1
|
Kosgei GK, Fernando PUAI. Recent Advances in Fluorescent Based Chemical Probes for the Detection of Perchlorate Ions. Crit Rev Anal Chem 2025:1-25. [PMID: 39783983 DOI: 10.1080/10408347.2024.2447299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This review highlights recent advancements and challenges in fluorescence-based chemical sensors for selective and sensitive detection of perchlorate, a persistent environmental pollutant and global concern due to its health and safety implications. Perchlorate is a highly persistent inorganic pollutant found in drinking water, soil, and air, with known endocrine-disruptive properties due to its interference with iodide uptake by the thyroid gland. Human exposure mainly occurs through contaminated water and food. Additionally, perchlorates are prevalent in improvised explosives, causing numerous civilian casualties, making their detection important in a worldwide aspect. Fluorescence-based chemical sensors provide a valuable tool for the selective detection of perchlorate ions due to their simplicity and applicability across various fields, including biology, pharmacology, military, and environmental science. This review article overviews perchlorate chemistry, occurrence, and remediation strategies, compares regulatory limits, and examines fluorescence-based detection mechanisms. It systematically summarizes recent advancements in designing at least a dozen fluorescence-based chemical materials for detecting perchlorate in the environment over the past decade. Key focus areas include the design and molecular architecture of synthetic chemical chromophores for perchlorate sensing and the photochemistry mechanisms driving their effectiveness. The main findings indicate that there has been significant progress in the development of reliable and robust fluorescence-based sensors with higher selectivity and sensitivity for perchlorate detection. However, several challenges remain, such as improving detection limits and sensor stability. The review outlines potential future research directions, emphasizing the need for further innovation in sensor design and development. It aims to enhance understanding and spur advances that could create more efficient and robust chemical scaffolds for perchlorate sensing. By addressing current limitations and identifying opportunities for improvement, the review provides a comprehensive resource for researchers working to develop better detection methods for this significant environmental pollutant.
Collapse
Affiliation(s)
- Gilbert K Kosgei
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA
| | | |
Collapse
|
2
|
Hirao T, Kishino S, Yoshida M, Haino T. Chiral Induction of a Tetrakis(porphyrin) in Various Chiral Solvents. Chemistry 2024; 30:e202403569. [PMID: 39483106 DOI: 10.1002/chem.202403569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Non-covalent interactions offer an alternative way for developing stimulus-responsive materials such as sensors, machines, and drug-delivery systems. We recently reported that a urethane-equipped tetrakis(porphyrin) forms one-handed helical supramolecular polymers in solution in response to chirality of chiral solvents. Conformational changes in helical sense were detected using circular dichroism (CD) spectroscopy, which showed that the tetrakis(porphyrin) can possibly be used as a sensor for determining the enantiomeric excess of a chiral analyte. Hence, we studied the scope and limitations of the chiral-induction behavior of tetrakis(porphyrin) to deepen the understanding of tetrakis(porphyrin)-based chiral sensing systems. Herein, we report the chiral-induction behavior of tetrakis(porphyrin) in various chiral solvents, which was found to be CD-active in many chiral solvents. Notably, the tetrakis(porphyrin) was CD active in a cryptochiral molecular solvent, which is exciting because the chiralities of acyclic saturated hydrocarbons are hard to sense. Consequently, this study highlights the potential advantages of supramolecular chiral sensors capable of targeting a wide range of analytes, including molecules that are absorption-silent in the UV/vis region, ones devoid of anchoring functional groups, and acyclic, saturated hydrocarbons.
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Sei Kishino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Masaya Yoshida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
3
|
Hong KI, Cho K, Park H, Park J, Jang WD. Excited-State Dynamics of a Bright Fluorescent Dye with Precise Control of Emission Color Using Acid-Base Equilibrium, Intramolecular Charge Transfer, and Host-Guest Chemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45788-45797. [PMID: 39160677 DOI: 10.1021/acsami.4c13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A fluorescent dye, a dithiophene-conjugated benzothiazole derivative (DTBz), was prepared to have high fluorescence emission quantum yields (ΦF) across various organic solvents. Its emission color modulation, from bright blue to deep red, was achieved through intramolecular charge transfer (ICT), acid-base equilibrium, and host-guest chemistry. Although it exhibits a weak solvatochromic effect, DTBz exhibited a bright fluorescence emission around 480 nm upon excitation at 390 nm in most solvents. In polar solvents, such as MeOH (methanol), EtOH (ethanol), DMF (N,N-dimethylforamide), and DMSO (dimethyl sulfoxide), an additional ICT emission band emerged around 640 nm, notably intense in DMSO, resulting in a bright greenish-white emission (ΦF = 0.67). The addition of 1,8-diazabicyclo[5,4.0]undec-7-ene (DBU) altered emission characteristics, reducing emission from the local excited (LE) state and enhancing ICT state emission. The degree of emission spectral change saturation with DBU addition varied with the solvent nature. Polar solvents with high dielectric constants, like DMSO and DMF, saw a complete disappearance of LE state emission with 5 equiv of DBU, resulting in a deep red emission (ΦFs of 0.53 and 0.48, respectively). Femtosecond transient absorption spectroscopy and time-resolved photoluminescence measurements elucidated the excited-state dynamics, revealing a long-lived excited state (τ-H = 10.3 ns) at a lower energy emission (640 nm), identified as DTBz-*, supported by transient absorption spectra analysis. Further analysis, including time-resolved fluorescence decay measurements and time-dependent density-functional theory (TD-DFT) calculations, underscored the role of deprotonation of DTBz's hydroxyl group in promoting the ICT process. The CIE coordination plot demonstrated wide linear emission color changes upon successive DBU additions in all solvents, while emission color precision was achieved through host-guest chemistry. Emission changes induced by DBU were reverted to the original state upon beta-cyclodextrin (β-CD) addition, with the 1H NMR study revealing the competition between acid-base equilibrium and host-guest complex formation as the cause of emission color change.
