1
|
Peng R, Zhu C. Mild [3 + 3] Annulation of (Trifluoromethyl)alkenes with Thioureas Enabled by Chemoselective Defluorinative Amination: Synthesis of 6-Fluoro-3,4-dihydropyrimidine-2(1 H)-thiones. J Org Chem 2025; 90:1538-1548. [PMID: 39835734 DOI: 10.1021/acs.joc.4c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The chemoselective defluorinative [3 + 3] annulation of (trifluoromethyl)alkenes with thioureas is reported. This protocol affords various attractive 6-fluoro-3,4-dihydropyrimidine-2(1H)-thiones in high yields, features transition-metal free, mild conditions, efficient, is operationally simple and gram-scalable, tolerates diverse useful functional groups.
Collapse
Affiliation(s)
- Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
2
|
He S, Xu B. Electrosynthesis of Fluoroalkenes from Alpha-CF 3 and Alpha-CF 2H Benzyl Halides. Chemistry 2025:e202404449. [PMID: 39840518 DOI: 10.1002/chem.202404449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Indexed: 01/23/2025]
Abstract
We have developed an efficient synthesis of fluoroalkenes via tandem electrochemical dehalogenation-elimination protocol. The key step is the generation of carbon anion by electrochemical reductive dehalogenation of alkyl halides. Various gem-difluoroalkenes and monofluoroalkenes were prepared in moderate to good yields from α-difluoromethylated/α-trifluoromethylated benzyl halides.
Collapse
Affiliation(s)
- Shiyu He
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
3
|
Bonfante S, Tanner TFN, Lorber C, Lynam JM, Simonneau A, Slattery JM. Zirconium-mediated carbon-fluorine bond functionalisation through cyclohexyne "umpolung". Chem Sci 2025:d4sc08522a. [PMID: 39867955 PMCID: PMC11758233 DOI: 10.1039/d4sc08522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Polarity reversal, or "umpolung", is a widely acknowledged strategy to allow organic functional groups amenable to react in alternative ways to the usual preference set by their electronic features. In this article, we demonstrate that cyclohexyne umpolung, realized through complexation to zirconocene, makes the small strained cycloalkyne amenable to C-F bond functionalisation. Such strong bond activation chemistry is unprecedented in "free" aryne and strained alkyne chemistry. Our study also reveals that the reactivity of the Zr-cyclohexyne complex is highly sensitive to the degree of fluorination of the heteroarene. In addition, parasitic reactions of the ancillary ligand PMe3 were observed when pentafluoropyridine was the substrate.
Collapse
Affiliation(s)
- Sara Bonfante
- LCC-CNRS, Université de Toulouse, CNRS UPS205route de Narbonne BP44099 F-31077 Toulouse cedex 4 France
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Theo F N Tanner
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Christian Lorber
- LCC-CNRS, Université de Toulouse, CNRS UPS205route de Narbonne BP44099 F-31077 Toulouse cedex 4 France
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Antoine Simonneau
- LCC-CNRS, Université de Toulouse, CNRS UPS205route de Narbonne BP44099 F-31077 Toulouse cedex 4 France
| | - John M Slattery
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
4
|
Fujita T, Yabuki H, Morioka R, Fuchibe K, Ichikawa J. Nickel-catalyzed cross-coupling of 2-fluorobenzofurans with arylboronic acids via aromatic C-F bond activation. Beilstein J Org Chem 2025; 21:146-154. [PMID: 39834895 PMCID: PMC11744694 DOI: 10.3762/bjoc.21.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
2-Fluorobenzofurans underwent efficient nickel-catalyzed coupling with arylboronic acids through the activation of aromatic C-F bonds. This method allowed us to successfully synthesize a range of 2-arylbenzofurans with various substituents. The reaction, which proceeded under mild conditions, involved β-fluorine elimination from nickelacyclopropanes formed by the interaction of 2-fluorobenzofurans with zero-valent nickel species. This protocol facilitates orthogonal coupling reactions of aromatic C-F and C-Br bonds with arylboronic acids.
Collapse
Affiliation(s)
- Takeshi Fujita
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Haruna Yabuki
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Ryutaro Morioka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Kohei Fuchibe
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Junji Ichikawa
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa 252-1193, Japan
| |
Collapse
|
5
|
Muta K, Okamoto K, Nakayama H, Wada S, Nagaki A. Defluorinative functionalization approach led by difluoromethyl anion chemistry. Nat Commun 2025; 16:416. [PMID: 39774136 PMCID: PMC11707236 DOI: 10.1038/s41467-024-52842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 01/11/2025] Open
Abstract
Organofluorine compounds have greatly benefited the pharmaceutical, agrochemical, and materials sectors. However, they are plagued by concerns associated with Per- and Polyfluoroalkyl Substances. Additionally, the widespread use of the trifluoromethyl group is facing imminent regulatory scrutiny. Defluorinative functionalization, which converts the trifluoromethyl to the difluoromethyl motifs, represents the most efficient synthetic strategy. However, general methods for robust C(sp3)-F bond transformations remain elusive due to challenges in selectivity and functional group tolerance. Here, we present a method for C(sp3)-F bond defluorinative functionalization of the trifluoromethyl group via difluoromethyl anion in flow. This new approach tames the reactive difluoromethyl anion, enabling diverse functional group transformations. Our methodology offers a versatile platform for drug and agrochemical discovery, overcoming the limitations associated with fluorinated motifs.
Collapse
Affiliation(s)
- Kensuke Muta
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
- Central Glass Co. Ltd., New-STEP Research Center, Kawagoe City, Saitama, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Hiroki Nakayama
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Shuto Wada
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Qian ZM, Yang ML, Guan Z, Huang CS, He YH. Photoredox-Catalyzed 1,4-Dichloromethyldimerization of Alkenes with Chloroform: Access to Polychlorinated Vicinal Diaryl Alkanes. Chemistry 2025:e202404389. [PMID: 39757122 DOI: 10.1002/chem.202404389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
A visible-light-mediated strategy is reported for the direct synthesis of polychlorinated vicinal diaryl alkanes from aryl alkenes and chloroform. In this approach, two haloalkyl radicals generated from chloroform via halogen atom transfer (XAT) and direct single electron transfer (SET) within the same photoredox catalysis cycle enable the 1,4-dichloromethyldimerization of alkenes. Besides chloroform, this strategy is applicable to carbon tetrachloride, bromotrichloromethane, and α-bromo carboxylic esters, yielding corresponding 1,4-disubstituted vicinal diaryl alkanes. Diverse polychlorinated structures containing highly congested vicinal quaternary carbon centers are effectively synthesized by this method. The potential of this reaction in late-stage drug modification is highlighted by the successful transformation of olefins with pharmaceutical structures.
