lebedev AT. Tandem Mass Spectrometry de novo Sequencing of the Skin Defense Peptides of the Central Slovenian Agile Frog Rana dalmatina. Molecules 2023; 28:7118. [PMID: 37894596 PMCID: PMC10608968 DOI: 10.3390/molecules28207118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Peptides released on frogs' skin in a stress situation represent their only weapon against micro-organisms and predators. Every species and even population of frog possesses its own peptidome being appropriate for their habitat. Skin peptides are considered potential pharmaceuticals, while the whole peptidome may be treated as a taxonomic characteristic of each particular population. Continuing the studies on frog peptides, here we report the peptidome composition of the Central Slovenian agile frog Rana dalmatina population. The detection and top-down de novo sequencing of the corresponding peptides was conducted exclusively by tandem mass spectrometry without using any chemical derivatization procedures. Collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), electron transfer dissociation (ETD) and combined MS3 method EThcD with stepwise increase of HCD energy were used for that purpose. MS/MS revealed the whole sequence of the detected peptides including differentiation between isomeric Leu/Ile, and the sequence portion hidden in the disulfide cycle. The array of the discovered peptide families (brevinins 1 and 2, melittin-related peptides (MRPs), temporins and bradykinin-related peptides (BRPs)) is quite similar to that of R. temporaria. Since the genome of this frog remains unknown, the obtained results were compared with the recently published transcriptome of R. dalmatina.
Collapse
Affiliation(s)
- Tatiana Yu. Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Irina D. Vasileva
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana Zdravstvena Pot 5, 1000 Ljubljana, Slovenia;
| | - Gregor Torkar
- Department for Biology, Chemistry and Home Economics, University of Ljubljana Faculty of Education, Kardeljeva Ploščad 16, 1000 Ljubljana, Slovenia;
| | - Alexey K. Surin
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow, Russia;
| | - Zhaowei Meng
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (Z.M.); (R.A.Z.)
| | - Roman A. Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (Z.M.); (R.A.Z.)
- The National Medical Research Center for Endocrinology, 115478 Moscow, Russia
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Albert T. Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|