Collapse
Affiliation(s)
- Kyeong-Im Hong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kayoung Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyunjun Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Zhang Z, Fang H. Theoretical Study on the Effect of Cyano- and Dimethylamine-Group on ESIPT Behavior and Luminescent Properties of Novel Flavone-Based Fluorophore. J Fluoresc 2024:10.1007/s10895-024-03914-3. [PMID: 39167341 DOI: 10.1007/s10895-024-03914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Recently, a new fluorescent senor based on 3-hydroxy-2-(naphthalen-2-yl)-4 H-chromen-4-one (HFN) for selective detection of H2Sn was obtained in the experiment (Spectrochim. Acta Part A 271(2022)120962). Based on HFN, three new compounds (HFN1, HFN2 and HFN3) are designed to explore the influences of dimethylamine (-N(CH3)2) and cyano (-CN) groups on the excited-state intramolecular proton transfer (ESIPT) process and luminescent features of HFN. After analyzing the mainly geometrical parameters, electron densities and infrared spectra, we discovered that the intramolecular hydrogen bonds (IHBs) in the target molecules become stronger upon photo-excitation. Introducing -CN or/and -N(CH3)2 groups into HFN indeed influences its ESIPT behavior and luminescent properties. The -N(CH3)2 group enhances IHB, reduces ESIPT barrier and caused absorption/ fluorescence (at T form) peak blue-shift, while the -CN group shows a counterproductive effect. The coincidence of -N(CH3)2 and -CN made the absorption/fluorescent wavelength of HFN red-shift more than single -N(CH3)2 or -CN group does.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hua Fang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
5
|
Yang Y, Tao J, Liang F, Sun B, Jiang J, Zhao M, Gao D. A fluorescent probe for ultrarapid H2O2 detection during reagent-stimulated oxidative stress in cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124061. [PMID: 38479226 DOI: 10.1016/j.saa.2024.124061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 04/02/2024]
Abstract
Hydrogen peroxide(H2O2), as a reliable signaling biomolecule for oxidative stress, its accurate detection during agent-stimulated oxidative stress plays a vital role in pathological and physiological mechanism exploration for disease theranostics. It's necessary to develop an efficient method for their detection. In view of the advantages of fluorescent probes, we rationally constructed a novel fluorescent probe Compound 2 based on 4-(Bromomethyl)benzeneboronic acid pinacol ester_Herein, a small molecule fluorescent probe was fabricated using isoflore nitrile as fluorescent group, phenylboronic acid pinacol ester as the response group, to detect H2O2. The probe Compound 2 has a strong fluorescence intensity at 575 nm, indicating that the structure of the probe molecule is reasonably designed, and the Stokes shift is up to 172 nm. While the detection time is as low as 30 s and the LOD of the probe for H2O2 is as low as 3.7 μmol/L,the quantum yield is Φ = 40.31 %. It has been successfully used for imaging detection of H2O2 in HepG2 cells and zebrafish for its low toxicity. It can be found that this small molecule fluorescent probe can identify H2O2 in tumor cells significantly and efficiently, which would realize the early diagnosis of tumor.
Collapse
Affiliation(s)
- Yulong Yang
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| | - Jiali Tao
- Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China.
| | - Fenfen Liang
- Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China.
| | - Bin Sun
- Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China.
| | - Junbing Jiang
- Department of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China.
| | - Mingxia Zhao
- Department of Mining Engineering, Shanxi Institute of Engineering and Technology, Yangquan 045000, China.
| | - Dan Gao
- Department of Shenyang Institute of Technology, Fushun, Liaoning 113122,China.
| |
Collapse
|
6
|
Rybalkin VP, Zmeeva SY, Popova LL, Dubonosova IV, Karlutova OY, Demidov OP, Dubonosov AD, Bren VA. Synthesis of photo- and ionochromic N-acylated 2-(aminomethylene)benzo[ b]thiophene-3(2 Н)-ones with a terminal phenanthroline group. Beilstein J Org Chem 2024; 20:552-560. [PMID: 38505235 PMCID: PMC10949002 DOI: 10.3762/bjoc.20.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
A series of novel photo- and ionochromic N-acylated 2-(aminomethylene)benzo[b]thiophene-3(2Н)-ones with a terminal phenanthroline receptor substituent was synthesized. Upon irradiation in acetonitrile or DMSO with light of 436 nm, they underwent Z-E isomerization of the C=C bond, followed by very fast N→O migration of the acyl group and the formation of nonemissive O-acylated isomers. These isomers were isolated preparatively and fully characterized by IR, 1H, and 13C NMR spectroscopy as well as HRMS and XRD methods. The reverse thermal reaction was catalyzed by protonic acids. N-Acylated compounds exclusively with Fe2+ formed nonfluorescent complexes with a contrast naked-eye effect: a color change of the solutions from yellow to dark orange. Subsequent selective interaction with AcO- led to the restoration of the initial absorption and emission properties. Thus, the obtained compounds represent dual-mode "on-off-on" switches of optical and fluorescent properties under sequential exposure to light and H+ or sequential addition of Fe2+ and AcO- ions.