Collapse
Affiliation(s)
- Zhu-Ming Qian
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China
| | - Ming-Lin Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China
| | - Chu-Sheng Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, 530001, Nanning, P. R. China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, 400715, Chongqing, China
| |
Collapse
|
7
|
Liu X, Shu Y, Pan Y, Zeng G, Zhang M, Zhu C, Xu Y, Wan A, Wang M, Han Q, Liu B, Wang Z. Electrochemical destruction of PFAS at low oxidation potential enabled by CeO 2 electrodes utilizing adsorption and activation strategies. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137043. [PMID: 39754874 DOI: 10.1016/j.jhazmat.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO2) electrodes enhanced with oxygen vacancy (Ov) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.37 V vs. SHE). Demonstrating high removal and defluorination efficiencies of perfluorooctanoic acid (PFOA) at 94.0 % and 73.0 %, respectively, our approach also proves effective in the environmental matrix. It minimizes the impacts of co-existing natural organic matter and chloride ions, crucial benefits of operating at lower oxidation potentials. The role of Ov in CeO2 is validated by both experimental results and density functional theory modeling, demonstrating that these sites can activate the C-F bond and substantially reduce the energy barriers for defluorination. Consequently, our CeO2-based method not only achieves defluorination efficiencies comparable to more energy-intensive techniques but does so while requiring less than 0.62 kWh/m3 per order. This positions our approach as a promising, cost-effective alternative for the remediation of PFAS-contaminated waters, emphasizing its relevance and effectiveness in environmental remediation scenarios.
Collapse
Affiliation(s)
- Xun Liu
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guoshen Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chaoqun Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Youmei Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
8
|
Shigeno M, Hayashi K, Sasamoto O, Hirasawa R, Korenaga T, Ishida S, Nozawa-Kumada K, Kondo Y. Catalytic Concerted S NAr Reactions of Fluoroarenes by an Organic Superbase. J Am Chem Soc 2024; 146:32452-32462. [PMID: 39513585 PMCID: PMC11613311 DOI: 10.1021/jacs.4c09042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
We herein propose that the catalytic concerted SNAr reaction is a powerful method to prepare functionalized aromatic scaffolds. Classic stepwise SNAr reactions involving addition/elimination processes require the use of electron-deficient aromatic halides to stabilize Meisenheimer intermediates, despite their widespread use in medicinal chemistry research. Recent efforts have been made to develop concerted SNAr reactions involving a single transition state, allowing the use of electron-rich substrates based on the use of stoichiometric amounts of strong bases or reactive nucleophiles. This study demonstrates that, without the use of such reagents, the organic superbase t-Bu-P4 efficiently catalyzes the concerted SNAr reactions of aryl fluorides regardless of their electronic nature. The key to establishing this system is the dual activation of aryl fluoride and anionic nucleophiles by the t-Bu-P4 catalyst. Furthermore, this catalysis allows excellent functional group tolerance, utilization of diverse nucleophiles, and late-stage functionalization of bioactive compound derivatives. These findings make possible diverse applications in chemical synthesis and pharmaceutical development.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
- JST,
PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Kazutoshi Hayashi
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Ozora Sasamoto
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Riku Hirasawa
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Toshinobu Korenaga
- Department
of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Ueda, Morioka 020-8551, Japan
- Soft-Path
Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka 020-8551, Japan
| | - Shintaro Ishida
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology
(AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan
| | - Yoshinori Kondo
- Department
of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Chen SY, Tang LN, Chen M. Palladium-Catalyzed Double ipso-Defluoroetherification of Allylic gem-Difluorides with Phenols or Alcohols. Org Lett 2024; 26:9799-9803. [PMID: 39481017 DOI: 10.1021/acs.orglett.4c03873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Significant progress has been made in the synthesis of diverse ketals through a palladium-catalyzed reaction involving allylic gem-difluorides and various phenols or alcohols. This methodology facilitates double ipso-defluoroetherification of allylic gem-difluorides, resulting in high product yields with excellent regioselectivity. The reactions were conducted under mild conditions and exhibited outstanding tolerance to a wide range of functional groups. Notably, this approach overcomes the traditional limitation of palladium-catalyzed processes, where nucleophiles typically target the common C-1 position of allylic gem-difluorides, enabling selective functionalization at the rare C-3 position instead.
Collapse
Affiliation(s)
- Sheng-Yu Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
10
|
Wang Y, Wang L, Qin Y, Xiong HY, Zhang G. Pd-Catalyzed Site-Selective Defluorinative Etherification Between Unactivated Perfluoroarenes and Hydrobenzoxazoles. Chemistry 2024:e202403914. [PMID: 39526546 DOI: 10.1002/chem.202403914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Polyfluoroaryl ethers represent an important framework of biologically active molecules and materials. Owing to the strong bond dissociation energy of C-F bond, selectivity and other issues, transition metal-catalyzed synthesis of polyfluoroaryl ethers from perfluoroarenes via the activation of C-F bond is challenging and underdeveloped, as compared to the well-documented C-O bond formation starting from aryl iodides, aryl bromides or aryl chlorides. Herein, an unprecedented Pd-catalyzed defluorinative etherification for the synthesis of polyfluoroaryl ether skeletons using hydrobenzoxazoles as phenol surrogate, has been reported. The substrate scope for this protocol is broad, with respect to hydrobenzoxazoles and perfluoroarenes, under mild reaction conditions. More importantly, challenging alkenyl and alkynyl substituted polyfluoroarenes could be successfully used as the cou-pling component for Pd-catalyzed etherification reaction. Density functional theory (DFT) calculations were employed to investigate the reaction mechanism, which suggested that oxidative addition between polyfluorobenzene and Pd(0) constituted the rate-determining step.
Collapse
Affiliation(s)
- Yaping Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Luyao Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Yibo Qin
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Heng-Ying Xiong
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Guangwu Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| |
Collapse
|
11
|
Ai C, Wang T, Bao Y, Yan S, Zhang Y, Wang JY. Assembly of functionalized gem-difluoroalkenes via photocatalytic defluorocyanoalkylation and defluoroacylation of α-CF 3 styrenes with oxime esters. Org Biomol Chem 2024. [PMID: 39469837 DOI: 10.1039/d4ob01496k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report an efficient photocatalytic protocol for the defluorocyanoalkylation and defluoroacylation of α-trifluoromethyl styrenes by utilizing oxime esters as radical donors, allowing for the preparation of diverse gem-difluoroalkenes. The treatment of α-trifluoromethyl styrenes with cyclobutanone oxime esters led to the formation of distal cyano group-anchored gem-difluoroalkenes. Notably, adding K2CO3 as an inorganic base to the photocatalytic system afforded γ,γ-difluoroallylic ketones by utilizing acyl oxime esters as the acylating agents. Preliminary mechanistic investigations into this reaction pathway revealed the involvement of single-electron reduction, C-C bond cleavage initiated by iminyl radicals, radical addition, and β-fluoride elimination steps.