Collapse
Affiliation(s)
- Vladimir P Rybalkin
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russian Federation
| | - Sofiya Yu Zmeeva
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Lidiya L Popova
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Irina V Dubonosova
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Olga Yu Karlutova
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| | - Oleg P Demidov
- North Caucasus Federal University, Stavropol 355009, Russian Federation
| | - Alexander D Dubonosov
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don 344006, Russian Federation
| | - Vladimir A Bren
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don 344090, Russian Federation
| |
Collapse
|
7
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Recent advancements of fluorescent biosensors using semisynthetic probes. Biosens Bioelectron 2024; 247:115862. [PMID: 38147718 DOI: 10.1016/j.bios.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Fluorescent biosensors are crucial experimental tools for live-cell imaging and the quantification of different biological analytes. Fluorescent protein (FP)-based biosensors are widely used for imaging applications in living systems. However, the use of FP-based biosensors is hindered by their large size, poor photostability, and laborious genetic manipulations required to improve their properties. Recently, semisynthetic fluorescent biosensors have been developed to address the limitations of FP-based biosensors using chemically modified fluorescent probes and self-labeling protein tag/peptide tags or DNA/RNA-based hybrid systems. Semisynthetic biosensors have unique advantages, as they can be easily modified using different probes. Moreover, the self-labeling protein tag, which labels synthetically developed ligands via covalent bonds, has immense potential for biosensor development. This review discusses the recent progress in different types of fluorescent biosensors for metabolites, protein aggregation and degradation, DNA methylation, endocytosis and exocytosis, membrane tension, and cellular viscosity. Here, we explain in detail the design strategy and working principle of these biosensors. The information presented will help the reader to create new biosensors using self-labeling protein tags for various applications.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Minoshima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazuya Kikuchi
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan; Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Ma Y, Cheng X. Readily soluble cellulose-based fluorescent probes for the detection and removal of Fe 3+ ion. Int J Biol Macromol 2023; 253:127393. [PMID: 37827404 DOI: 10.1016/j.ijbiomac.2023.127393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cellulose is an economical, biodegradable, widely available, and eco-friendly natural macromolecule. But its utilization has been restricted due to its insolubility in water and common organic solvents. In this work, soluble fluorescent probes based on cellulose were synthesized. Firstly, the primary hydroxyl group in glucose units was reacted with SOCl2 to introduce Cl and obtain chloro-cellulose (Cell-Cl). This operation breaks down the regular structure and hydrogen bonding of the original cellulose, enabling it to dissolve in DMSO. Secondly, the Cell-Cl reacted with CS2 and 2-mercaptobenzothiazole to obtain a cellulose-based macromolecular RAFT reagent (Cell-CTA). Finally, the fluorescent monomers which bears -C=C- and naphthalimide, and methacrylic acid (MAA) were grafted onto the main chain of cellulose through RAFT polymerization. Thus, cellulose-based readily soluble macromolecular fluorescent probes were obtained. The cellulose-based probes can specifically recognize Fe3+ in pure water and can be recycled and regenerated. Additionally, the cellulose-based probes exhibit remarkable adsorption and separation properties for Fe3+ ions. The modification of cellulose decreases its crystallinity and introduces hydrophilic groups and fluorophores, which enables cellulose to be soluble in both pure water and the organic solvent DMSO. This work expands the application range of cellulose-based copolymers.
Collapse
Affiliation(s)
- Yanqin Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
9
|
Wei Y, Lu H, Jin L, Zhang Q, Jiang M, Tian G, Cao X. A simple indanone-based red emission fluorescent probe for the rapid detection of cysteine in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123196. [PMID: 37515887 DOI: 10.1016/j.saa.2023.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/06/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Cysteine is a vital biothiols that plays an important role in numerous physiological and pathological processes. The development of simple molecule tools for detection and analysis Cys in subcellar environment is significant for further exploring their pathophysiological. In this work, a simple but activated fluorescent probe AMIA was constructed with a donor-π-accepter (D- π -A) structure, which using an indanone as the electron-withdrawing unit acting as the fluorophore, dimethylamino group attached to the position 4 of the benzene ring as the electron-donating, two double bonds as the linker group, and the acryloyl ester group as the trigger and response unit. This probe AMIA was exhibited highly selective and sensitive response to Cys over other amino acids and ions under physiological conditions. It was found that AMIA showed a red turn-on fluorescence response at 630 nm towards Cys with a large stroke shift of 170 nm and a very low detection limit of 26.3 nM. HRMS, 1H NMR and TD-DFT calculation further confirmed that the response mechanism is the Cys triggered the addition-cyclization reaction between AMIA' acryloyl group and Cys' sulfhydryl and amino unit, leading to the release of a red fluorescent dye AMIA-OH, which can be identified by naked eyes. Furthermore, AMIA was successfully applied for simultaneous determination of Cys in living cells and zebrafish with lower cytotoxicity and good cell permeability. We hope that this novel indanone-based probe AMIA will provide a new reference for visualized Cys in other complex biological system.
Collapse
Affiliation(s)
- Yifan Wei
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Lingxia Jin
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Qiang Zhang
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Min Jiang
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Guanghui Tian
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China
| | - Xiaoyan Cao
- Key Laboratory of Catalysis in Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, PR China.
| |
Collapse
|
10
|
Galiński B, Chojnacki J, Wagner-Wysiecka E. Simple colorimetric copper(II) sensor - Spectral characterization and possible applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122472. [PMID: 36801733 DOI: 10.1016/j.saa.2023.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
New o-hydroxyazocompound L bearing pyrrole residue was obtained in the simple synthetic protocol. The structure of L was confirmed and analyzed by X-ray diffraction. It was found that new chemosensor can be successfully used as copper(II) selective spectrophotometric regent in solution and can be also applied for the preparation of sensing materials generating selective color signal upon interaction with copper(II). Selective colorimetric response towards copper(II) is manifested by a distinct color change from yellow to pink. Proposed systems were effectively used for copper(II) determination at concentration level 10-8 M in model and real samples of water.
Collapse
Affiliation(s)
- Błażej Galiński
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Ewa Wagner-Wysiecka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland; Advanced Materials Center, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
11
|
Yang M, Zhang M, Jia M. Optical sensor arrays for the detection and discrimination of natural products. Nat Prod Rep 2023; 40:628-645. [PMID: 36597853 DOI: 10.1039/d2np00065b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: up to the end of 2022Natural products (NPs) have found uses in medicine, food, cosmetics, materials science, environmental protection, and other fields related to our life. Their beneficial properties along with potential toxicities make the detection and discrimination of NPs crucial for their applications. Owing to the merits of low cost and simple operation, optical sensor arrays, including colorimetric and fluorometric sensor arrays, have been widely applied in the detection of small molecule NPs and discrimination of structurally similar small molecule NPs or complex mixtures of NPs. This review provides a brief introduction to the optical sensor array and focuses on its progress toward the detection and discrimination of NPs. We summarized the design principle of sensor arrays toward various NPs (i.e., saccharides and polyhydroxy compounds, organic acids, flavonoids, organic sulfur compounds, amines, amino acids, and saponins) based on their functional groups and characteristic chemical properties, along with representative examples. Moreover, the challenges and potential directions for further research of optical sensor arrays for NPs are proposed.
Collapse
Affiliation(s)
- Maohua Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Mingyan Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
12
|
Shimizu M, Koizumi Y, Aikawa S, Fukushima Y. Colorimetric detection of glutathione by an anionic pyridylazo dye-based Cu2+ complex in the presence of a cationic polyelectrolyte. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Souto FT, Machado VG. Hybrid films composed of ethyl(hydroxyethyl)cellulose and silica xerogel functionalized with a fluorogenic chemosensor for the detection of mercury in water. Carbohydr Polym 2023; 304:120480. [PMID: 36641189 DOI: 10.1016/j.carbpol.2022.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Ethyl(hydroxyethyl)cellulose (EHEC) and a silica-based xerogel (SBX) were functionalized with a (18-crown-6)-styrylpyridine precursor (1) to obtain the modified polymers EHEC-1 and SBX-1, respectively. Films were obtained and the resulting materials were used as fluorogenic devices for the detection of Hg2+ in water. The films produced from EHEC-1 showed high water retention, making it difficult to apply as a reusable optical chemosensor. Since SBXs are recognized in the literature for their hydrophobicity, a hybrid film composed of EHEC and SBX-1 which did not show water retention was produced and characterized. This system showed rapid response time, outstanding selectivity compared to several other studied metal ions, and sensitivity for the detection of Hg2+ in water. The detection limit for this material using fluorescence technique was 2 ppb (∼10-8 mol L-1). The reversibility of the complex formed between EHEC-SBX-1 film and Hg2+ was demonstrated by the addition of cysteine to the medium. The result obtained also allowed the assembly of INHIBIT and IMPLICATION molecular logic gates, using Hg2+ and cysteine as inputs. The results described in this article have important significance in the development of novel reversible fluorogenic chemosensors and adsorbent materials for the effective removal of Hg2+ ions.
Collapse
Affiliation(s)
- Francielly Thaís Souto
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil
| | - Vanderlei Gageiro Machado
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
14
|
Hirao T, Kishino S, Haino T. Supramolecular chiral sensing by supramolecular helical polymers. Chem Commun (Camb) 2023; 59:2421-2424. [PMID: 36727639 DOI: 10.1039/d2cc06502a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A tetrakis(porphyrin) with branched side chains self-assembled to form supramolecular helical polymers both in solution and in the solid state. The helicity of the supramolecular polymers was determined by the chirality of solvent molecules, which permitted the polymer chains to be used in chiral sensing.
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Sei Kishino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan. .,International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
15
|
Colorimetric sensing of fluoride ion by a Chlorophosphonazo III -based Al3+ complex in aqueous media via indicator displacement approach. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Xu LT, Xie KX, Cao SH, Weng YH, Chen M, Li Z, Li YQ. Simultaneous monitoring of the fluorescence and refractive index by surface plasmon coupled emission: A proof-of-concept study. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Podshibyakin VA, Shepelenko ЕN, Dubonosova IV, Karlutova ОY, Dubonosov AD, Bren VA. Photo- and Ionochromic Diarylethenes with Receptor Fragments in the Thiazole Bridge. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s107036322302007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Colorimetric Detection of ATP by a Chlorophosphonazo III -based Mg 2+ Complex in Aqueous Solution via Indicator Displacement Approach. J Fluoresc 2023; 33:255-260. [PMID: 36401733 DOI: 10.1007/s10895-022-03063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/27/2022] [Indexed: 11/20/2022]
Abstract
A simple and effective colorimetric detection of adenosine 5-triphosphate (ATP) in 100% aqueous media was developed based on an indicator displacement approach (IDA). A commercially available dye, Chlorophosphonazo III (CPA), was utilized as the indicator and the ATP detection was achieved using the complex of CPA with Mg2+ in a 2:1 stoichiometric ratio (CPA2-Mg2+) through the regeneration of CPA by the binding of ATP to Mg2+. Upon addition of a series of anions to the CPA2-Mg2+ complex, only the appearance of the solution of the complex with ATP exhibited a color change from blue to purple which can be detected by the naked eye. Moreover, the ATP recognition was not hampered by the presence of other anions. Hence, CPA2-Mg2+ is efficient in ATP highly selective and sensitive colorimetric detection in 100% aqueous media.