Collapse
Affiliation(s)
- Chan Ai
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tao Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yu Bao
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shenghu Yan
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yue Zhang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
12
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
13
|
Li S, Li X, Zhao K, Yang X, Xu J, Xu HJ. Defluorinative Haloalkylation of Unactivated Alkenes Enabled by Dual Photoredox and Copper Catalysis. J Org Chem 2024; 89:13518-13529. [PMID: 39253778 DOI: 10.1021/acs.joc.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A three-component defluorinative haloalkylation of alkenes with trifluoromethyl compounds and TBAX (X = Cl, Br) via dual photoredox/copper catalysis is reported. The mild conditions are compatible with a wide array of activated trifluoromethyl aromatics bearing diverse substituents, and various nonactivated terminal and internal alkenes, enabling straightforward access to synthetically valuable γ-gem-difluoroalkyl halides with high efficiency. Mechanistic studies indicate that the [Cu] complexes not only serve as XAT catalysts but also facilitate the SET reduction of trifluoromethyl groups by photocatalysts. Additionally, the resulting alkyl halide products can serve as versatile conversion intermediates for the synthesis of a diverse range of γ-gem-difluoroalkyl compounds.
Collapse
Affiliation(s)
- Shiyu Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinguang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Kuikui Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinyu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
14
|
Semeniuk T, Dudas T, Okeh E, Felesky T, Hamel JD. Photocatalytic Defluorinative α-Aminoalkylation of Allylic Difluorides. J Org Chem 2024; 89:13669-13677. [PMID: 39232656 DOI: 10.1021/acs.joc.4c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A photocatalytic process was devised to synthesize monofluoroalkenes via defluorinative functionalization of allylic difluorides. N-Alkylanilines are used as precursors to α-aminoalkyl radicals, which undergo regioselective addition to allylic difluorides, and subsequent SET and fluoride elimination produce monofluoroalkenes. C-C bond formation on the aniline is site-selective for the least substituted carbon α to nitrogen.
Collapse
Affiliation(s)
- Taylor Semeniuk
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Ty Dudas
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Esther Okeh
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Tanner Felesky
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Jean-Denys Hamel
- Canadian Centre for Research in Advanced Fluorine Technologies, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
15
|
Sun BQ, Yang J, Fan L, Xu Q, Wang S, Zhong H, Xiang HY. Base-Promoted Nucleophilic Phosphorylation of Benzyl Fluorides via C(sp 3)-F Cleavage. J Org Chem 2024; 89:11739-11746. [PMID: 39110911 DOI: 10.1021/acs.joc.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Herein, a transition-metal-free phosphorylation of benzyl fluorides with P(O)-H compounds is disclosed. In the presence of tBuOK, various benzyl fluorides react with P(O)-H compounds to produce the corresponding benzyl phosphine oxides, phosphinates, and phosphonates in good to high yields. This base-promoted phosphorylation reaction offers a facile and general strategy for the construction of a C(sp3)-P bond.
Collapse
Affiliation(s)
- Bing-Qian Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Jia Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Lei Fan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Qian Xu
- Hunan Research Institute of Chemical Industry, Changsha 410014, P. R. China
| | - Shuai Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
16
|
Li Y, Cao T, Peng R, Zhou S, Long X, Jiang H, Zhu C. Chemoselective Thioacylation of Amines Enabled by Synergistic Defluorinative Coupling. Org Lett 2024; 26:6438-6443. [PMID: 39046793 DOI: 10.1021/acs.orglett.4c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A mild and chemoselective method for the thioacylation of amines, including amino acids and peptides, using gem-difluoroalkenes and sulfide, is reported. The distinguishing of the different nucleophilic sites (S-site and diverse N-sites) by the chemoselective C-F bond functionalization of gem-difluoroalkenes enables the unique synergistic defluorinative coupling reaction. This reaction features mild conditions, is operationally simple, efficient, and gram-scalable, tolerates various functional groups, and is activator-free and without racemization. Thioamide moieties were incorporated site-specifically into bioactive compounds. The proposed mechanism is illustrated by a DFT calculation.
Collapse
Affiliation(s)
- Yuqi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Tongxiang Cao
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Rongbin Peng
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Shang Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Xujing Long
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
Wang Y, Tsui GC. Stereodivergent Palladium-Catalyzed C-F Bond Functionalization of gem-Difluoroalkenes. Org Lett 2024; 26:5822-5826. [PMID: 38937877 PMCID: PMC11250036 DOI: 10.1021/acs.orglett.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
We herein describe a stereodivergent C-F bond functionalization of gem-difluoroalkenes. Using trisubstituted β,β-difluoroacrylates, both E and Z monofluoroalkene products can be obtained with excellent diastereoselectivities. The design of two different reaction manifolds, i.e., Pd(II)- versus Pd(0)-catalyzed cross-coupling of boronic acids, is the key to stereocontrol.
Collapse
Affiliation(s)
- Yanhui Wang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Gavin Chit Tsui
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
- Shanghai-Hong
Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
18
|
He C, Zhou G, Yang G, Wang F, Lu C, Nie J, Ma C. Borane-Catalyzed Coupling of Diazooxindoles and Difluoroenoxysilanes to Tetrasubstituted Monofluoroalkenes. Org Lett 2024; 26:5539-5543. [PMID: 38913774 DOI: 10.1021/acs.orglett.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A highly stereoselective coupling reaction of diazooxindoles with difluoroenoxysilanes catalyzed by Lewis acidic boranes has been developed. The reaction proceeded at ambient temperature under transition metal-free conditions with wide functional group tolerance. By using this simple procedure, a series of tetrasubstituted monofluoroalkenes can be accessed in good yield with high selectivity.