Collapse
|
19
|
Wei R, Wang X, Wang Q, Qiang G, Zhang L, Hu HY. Hyperglycemia in Diabetic Skin Infections Promotes Staphylococcus aureus Virulence Factor Aureolysin: Visualization by Molecular Imaging. ACS Sens 2022; 7:3416-3421. [PMID: 36351204 DOI: 10.1021/acssensors.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bacterial skin infections are common in diabetic patients, with Staphylococcus aureus (S. aureus) being the most commonly isolated, causing comorbidities such as increased mortality and long-term hospitalization. While precise mechanisms remain to be determined, hyperglycemia represents an important pathogenetic factor responsible for the increased risk of S. aureus infection. Herein, we constructed a series of ratiometric fluorescent molecular probes for aureolysin (Aur), a major virulence factor in S. aureus. Using probe 1, we were able to determine specific Aur activity in both cells and tissues. We also observed that elevated glucose levels led to 2-fold higher Aur expression in S. aureus cultures. In a diabetic mouse model, we used molecular imaging to demonstrate that hyperglycemia tripled S. aureus Aur virulence compared to nondiabetic mice, resulting in more severe infections.
Collapse
Affiliation(s)
- Rao Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
20
|
Hirao T. Macromolecular architectures constructed by biscalix[5]arene–[60]fullerene host–guest interactions. Polym J 2022. [DOI: 10.1038/s41428-022-00732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Shepelenko ЕN, Podshibyakin VA, Dubonosova IV, Karlutova ОY, Dubonosov AD, Bren VA. Ion-Induced Chromo(fluoro)genic Rearrangements of Rhodamine Derivatives. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Zhao Z, Ge Y, Xu L, Sun X, Zuo J, Wang Z, Liu H, Jiang X, Wang D. Bio-inspired polymer array vapor sensor with dual signals of fluorescence intensity and wavelength shift. Front Bioeng Biotechnol 2022; 10:1058404. [DOI: 10.3389/fbioe.2022.1058404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Organic vapor sensors based on polymer owing to their tunable molecular structures and designable functions have attracted considerable research interest. However, detecting multiple organic vapors with high accuracy and a low detection limit is still challenging. Herein, inspired by the mammalian olfactory recognition system, organic vapor sensors based on one-dimensional microfilament array structures with a wide range of sensing gases are demonstrated. By introducing aggregation-induced emission (AIE) molecules, sensors possess dual-optical sensing mechanisms of variation in fluorescence intensity and wavelength. By virtue of the synergistic effects of dual signals, superb accuracy and incredibly low detection limit are achieved for identifying analytes. In particular, the polymer/AIE microfilament array can detect acetone vapor down to 0.03% of saturated vapor pressure. In the saturated vapor of acetone, the fluorescence intensity of the sensor arrays was reduced by 53.7%, while the fluorescence wavelength was red-shifted by 21 nm. Combined with the principal component analysis (PCA) algorithm, the polymer/AIE molecular sensor arrays accomplished the classification and identification of acetone, ethanol, methylene chloride, toluene, and benzene. This bioinspired approach with dual sensing signals may broaden practical applications to high-performance gas sensors for precise molecular detection.
Collapse
|
23
|
Huang B, Yu W, Yang L, Li Y, Gu N. A simple molecular design towards the conversion of a MCL backbone to a multifunctional emitter exhibiting polymorphism, AIE, TADF and MCL. Heliyon 2022; 8:e11221. [PMID: 36339989 PMCID: PMC9634020 DOI: 10.1016/j.heliyon.2022.e11221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Compared with the large number of single-function materials such as aggregation-induced emission (AIE), mechanochromic luminescence (MCL), or thermally activated delayed fluorescence (TADF) emitters, multifunctional emitting materials offer more opportunities in practical applications. In this report, we provide a simple molecular design strategy towards the conversion of a MCL building block to a multifunctional emitter. Through altering the substituent sites and increasing the number of electron donors and steric hindrance on a normal MCL backbone benzo[d,e]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one, a novel multifunctional material 10,11-bis-(4-diphenylamino-phenyl)-benzo[d,e]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one (10,11-2TPA-BBI) is designed and synthesized. 10,11-2TPA-BBI exhibits simultaneous polymorphism, AIE, MCL and TADF properties. It can form four different aggregate species: yellow solid (YS) and orange solid (OS), orange flake-shaped crystal (OC), and red prism-like crystal (RC). Among them, because of the small energy gaps (ΔESTs < 0.3 eV) between the singlet and triplet excited states, OS, OC and RC exhibit TADF properties, while YS show normal fluorescence characteristics with a large ΔEST of 0.33 eV. OS can be reversibly transformed into YS upon external stimuli, which can be attributed to the emission switch between local excited state and charge transfer state. Crystallographic study indicates that the bulky structure and weak intermolecular interactions account for polymorphism and AIE properties. This work will provide a simple molecular design strategy for multifunctional materials.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China,College of Life Sciences and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Institute of New Materials for Vehicles, Jiangsu Second Normal University, Nanjing 210013, PR China,Corresponding author.
| | - Wenbing Yu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China,Nanjing Youhealing Medical Nutrition Technology Co. Ltd, Nanjing, 211505, PR China
| | - Li Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China,Corresponding author.