Collapse
Affiliation(s)
- Chunhu He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guoyi Zhou
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guichun Yang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Feiyi Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Cuifen Lu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Junqi Nie
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Chao Ma
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
19
|
Talavera M, Mollasalehi S, Braun T. C-H and C-F bond activation of fluorinated propenes at Rh: enabling cross-coupling reactions with outer-sphere C-C coupling. Chem Sci 2024; 15:8472-8477. [PMID: 38846380 PMCID: PMC11151818 DOI: 10.1039/d4sc00951g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/28/2024] [Indexed: 06/09/2024] Open
Abstract
The reaction of [Rh{(E)-CF[double bond, length as m-dash]CHCF3}(PEt3)3] with Zn(CH3)2 results in the methylation of the alkenyl ligand to give [Rh{(E/Z)-C(CH3)[double bond, length as m-dash]CHCF3}(PEt3)3]. Variable temperature NMR studies allowed the identification of a heterobinuclear rhodium-zinc complex as an intermediate, for which the structure [Rh(CH3)(ZnCH3){(Z)-C(CH3)[double bond, length as m-dash]CHCF3}(PEt3)2] is proposed. Based on these stoichiometric reactions, unique Negishi-type catalytic cross-coupling reactions of fluorinated propenes by consecutive C-H and C-F bond activation steps at room temperature were developed. The C-H bond activation steps provide a fluorinated ligand at Rh and deliver the fluorinated product, whereas the C-F bond activation and C-C coupling occur via outer-sphere nucleophilic attack at the fluorinated alkenyl ligand.
Collapse
Affiliation(s)
- Maria Talavera
- Facultad de Química, Universidade de Vigo Campus Universitario 36310 Vigo Spain
- Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor Straße 2 12489 Berlin Germany
| | - Soodeh Mollasalehi
- Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor Straße 2 12489 Berlin Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt Universität zu Berlin Brook-Taylor Straße 2 12489 Berlin Germany
| |
Collapse
|
20
|
Li YB, Wang YL, Gao Q, Dai JC, Jin RX, Wang XS. Photoredox Catalyzed Synthesis of gem-Difluoroalkenes and Monofluorinated Cyclooctenes via 1,5-HAT Process. Org Lett 2024; 26:4548-4553. [PMID: 38757610 DOI: 10.1021/acs.orglett.4c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
gem-Difluoroalkenes and monofluorinated cycloalkenes have emerged as basic structural units in a variety of bioactive molecules and natural products. Thus, developing straightforward and efficient methods for synthesizing fluorinated alkene compounds is of considerable significance. Herein, we disclose a visible-light-induced defluorination of 2-trifluoromethyl-1-alkene via a 1,5-HAT process using N-alkoxyphtalimides as both radical precursor and potential nucleophile. The mild and stepwise reaction leads to a variety of structurally diverse gem-difluoroalkenes and monofluorinated cyclooctenes with high efficiency, respectively.
Collapse
Affiliation(s)
- Yuan-Bo Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Lin Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jing-Cheng Dai
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Huang ZM, Sun Y, Wang Y, Wang XW. Unveiling the Selectivity of Ru(II)-Catalyzed C-H Activation for Defluorinative Cyclization of 2-Arylbenzimidazole and Trifluoromethyl Diazo: A DFT Study. J Org Chem 2024. [PMID: 38805363 DOI: 10.1021/acs.joc.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The synthesis of monofluorinated heterocyclic compounds by C-H activation combined with defluorination is useful. Studies on the reaction mechanism and selectivity have shown that these processes play a positive role in promoting the development of monofluorinated reactions. Density functional theory (DFT) calculations were performed to investigate the mechanism and selectivity of Ru(II)-catalyzed 2-arylbenzimidazole with trifluoromethyl diazo. DFT calculations showed that C-H activation occurs through a concerted metalation/deprotonation (CMD) mechanism. After that, deprotonation and defluorinative cyclization are assisted by acetate and trifluoroethanol (TFE). Further mechanistic insights through noncovalent interaction (NCI) analysis were also obtained to elucidate the origin of the selectivity in the defluorination process.
Collapse
Affiliation(s)
- Zi-Ming Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Xing-Wang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
22
|
Yang H, Zeng Y, Song X, Che L, Jiang ZT, Lu G, Xia Y. Rhodium-Catalyzed Enantio- and Regioselective Allylation of Indoles with gem-Difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202403602. [PMID: 38515395 DOI: 10.1002/anie.202403602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
The use of gem-difluorinated cyclopropanes (gem-DFCPs) as fluoroallyl surrogates under transition-metal catalysis has drawn considerable attention recently but such reactions are restricted to producing achiral or racemic mono-fluoroalkenes. Herein, we report the first enantioselective allylation of indoles under rhodium catalysis with gem-DFCPs. This reaction shows exceptional branched regioselectivity towards rhodium catalysis with gem-DFCPs, which provides an efficient route to enantioenriched fluoroallylated indoles with wide substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Hui Yang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lin Che
- Linyi University, School of Chemistry and Chemical Engineering, Linyi, 276000, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Chaudhary D, Kuram MR. Regio- and Stereoselective Hexafluoroisopropoxylation and Trifluoroethoxylation of Allenamides. J Org Chem 2024; 89:7347-7351. [PMID: 38163927 DOI: 10.1021/acs.joc.3c02457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Incorporating fluorinated moieties into organic molecules is an attractive strategy to enhance drug-like properties. Herein, we have developed a simple and self-promoted protocol for hexafluoroisopropoxylation and trifluoroethoxylation of allenamides with fluorinated alcohols such as HFIP and TFE. The reaction provided the fluoroalkoxylated products in a regio- and stereoselective manner in good to moderate yields under mild conditions.
Collapse
Affiliation(s)
- Dhananjay Chaudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
25
|
Kong L, Ti W, Lin A, Yao H, Huang Y, Li X. Palladium-Catalyzed Defluorinative Alkylation of gem-Difluoroalkenes with Cyclopropanols: Stereoselective Synthesis of γ-Fluorinated γ,δ-Unsaturated Ketones. Org Lett 2024; 26:3591-3596. [PMID: 38661127 DOI: 10.1021/acs.orglett.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A palladium-catalyzed defluorinative alkylation of gem-difluoroalkenes with cyclopropyl alcohols was developed. A range of γ-fluorinated γ,δ-unsaturated ketones were constructed in good yields with excellent stereoselectivities. In addition, by base-mediated intramolecular nucleophilic vinylic substitution (SNV), the products could be further transformed to 2,5-dimethylenetetrahydrofurans and analogues with excellent stereoselectivities.
Collapse
Affiliation(s)
- Lingyu Kong
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 210009, China
| | - Wenqing Ti
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Hequan Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 210009, China
| | - Yue Huang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211098, China
| | - Xuanyi Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| |
Collapse
|
26
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
28
|
Liu GY, Tang LN, Li JH, Yang S, Chen M. Palladium-catalyzed alkynylation of allylic gem-difluorides. Chem Commun (Camb) 2024; 60:4471-4474. [PMID: 38563905 DOI: 10.1039/d4cc01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, a palladium-catalyzed regioselective alkynylation, esterification, and amination of allylic gem-difluorides via C-F bond activation/transmetallation/β-C elimination or nucleophilic attack has been achieved. This innovative protocol showcases an extensive substrate range and operates efficiently under mild reaction conditions, resulting in high product yields and Z-selectivity. Particularly noteworthy is its exceptional tolerance towards a wide array of functional groups. This developed methodology provides effective and convenient routes to access a diverse array of essential fluorinated enynes, esters and amines.