| |
Collapse
|
24
|
Li Z, Hou JT, Wang S, Zhu L, He X, Shen J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Singh P, Sharma P, Sharma N, Kaur S. Visual detection of spermine (vapor and aqueous phase) in food and urine samples: Bioimaging of spermine in HeLa cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Amphiphilic N-oxyethylimidazolium calixarenes: Synthesis, micellar solubilization and molecular recognition of Adenine-containing nucleotides. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Nilam M, Karmacharya S, Nau WM, Hennig A. Proton‐Gradient‐Driven Sensitivity Enhancement of Liposome‐Encapsulated Supramolecular Chemosensors. Angew Chem Int Ed Engl 2022; 61:e202207950. [PMID: 35687027 PMCID: PMC9543936 DOI: 10.1002/anie.202207950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/06/2022]
Abstract
An overarching challenge in the development of supramolecular sensor systems is to enhance their sensitivity, which commonly involves the synthesis of refined receptors with increased affinity to the analyte. We show that a dramatic sensitivity increase by 1–2 orders of magnitude can be achieved by encapsulating supramolecular chemosensors inside liposomes and exposing them to a pH gradient across the lipid bilayer membrane. This causes an imbalance of the influx and efflux rates of basic and acidic analytes leading to a significantly increased concentration of the analyte in the liposome interior. The utility of our liposome‐enhanced sensors was demonstrated with various host–dye reporter pairs and sensing mechanisms, and we could easily increase the sensitivity towards multiple biologically relevant analytes, including the neurotransmitters serotonin and tryptamine.
Collapse
Affiliation(s)
- Mohamed Nilam
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry Universität Osnabrück Barbarastraße 7 49069 Osnabrück Germany
- School of Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Shreya Karmacharya
- School of Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Werner M. Nau
- School of Science Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry Universität Osnabrück Barbarastraße 7 49069 Osnabrück Germany
| |
Collapse
|
28
|
Xiao Y, Liu X, Li N, Pang Y, Zheng Z. Central condensed ring changes for manipulating the self-assembly and photophysical behaviors of cyanostilbene-based hexacatenars. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Tao R, Zhao X, Zhao T, Zhao M, Li R, Yang T, Tang L, Jin Y, Zhang W, Qiu L. Cage-Confinement Induced Emission Enhancement. J Phys Chem Lett 2022; 13:6604-6611. [PMID: 35833794 DOI: 10.1021/acs.jpclett.2c01651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a proof-of-concept study, Imi-cage and Phos-cage organic molecular cages (OMCs) containing the triphenylphosphine (TPP) moiety, a nonclassic AIE luminogen (AIEgen), have been designed to demonstrate the cage-confinement induced emission enhancement (CCIEE). Thanks to the confinement effect of OMCs, the rigid Imi-cage exhibits much higher photoluminescence (PL) quantum yield (ΦPL) than the open-shell Semicage and small molecule TPP in both solution and amorphous solid states. The emission of Phos-cage could be further enhanced in crystalline solid state with a remarkably high ΦPL of 97.6% (vs 3.47% of crystalline TPP) benefiting from AIE enabled by the highly ordered molecular packing. The novel strategy of CCIEE via confining an AIEgen into an OMC to achieve a significant emission enhancement will shed light on the development of solid-state highly fluorescent materials. The fluorescent nature of Imi-cage was further exploited for the ultrahighly sensitive detection of the explosive picric acid.
Collapse
Affiliation(s)
- Rao Tao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xin Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Tianshu Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Miaomiao Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Ruiyang Li
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Tianfu Yang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Lizhi Tang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Li Qiu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
30
|
Recent development in chemosensor probes for the detection and imaging of zinc ions: a systematic review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Várguez PEM, Raimundo JM. Naked-Eye Chromogenic Test Strip for Cyanide Sensing Based on Novel Phenothiazine Push-Pull Derivatives. BIOSENSORS 2022; 12:407. [PMID: 35735556 PMCID: PMC9220876 DOI: 10.3390/bios12060407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Monitoring and detection of cyanide are of crucial interest as the latter plays versatile roles in many biological events, is ubiquitous in environment, and responsible for several acute poisoning and adverse health effects if ingested. We describe herein the synthesis and characterization of novel phenothiazine-based push-pull chromogenic chemosensors suitable for naked eye cyanide sensing. Indeed, specific detections were achieved for cyanide with a LOD of ca 9.12 to 4.59 µM and, interestingly, one of the new chemosensors has also revealed an unprecedented affinity for acetate with a LOD of ca 2.68 µM. Moreover, as proof of concept for practical applications, a paper test strip was prepared allowing its use for efficient qualitative naked eye cyanide sensing.
Collapse
|
32
|
Nilam M, Karmacharya S, Nau WM, Hennig A. Proton‐Gradient‐Driven Sensitivity Enhancement of Liposome‐Encapsulated Supramolecular Chemosensors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohamed Nilam
- Universität Osnabrück: Universitat Osnabruck Fachbereich Biologie/Chemie GERMANY
| | - Shreya Karmacharya
- Jacobs University Bremen gGmbH Department of Life Sciences and Chemistry GERMANY
| | - Werner M. Nau
- Jacobs University Bremen gGmbH Department of Life Sciences and Chemistry GERMANY
| | - Andreas Hennig
- Universität Osnabrück: Universitat Osnabruck Institute of Chemistry of New Materials Barbarastr. 7 49069 Osnabrück GERMANY
| |
Collapse
|
33
|
Qin S, Zou H, Hai Y, You L. Aggregation-induced emission luminogens and tunable multicolor polymer networks modulated by dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Manna SK, Chakraborty S, Adak AK, Samanta S. A New Benzimidazolium Ion‐Based “Turn Off” Fluorescent Compound for Detection of Fe
3+
Ion and Its Application towards Antimicrobial, Antibiofilm and Cell Imaging Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202200729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Arup Kumar Adak
- Department of Chemistry Bidhannagar College Kolkata 700064 India
| | | |
Collapse
|
35
|
Fluorescent chemosensors containing ruthenium(II) bipyridine as fluorogenic unit and modified calixarene as ionophore: Synthesis, characterization, electrochemistry and ion-binding property. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Kariapper FS, Thanzeel FY, Zandi LS, Wolf C. Selective chiroptical sensing of D/L-cysteine. Org Biomol Chem 2022; 20:3056-3060. [PMID: 35343543 DOI: 10.1039/d2ob00198e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chromophoric bifunctional probe design that allows selective chiroptical sensing of cysteine in aqueous solution is introduced. The common need for chiral HPLC separation is eliminated which expedites and simplifies the sample analysis while reducing solvent waste. Screening of the reaction between six phenacyl bromides and the enantiomers of cysteine showed that cyclization to an unsaturated thiomorpholine scaffold coincides with characteristic UV and CD effects, in particular when the reagent carries a proximate auxochromic nitro group. The UV changes and CD inductions were successfully used for determination of the absolute configuration, enantiomeric composition and total concentration of 18 test samples. This assay is highly selective for free cysteine while other amino acids, cysteine derived small peptides and biothiols do not interfere with the chiroptical signal generation.