Collapse
Affiliation(s)
- Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Jun-Hua Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| |
Collapse
|
29
|
Budiman YP, Putra MH, Ramadhan MR, Hannifah R, Luz C, Ghafara IZ, Rustaman R, Ernawati EE, Mayanti T, Groß A, Radius U, Marder TB. Pd-Catalyzed Oxidative C-H Arylation of (Poly)fluoroarenes with Aryl Pinacol Boronates and Experimental and Theoretical Studies of its Reaction Mechanism. Chem Asian J 2024; 19:e202400094. [PMID: 38412058 DOI: 10.1002/asia.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C-H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.
Collapse
Affiliation(s)
- Yudha P Budiman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | | | - Muhammad R Ramadhan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Raiza Hannifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Christian Luz
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ilham Z Ghafara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Rustaman Rustaman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Engela E Ernawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069, Ulm, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
30
|
Borys AM, Vedani L, Hevia E. Stoichiometric and Catalytic Lithium Nickelate-Mediated C-F Bond Alkynylation of Fluoroarenes. J Am Chem Soc 2024; 146:10199-10205. [PMID: 38545862 DOI: 10.1021/jacs.4c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Low-valent nickelates have recently been shown to be key intermediates that facilitate challenging cross-coupling reactions under mild conditions. Expanding the synthetic potential of these heterobimetallic complexes, herein we report the success of trilithium nickelate Li3(TMEDA)3Ni(C≡C-Ph)3 in promoting stoichiometric C-F activation of assorted aryl fluorides furnishing novel mixed Li/Ni(0) or Li/Ni(II) species depending on the substrate and conditions employed. These stoichiometric successes can be upgraded to catalytic regimes to enable the atom-efficient alkynylation of aryl fluorides and polyfluoroarenes with lithium acetylides and precatalyst Ni(COD)2, which operates without the intervention of external ligands, Cu cocatalysts, or additives.
Collapse
Affiliation(s)
- Andryj M Borys
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| | - Luca Vedani
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| |
Collapse
|
31
|
Zhao X, Bai L, Li J, Jiang X. Photouranium-Catalyzed C-F Activation Hydroxylation via Water Splitting. J Am Chem Soc 2024. [PMID: 38593178 DOI: 10.1021/jacs.3c13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The C-F bond is the strongest covalent single bond (126 kcal/mol) in carbon-centered bonds, in which the highest electronegativity of fluorine (χ = 4) gives rise to the shortest bond length (1.38 Å) and the smallest van der Waals radius (rw = 1.47 Å), resulting in enormous challenges for activation and transformation. Herein, C-F conversion was realized via photouranium-catalyzed hydroxylation of unactivated aryl fluorides using water as a hydroxyl source to deliver multifunctional phenols under ambient conditions. The activation featured cascade sequences of single electron transfer (SET)/hydrogen atom transfer (HAT)/oxygen atom transfer (OAT), highly integrated from the excited uranyl cation. The *UO22+ prompted water splitting under mild photoexcitation, caging the active oxygen in a peroxo-bridged manner for the critical OAT process and releasing hydrogen via the HAT process.
Collapse
Affiliation(s)
- Xiu Zhao
- Hainan Institute of East China Normal University, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
| | - Leiyang Bai
- Hainan Institute of East China Normal University, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| |
Collapse
|
32
|
Garg A, Haswell A, Hopkinson MN. C-F Bond Insertion: An Emerging Strategy for Constructing Fluorinated Molecules. Chemistry 2024; 30:e202304229. [PMID: 38270496 DOI: 10.1002/chem.202304229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
C-F Insertion reactions, where an organic fragment formally inserts into a carbon-fluorine bond in a substrate, are highly attractive, yet largely unexplored, methods to prepare valuable fluorinated molecules. The inherent strength of C-F bonds and the resulting need for a large thermodynamic driving force to initiate C-F cleavage often leads to sequestering of the released fluoride in an unreactive by-product. Recently, however, several groups have succeeded in overcoming this challenge, opening up the study of C-F insertion as an efficient and highly atom-economical approach to prepare fluorinated compounds. In this article, the recent breakthroughs are discussed focusing on the key conceptual advances that allowed for both C-F bond cleavage and subsequent incorporation of the released fluoride into the product.
Collapse
Affiliation(s)
- Arushi Garg
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Alex Haswell
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Matthew N Hopkinson
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| |
Collapse
|
33
|
Zhou J, Zhao Z, Mori S, Yamamoto K, Shibata N. Cross-coupling of organic fluorides with allenes: a silyl-radical-relay pathway for the construction of α-alkynyl-substituted all-carbon quaternary centres. Chem Sci 2024; 15:5113-5122. [PMID: 38577357 PMCID: PMC10988592 DOI: 10.1039/d3sc06617g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
Controlling the transformation of versatile and reactive allenes is a considerable challenge. Herein, we report an efficient silylboronate-mediated cross-coupling reaction of organic fluorides with allenes to construct a series of sterically demanding α-ethynyl-containing all-carbon quaternary centers (ACQCs), using catalyst-free silyl-radical-relay reactions to selectively functionalize highly inert C-F bonds in organic fluorides. The key to the success of this transformation lies in the radical rearrangement of an in situ-generated allenyl radical to form a bulky tertiary propargyl radical; however, the transformation does not show efficiency when using the propargyl isomer directly. This unique reaction enables the cross-coupling of a tertiary carbon radical center with a C(sp2)-F bond or a benzylic C(sp3)-F bond. α-Ethynyl-containing ACQCs with (hetero)aromatic substituents and benzyl were efficiently synthesized in a single step using electronically and sterically diverse organic fluorides and allenes. The practical utility of this protocol is showcased by the late-stage functionalization of bioactive molecules and the modification of a liquid crystalline material.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Soichiro Mori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
34
|
Ling J, Zhou L. Picking Two out of Three: Defluorinative Annulation of Trifluoromethyl Alkenes for the Synthesis of Monofluorinated Carbo- and Heterocycles. CHEM REC 2024; 24:e202300332. [PMID: 38251926 DOI: 10.1002/tcr.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/01/2024] [Indexed: 01/23/2024]
Abstract
The increasing demand of organofluorine compounds in medicine, agriculture, and materials sciences makes sophisticated methods for their synthesis ever more necessary. Nowadays, not only the C-F bond formation but also the selective C-F bond cleavage of readily available poly- or perfluorine-containing compounds have become powerful tools for the effective synthesis of organofluorine compounds. The defluorinative cross-coupling of trifluoromethyl alkenes with various nucleophiles or radical precursors in an SN 2' manner is a convergent route to access gem-difluoroalkenes, which in turn react with nucleophiles or radical precursors via an SN V-type reaction. If the SN V reactions occur intramolecularly, the dual C-F bond cleavage of trifluoromethyl alkenes allows facile assembly of monofluorinated cyclic skeletons with structural complexity and diversity. In this personal account, we summarized the advances in this field on the basis of coupling and cyclization partners, including binucleophiles, alkynes, diradical precursors and radical precursors bearing a nucleophilic site. Accordingly, the annulation reactions can be achieved by base-mediated sequential SN 2'/SN V reactions, transition metal catalyzed or mediated reactions, photoredox catalysis, and the combination of photocatalytic reactions with SN V reaction. In the context of seminal works of others in this field, a concise summary of the contributions of the authors is also offered.
Collapse
Affiliation(s)
- Jiahao Ling
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
35
|
Guan YQ, Qiao JF, Liang YF. Nickel-catalysed chelation-assisted reductive defluorinative sulfenylation of trifluoropropionic acid derivatives. Chem Commun (Camb) 2024; 60:2405-2408. [PMID: 38323634 DOI: 10.1039/d3cc06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein we reported a directing-group assisted strategy for nickel-catalysed reductive defluorinative sulfenylation of trifluoropropionic acid derivatives with disulfides in the presence of Zn, involving triple C-F bond cleavage. This process yielded a diverse array of carbonyl-sulfide di-substituted alkenes in moderate to good yields with good functional group tolerance. Specifically, the reactions exhibited high E-selectivity with E/Z ratio up to >99 : 1.
Collapse
Affiliation(s)
- Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
36
|
Bulger AS, Nasrallah DJ, Tena Meza A, Garg NK. Enantioselective nickel-catalyzed Mizoroki-Heck cyclizations of amide electrophiles. Chem Sci 2024; 15:2593-2600. [PMID: 38362425 PMCID: PMC10866352 DOI: 10.1039/d3sc05797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Amide cross-couplings that rely on C-N bond activation by transition metal catalysts have emerged as valuable synthetic tools. Despite numerous discoveries in this field, no catalytic asymmetric variants have been disclosed to date. Herein, we demonstrate the first such transformation, which is the Mizoroki-Heck cyclization of amide substrates using asymmetric nickel catalysis. This proof-of-concept study provides an entryway to complex enantioenriched polycyclic scaffolds and advances the field of amide C-N bond activation chemistry.
Collapse
Affiliation(s)
- Ana S Bulger
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Daniel J Nasrallah
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Arismel Tena Meza
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| |
Collapse
|
37
|
Bonfante S, Lorber C, Lynam JM, Simonneau A, Slattery JM. Metallomimetic C-F Activation Catalysis by Simple Phosphines. J Am Chem Soc 2024; 146:2005-2014. [PMID: 38207215 PMCID: PMC10811696 DOI: 10.1021/jacs.3c10614] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Delivering metallomimetic reactivity from simple p-block compounds is highly desirable in the search to replace expensive, scarce precious metals by cheap and abundant elements in catalysis. This contribution demonstrates that metallomimetic catalysis, involving facile redox cycling between the P(III) and P(V) oxidation states, is possible using only simple, cheap, and readily available trialkylphosphines without the need to enforce unusual geometries at phosphorus or use external oxidizing/reducing agents. Hydrodefluorination and aminodefluorination of a range of fluoroarenes was realized with good to very good yields under mild conditions. Experimental and computational mechanistic studies show that the phosphines undergo oxidative addition of the fluoroaromatic substrate via a Meisenheimer-like transition state to form a fluorophosphorane. This undergoes a pseudotransmetalation step with a silane, via initial fluoride transfer from P to Si, to give experimentally observed phosphonium ions. Hydride transfer from a hydridosilicate counterion then leads to a hydridophosphorane, which undergoes reductive elimination of the product to reform the phosphine catalyst. This behavior is analogous to many classical transition-metal-catalyzed reactions and so is a rare example of both functional and mechanistically metallomimetic behavior in catalysis by a main-group element system. Crucially, the reagents used are cheap, readily available commercially, and easy to handle, making these reactions a realistic prospect in a wide range of academic and industrial settings.
Collapse
Affiliation(s)
- Sara Bonfante
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - Christian Lorber
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - Jason M. Lynam
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Antoine Simonneau
- LCC−CNRS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne,
BP44099, Toulouse Cedex 4 F-31077, France
| | - John M. Slattery
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
38
|
Jiang Y, Yao M, Niu H, Wang W, He J, Qiao B, Li B, Dong M, Xiao W, Yuan Y. Enzyme Engineering Renders Chlorinase the Activity of Fluorinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1203-1212. [PMID: 38179953 DOI: 10.1021/acs.jafc.3c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organofluorine compounds have attracted substantial attention owing to their wide application in agrochemistry. Fluorinase (FlA) is a unique enzyme in nature that can incorporate fluorine into an organic molecule. Chlorinase (SalL) has a similar mechanism as fluorinase and can use chloride but not fluoride as a substrate to generate 5'-chloro-deoxyadenosine (5'-ClDA) from S-adenosyl-l-methionine (SAM). Therefore, identifying the features that lead to this selectivity for halide ions is highly important. Here, we engineered SalL to gain the function of FlA. We found that residue Tyr70 plays a key role in this conversion through alanine scanning. Site-saturation mutagenesis experiments demonstrated that Y70A/C/S/T/G all exhibited obvious fluorinase activity. The G131S mutant of SalL, in which the previously thought crucial residue Ser158 for fluoride binding in FlA was introduced, did not exhibit fluorination activity. Compared with the Y70T single mutant, the double mutant Y70T/W129F increased 5'-fluoro-5-deoxyadenosine (5'-FDA) production by 76%. The quantum mechanics (QM)/molecular mechanics (MM) calculations suggested that the lower energy barriers and shorter nucleophilic distance from F- to SAM in the mutants than in the SalL wild-type may contribute to the activity. Therefore, our study not only renders SalL the activity of FlA but also sheds light on the enzyme selectivity between fluoride versus chloride.