Collapse
Affiliation(s)
- F Safia Kariapper
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - F Yushra Thanzeel
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - Lily S Zandi
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
37
|
Kumar S, Sharma N, Kaur S, Singh P. Pseudo-crown ether III: Naphthalimide-Pd(II) based fluorogenic ensemble for solution, vapour and Intracellular detection of amine and anti-counterfeiting applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Nakasha K, Fukuhara G. Dynamic hybridization of fluorescence polymers upon complexation of glucan. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Gurubasavaraj PM, Sajjan VP, Muñoz-Flores BM, Jiménez Pérez VM, Hosmane NS. Recent Advances in BODIPY Compounds: Synthetic Methods, Optical and Nonlinear Optical Properties, and Their Medical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061877. [PMID: 35335243 PMCID: PMC8949266 DOI: 10.3390/molecules27061877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Organoboron compounds are attracting immense research interest due to their wide range of applications. Particularly, low-coordinate organoboron complexes are receiving more attention due to their improbable optical and nonlinear optical properties, which makes them better candidates for medical applications. In this review, we summarize the various synthetic methods including multicomponent reactions, microwave-assisted and traditional pathways of organoboron complexes, and their optical and nonlinear properties. This review also includes the usage of organoboron complexes in various fields including biomedical applications.
Collapse
Affiliation(s)
- Prabhuodeyara M. Gurubasavaraj
- Department of Chemistry, Rani Channamma University, Belagavi 591156, India;
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| | | | - Blanca M. Muñoz-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
| | - Víctor M. Jiménez Pérez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66451, Nuevo León, Mexico;
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Correspondence: (P.M.G.); (V.M.J.P.); (N.S.H.)
| |
Collapse
|
40
|
Sripada A, Thanzeel FY, Wolf C. Unified sensing of the concentration and enantiomeric composition of chiral compounds with an achiral probe. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Podshibyakin VА, Shepelenko ЕN, Karlutova OY, Dubonosova IV, Borodkin GS, Popova OS, Zaichenko SB, Dubonosov AD, Bren VA, Minkin VI. Solvent-dependent selective “naked eye” chromofluorogenic multifunctional rhodamine-based probe for Al3+, Cu2+, Hg2+, S2− and CN− ions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Loya M, Dolai B, Atta AK. Solvent Controlled Colorimetric and Fluorometric Detection of Fe2+ and Cu2+ Ions by Naphthaldimine-Glucofuranose Conjugate. J Fluoresc 2022; 32:745-758. [DOI: 10.1007/s10895-021-02854-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
|
43
|
Bao L, Jones LO, Garrote Cañas AM, Yan Y, Pask CM, Hardie MJ, Mosquera MA, Schatz GC, Sergeeva NN. Multipurpose made colorimetric materials for amines, pH change and metal ion detection. RSC Adv 2022; 12:2684-2692. [PMID: 35425282 PMCID: PMC8979084 DOI: 10.1039/d1ra07811a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023] Open
Abstract
Sensors are routinely developed for specific applications, but multipurpose sensors are challenging, due to stability and poor functional design. We report organic materials that operate in solution and gas phase. They show a strong response behaviour to at least three types of environmental changes: pH, amine and metal ion binding/detection. We have confirmed and validated our findings using various analytical and computational methods. We found that the changes in polarity of the solvent and pH not only red shift the tail of the absorption spectra, but also extend the peak optical absorption of these structures by up to 100 nm, with consequential effects on the optical gap and colour changes of the materials. Acid–base response has been studied by spectrophotometric titrations with trifluoroacetic acid (TFA) and triethyl amine (TEA). The experiments show excellent reversibility with greater sensitivity to base than acid for all compounds. Analysis into metal sensing using Zn(ii) and Cu(ii) ions as analytes show that the materials can successfully bind the cations forming stable complexes. Moreover, a strong suppression of signal with copper gives an operative modality to detect the copper ion as low as 2.5 × 10−6 M. The formation of the metal complexes was also confirmed by growing crystals using a slow diffusion method; subsequent single crystal X-ray analysis reveals the ratio of ligand to metal to be 2 to 1. To test sensitivity towards various amine vapours, paper-based sensors have been fabricated. The sensors show a detection capability at 1 ppm of amine concentration. We have employed CIE L*a*b* colour space as the evaluation method, this provides numeric comparison of the samples from different series and allows comparison of small colour differences, which are generally undetectable by the human-eye. It shows that the CIE L*a*b* method can assess both sensitivity to a particular class of analytes and a specificity response to individual amines in this subclass offering an inexpensive and versatile methodology. Multi-responsive colorimetric sensors based on the hydrazone motif, which are perfectly suited for chemo sensing applications have been developed.![]()
Collapse
Affiliation(s)
- Lihong Bao
- School of Chemistry, University of Leeds LS2 9JT UK .,School of Material Design and Engineering, Beijing Institute of Fashion Technology 100029 Beijing China
| | - Leighton O Jones
- Department of Chemistry, Northwestern University Evanston 60208 Illinois USA
| | | | - Yunhan Yan
- School of Chemistry, University of Leeds LS2 9JT UK
| | | | - Michaele J Hardie
- Department of Chemistry, Northwestern University Evanston 60208 Illinois USA
| | - Martin A Mosquera
- Department of Chemistry and Biochemistry, Montana State University Bozeman 59717 Montana USA
| | - George C Schatz
- Department of Chemistry, Northwestern University Evanston 60208 Illinois USA