Collapse
Affiliation(s)
- Yixun Jiang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Haoran Niu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrui Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiale He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bingzhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Deng G, Medel R, Lu Y, Riedel S. Photoinduced Dual C-F Bond Activation of Hexafluorobenzene Mediated by Boron Atom. Chemistry 2024:e202303874. [PMID: 38193267 DOI: 10.1002/chem.202303874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
The reaction of laser-ablated boron atoms with hexafluorobenzene (C6 F6 ) was investigated in neon and argon matrices, and the products are identified by matrix isolation infrared spectroscopy and quantum-chemical calculations. The reaction is triggered by a boron atom insertion into one C-F bond of hexafluorobenzene on annealing, forming a fluoropentafluorophenyl boryl radical (A). UV-Vis light irradiation of fluoropentafluorophenyl boryl radical causes generation of a 2-difluoroboryl-tetrafluorophenyl radical (B) via a second C-F bond activation. A perfluoroborepinyl radical (C) is also observed upon deposition and under UV-Vis light irradiation. This finding reveals the new example of a dual C-F bond activation of hexafluorobenzene mediated by a nonmetal and provides a possible route for synthesis of new perfluorinated organo-boron compounds.
Collapse
Affiliation(s)
- Guohai Deng
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Robert Medel
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Yan Lu
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| |
Collapse
|
40
|
Li W, Wang C, Xiao M, Cheng LJ. Copper-Catalyzed Protoarylation of gem-Difluoroallenes. Org Lett 2024. [PMID: 38181503 DOI: 10.1021/acs.orglett.3c03995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
A copper-catalyzed protoarylation of gem-difluoroallenes with aryl boronic esters has been developed, enabling highly regioselective synthesis of gem-difluoroalkenes in high yields. The mild reaction conditions allow for a variety of functional groups to be tolerated, and the reaction can be extended to protoalkenylation of gem-difluoroallenes. The synthetic utility of this method has been demonstrated in gram-scale operation as well as synthesis of chiral gem-difluoroalkenes bearing γ-carbon stereogenic centers in moderate enantioselectivity using a chiral bidentate phosphine ligand with a copper catalyst.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Cheng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Mengdie Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Li-Jie Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
41
|
Tang LN, Liu GY, Li JH, Chen M. Palladium-Catalyzed Diversified Synthesis of Monofluorinated Alkenes from Allylic gem-Difluorides through Pd-OH Intermediate. Org Lett 2023; 25:9064-9069. [PMID: 38091374 DOI: 10.1021/acs.orglett.3c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Significant advancements in synthesis of monofluoroalkenes via palladium-catalyzed reactions involving allylic gem-difluorides and diverse nucleophiles have been achieved. This method allows regioselective arylation, alkylation, allylation, alkenylation, and hydrogenation of allylic gem-difluorides, yielding high Z-selectivity and favorable product yields under mild conditions. Tolerating various functional groups, these transformations utilize a common Pd-OH intermediate. Additionally, employing triple Pd-catalyzed cross-coupling yields diverse trisubstituted alkenes efficiently.
Collapse
Affiliation(s)
- Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jun-Hua Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
42
|
Li SY, Yang XY, Shen PH, Xu L, Xu J, Zhang Q, Xu HJ. Selective Defluoroalkylation and Hydrodefluorination of Trifluoromethyl Groups Photocatalyzed by Dihydroacridine Derivatives. J Org Chem 2023. [PMID: 38054778 DOI: 10.1021/acs.joc.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The selective functionalization of trifluoromethyl groups through C-F cleavage poses a significant challenge due to the high bond energy of the C(sp3)-F bonds. Herein, we present dihydroacridine derivatives as photocatalysts that can functionalize the C-F bond of trifluoromethyl groups with various alkenes under mild conditions. Mechanistic studies and DFT calculations revealed that upon irradiation, the dihydroacridine derivatives exhibit high reducibility and function as photocatalysts for reductive defluorination. This process involves a sequential single-electron transfer mechanism. This research provides valuable insights into the properties of dihydroacridine derivatives as photocatalysts, highlighting the importance of maintaining a planar conformation and a large conjugated system for optimal catalytic activity. These findings facilitate the efficient catalytic reduction of inert chemical bonds.
Collapse
Affiliation(s)
- Shi-Yu Li
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Xin-Yu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Peng-Hui Shen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
43
|
Hooker LV, Bandar JS. Synthetic Advantages of Defluorinative C-F Bond Functionalization. Angew Chem Int Ed Engl 2023; 62:e202308880. [PMID: 37607025 PMCID: PMC10843719 DOI: 10.1002/anie.202308880] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Much progress has been made in the development of methods to both create compounds that contain C-F bonds and to functionalize C-F bonds. As such, C-F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C-F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C-F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
44
|
Zhang X, Deng J, Ji Y, Li R, Sivaguru P, Song Q, Karmakar S, Bi X. Defluorinative 1,3-Dienylation of Fluoroalkyl N-Triftosylhydrazones with Homoallenols. Chemistry 2023; 29:e202302562. [PMID: 37695246 DOI: 10.1002/chem.202302562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A silver-catalyzed regioselective defluorinative 1,3-dienylation of trifluoromethyl phenyl N-triftosylhydrazones using homoallenols as 1,3-dienyl sources provides a variety of α-(di)fluoro-β-vinyl allyl ketones with excellent functional group tolerance in moderate to good yields. The reaction proceeds through a silver carbene-initiated sequential etherification and Claisen type [3,3]-sigmatropic rearrangement cascade. The synthetic utility of this protocol was demonstrated through the downstream synthetic elaboration toward diverse synthetically useful building blocks.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiahua Deng
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Ji
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rong Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Swastik Karmakar
- Department of Chemistry, Basirhat College, West Bengal State University, Basirhat, 743412, West Bengal, India
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
45
|
Röther A, Farmer JC, Portwich FL, Görls H, Kretschmer R. Anion-Dependent Reactivity of Mono- and Dinuclear Boron Cations. Chemistry 2023; 29:e202302544. [PMID: 37641815 DOI: 10.1002/chem.202302544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
The dinuclear bis(N-heterocyclic carbene) borane adduct 2 rapidly reacts with tritylium salts at room temperature but the outcome is strongly impacted by the respective counter-ion. Using tritylium tetrakis(perfluoro-tert-butoxy)aluminate affords - depending on the solvent - either the bis(boronium) ion 4 or the hydride-bridged dication 5. In case of tritylium hexafluorophosphate, however, H/F exchange occurs between boron and phosphorus yielding the dinuclear BF3 adduct 3 along with phosphorus dihydride trifluoride. H/F exchange also takes place when using the mononuclear N-heterocyclic carbene BH3 adduct 6 and hence provides a facile route to PH2 F3 , which is usually synthesized in more complex reaction sequences regularly involving toxic hydrogen fluoride. DFT calculations shed light on the H/F exchange between the borenium ion and the [PF6 ]- counter-ion and the computed mechanism features only small barriers in line with the experimental observations.
Collapse
Affiliation(s)
- Alexander Röther
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - James C Farmer
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Flavio L Portwich
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Robert Kretschmer
- Institute of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Institute of Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111, Chemnitz, Germany
| |
Collapse
|
46
|
Finck L, Oestreich M. Bond-Forming Processes Enabled by Silicon-Masked Aryl- and Alkyl-Substituted Diazenes. J Org Chem 2023; 88:15531-15539. [PMID: 37933948 DOI: 10.1021/acs.joc.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Aryl- and alkyldiimides (R-N═NH with R = aryl or alkyl) are elusive intermediates of valuable synthetic use, as they are assumed to be transient species in processes involving both carbon (with concomitant loss of N2) and nitrogen nucleophiles (with conservation of the N═N moiety). The actual compounds are fragile and as such not bench stable which is why they have not yet found the attention they deserve. Conversely, early contributions showed that the stability of the parent diimide is significantly increased by replacing the hydrogen atom by a silyl group, but the synthetic applicability of these silicon-protected aryl- and alkyldiazenes has been far less explored, in part due to the absence of general procedures for their preparation. This Perspective provides an overview of the underexplored diazene chemistry that has witnessed considerable progress in recent years and highlights the potential of this motif in a range of synthetically useful (catalytic) transformations. The rediscovered silicon-masked diazenes constitute a versatile platform possessing enhanced stability and tamed reactivity in comparison to the parent hydrogen-substituted diimides. Aryl, diazenyl, and alkyl anionic key intermediates can be selectively generated in situ under Lewis base or transition metal catalysis, giving rise to novel synthetic approaches as viable alternatives to the already existing methodologies.
Collapse
Affiliation(s)
- Lucie Finck
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
47
|
Zou Q, Zhang W, Wang H, Yin G, He Y, Li F. Anion-Driven C-F Bond Activation of Trifluoromethyl N-Aryl Hydrazones: Application to the Synthesis of 1,3,4-Oxadiazoles. J Org Chem 2023; 88:15507-15515. [PMID: 37862576 DOI: 10.1021/acs.joc.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The CF3 group attached to N-aryl hydrazone could be activated upon treatment with a suitable base, thus serving as an excellent C1 unit for the assembly of a series of 1,3,4-oxadiazoles by reaction with hydrazides. The transformation is proposed to proceed via the intermediate formation of a gem-difluorinated azoalkene. Furthermore, this reaction features simple conditions and a broad substrate scope with respect to both trifluoromethyl N-aryl hydrazones and hydrazides.
Collapse
Affiliation(s)
- Qijie Zou
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Wei Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Haoyue Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Guangwei Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|
48
|
R Judge N, Logallo A, Hevia E. Main group metal-mediated strategies for C-H and C-F bond activation and functionalisation of fluoroarenes. Chem Sci 2023; 14:11617-11628. [PMID: 37920337 PMCID: PMC10619642 DOI: 10.1039/d3sc03548d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
With fluoroaromatic compounds increasingly employed as scaffolds in agrochemicals and active pharmaceutical ingredients, the development of methods which facilitate regioselective functionalisation of their C-H and C-F bonds is a frontier of modern synthesis. Along with classical lithiation and nucleophilic aromatic substitution protocols, the vast majority of research efforts have focused on transition metal-mediated transformations enabled by the redox versatilities of these systems. Breaking new ground in this area, recent advances in main group metal chemistry have delineated unique ways in which s-block, Al, Ga and Zn metal complexes can activate this important type of fluorinated molecule. Underpinned by chemical cooperativity, these advances include either the use of heterobimetallic complexes where the combined effect of two metals within a single ligand set enables regioselective low polarity C-H metalation; or the use of novel low valent main group metal complexes supported by special stabilising ligands to induce C-F bond activations. Merging these two different approaches, this Perspective provides an overview of the emerging concept of main-group metal mediated C-H/C-F functionalisation of fluoroarenes. Showcasing the untapped potential that these systems can offer in these processes; focus is placed on how special chemical cooperation is established and how the trapping of key reaction intermediates can inform mechanistic understanding.
Collapse
Affiliation(s)
- Neil R Judge
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| | - Alessandra Logallo
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Switzerland
| |
Collapse
|
49
|
Wang T, Zong YY, Huang T, Jin XL, Wu LZ, Liu Q. Photocatalytic redox-neutral selective single C(sp 3)-F bond activation of perfluoroalkyl iminosulfides with alkenes and water. Chem Sci 2023; 14:11566-11572. [PMID: 37886085 PMCID: PMC10599478 DOI: 10.1039/d3sc03771a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Visible-light-promoted site-selective and direct C-F bond functionalization of polyfluorinated iminosulfides was accomplished with alkenes and water under redox-neutral conditions, affording a diverse array of γ-lactams with a fluoro- and perfluoroalkyl-substituted carbon centre. A variety of perfluoroalkyl units, including C2F5, C3F7, C4F9, and C5F11 underwent site-selective defluorofunctionalization. This protocol allows high chemoselectivity control and shows excellent functional group tolerance. Mechanistic studies reveal that the remarkable changes of the electron geometries during the defluorination widen the redox window between the substrates and the products and ensure the chemoselectivity of single C(sp3)-F bond cleavage.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yuan-Yuan Zong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
50
|
Li D, Shen C, Si Z, Liu L. Palladium-Catalyzed Fluorinative Bifunctionalization of Aziridines and Azetidines with gem-Difluorocyclopropanes. Angew Chem Int Ed Engl 2023; 62:e202310283. [PMID: 37572320 DOI: 10.1002/anie.202310283] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/14/2023]
Abstract
An unprecedented Pd-catalyzed fluorinative bifunctionalization of aziridines and azetidines was successfully developed via regioselective C-C and C-F bond cleavage of gem-difluorocyclopropanes, leading to various β,β'-bisfluorinated amines and β,γ-bisfluorinated amines. This reaction was achieved by incorporating a 2-fluorinated allyl group and a fluorine atom scissored from gem-difluorocyclopropane in 100 % atom economy for the first time. The mechanistic investigations indicated that the reaction underwent amine attacking 2-fluorinated allyl palladium complex to generate η2 -coordinated N-allyl aziridine followed by fluoride ligand transfer affording the final β- and γ-fluorinated amines.
Collapse
Affiliation(s)
- Dongdong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Zhiyao Si
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|