| | - Natalia N Sergeeva
- School of Chemistry, University of Leeds LS2 9JT UK .,The Leeds Institute of Textiles and Colour, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
44
|
El-Sewify IM, Radwan A, Elghazawy NH, Fritzsche W, Azzazy HME. Optical chemosensors for environmental monitoring of toxic metals related to Alzheimer's disease. RSC Adv 2022; 12:32744-32755. [PMID: 36425686 PMCID: PMC9664454 DOI: 10.1039/d2ra05384e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and progresses from mild memory loss to severe decline in thinking, behavioral and social skills, which dramatically impairs a person's ability to function independently. Genetics, some health disorders and lifestyle have all been connected to AD. Also, environmental factors are reported as contributors to this illness. The presence of heavy metals in air, water, food, soil and commercial products has increased tremendously. Accumulation of heavy metals in the body leads to serious malfunctioning of bodily organs, specifically the brain. For AD, a wide range of heavy metals have been reported to contribute to its onset and progression and the manifestation of its hallmarks. In this review, we focus on detection of highly toxic heavy metals such as mercury, cadmium, lead and arsenic in water. The presence of heavy metals in water is very troubling and regular monitoring is warranted. Optical chemosensors were designed and fabricated for determination of ultra-trace quantities of heavy metals in water. They have shown advantages when compared to other sensors, such as selectivity, low-detection limit, fast response time, and wide-range determination under optimal sensing conditions. Therefore, implementing optical chemosensors for monitoring levels of toxic metals in water represents an important contribution in fighting AD. This review briefly summarizes evidence that links toxic metals to onset and progression of Alzheimer's disease. It discusses the structure and fabrication of optical chemosensors, and their use for monitoring toxic metals in water.![]()
Collapse
Affiliation(s)
- Islam M. El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Ahmed Radwan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Nehal H. Elghazawy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Jena 07745, Germany
| | - Hassan M. E. Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Jena 07745, Germany
| |
Collapse
|
45
|
Okamoto H, Yamazaki N, Matsui A, Satake K. Synthesis of 2,3-Anthracenedicarboxylic-acid-derived Fluorophore and Chemiluminophore Incorporating Dipicolylaminomethyl Receptors, and Their Luminescence Responses to Metal Ions. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Squaraine-Based Optical Sensors: Designer Toolbox for Exploring Ionic and Molecular Recognitions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Small molecule-based chromogenic and fluorogenic probes play an indispensable role in many sensing applications. Ideal optical chemosensors should provide selectivity and sensitivity towards a variety of analytes. Synthetic accessibility and attractive photophysical properties have made squaraine dyes an enticing platform for the development of chemosensors. This review highlights the versatility of modular assemblies of squaraine-based chemosensors and chemodosimeters that take advantage of the availability of various structurally and functionally diverse recognition motifs, as well as utilizing additional recognition capabilities due to the unique structural features of the squaraine ring.
Collapse
|
47
|
Immanuel David C, Prabakaran G, Nandhakumar R. Recent approaches of 2HN derived fluorophores on recognition of Al3+ ions: A review for future outlook. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Rahali S, Belhocine Y, Allal H, Bouhadiba A, Assaba IM, Seydou M. A DFT investigation of the host–guest interactions between boron-based aromatic systems and β-cyclodextrin. Struct Chem 2021. [DOI: 10.1007/s11224-021-01835-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Selective sensing of thiols by aryl iodide stabilized fluorescent gold cluster through turn-off excimer emission caused by ligand displacement. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01944-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Rather IA, Ali R. Indicator displacement assays: from concept to recent developments. Org Biomol Chem 2021; 19:5926-5981. [PMID: 34143168 DOI: 10.1039/d1ob00518a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overcoming the synthetic burden related to covalently connected receptors with appropriate indicators for sensing various analytes via an indicator spacer receptor (ISR) approach, the indicator displacement assay (IDA) seems to be a very sophisticated and versatile supramolecular sensing paradigm, and it has taken the phenomenon of molecular recognition to the next level in the realm of host-guest chemistry. Due to the unavailability of a comprehensive report on what has been done in the last decade in relation to IDAs, we decided to set down this account illustrating diverse indicator displacement assays (IDAs) in detail from the concept stage to recent developments relating to the detection of cationic, anionic, and neutral analytes. The authors conclude this account with future perspectives and highlight the limitations and challenges relating to IDAs which need to be overcome in order to realize the full potential of this popular sensing phenomenon. While we were finalizing our account for publication, a tutorial review by the research groups of Anslyn, Sessler, and Sun was published, which focuses mainly on diverse aspects of the chemistry related to IDAs. As can be seen, our review, besides discussing various basic IDA concepts, has a vast collection of information published in the past decade and hence, hopefully, will be very informative for the supramolecular community. We believe that this work will offer new insights for the construction of novel sensors operating through the IDA approach.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| |
Collapse
|